Neutron diffraction study of the influence of structural disorder on the magnetic properties of Sr2FeMO6 (M=Ta, Sb)

(Note: The full text of this document is currently only available in the PDF Version )

Edmund J. Cussen, Jaap F. Vente, Peter D. Battle and Terence C. Gibb


Abstract

The crystal structure of the perovskite Sr2FeTaO6 has been refined by simultaneous analysis of X-ray and neutron powder diffraction data collected at 280 K; space group Pbnm, a=5.6204(3), b=5.6161(3), c=7.9266(3) Å. The structure is of the GdFeO3 type, with a disordered distribution of Fe and Ta over the six-coordinate cation sites. The structure of Sr2FeSbO6 has been refined in a similar manner; space group P21 /n, a=5.6132(5), b=5.5973(5), c=7.9036(7) Å, β=90.01(1)°. The two crystallographically distinct six-coordinate sites in Sr2FeSbO6 are occupied in a partially ordered manner [0.795(6):0.205(6)] by Fe and Sb atoms. Neutron diffraction data collected from Sr2FeTaO6 at 1.5 K show no evidence of long-range magnetic ordering and, in the light of previous susceptibility and Mössbauer measurements, it is concluded that Sr2FeTaO6 is a spin glass below 23 K. Neutron diffraction data collected from Sr2FeSbO6 at 1.5 K include magnetic Bragg peaks characteristic of a type I magnetic structure with an average ordered moment of 3.06(9) µB per Fe atom on the Fe-dominated octahedral site, and no significant ordered moment on the second site. The magnetic Bragg scattering decreases to zero in the temperature interval 1.5≤T/K≤37(2). It is concluded that the partial cation ordering leads to the coexistence of a magnetically ordered spin system and a spin-glass system.


References

  1. S. H. Kim and P. D. Battle, J. Solid State Chem., 1995, 114, 174 CrossRef CAS.
  2. M. F. Kupriyanov and E. G. Fesenko, Sov. Phys. Crystallogr., 1962, 6, 639 Search PubMed.
  3. M. F. Sykes and J. W. Essam, Phys. Rev. A, 1964, 133, 310.
  4. R. Rodriguez, A. Fernandez, A. Isalgue, J. Rodriguez, A. Labarta, J. Tejada and X. Obradors, J. Phys. C: Solid State Phys., 1985, 18, L401 CrossRef CAS.
  5. W. C. Koehler and E. O. Wollan, J. Phys. Chem. Solids, 1957, 2, 100 CrossRef CAS.
  6. D. J. Breed, K. Gilijamse, J. W. E. Sterkenburg and A. R. Miedema, J. Appl. Phys., 1970, 41, 1267 CrossRef CAS.
  7. T. C. Gibb, J. Mater. Chem., 1993, 3, 441 RSC.
  8. P. D. Battle, T. C. Gibb, A. J. Herold and J. P. Hodges, J. Mater. Chem., 1995, 5, 75 RSC.
  9. P. D. Battle, T. C. Gibb, A. J. Herod, S.-H. Kim and P. H. Munns, J. Mater. Chem., 1995, 5, 865 RSC.
  10. H. M. Rietveld, J. Appl. Crystallogr., 1969, 2, 65 CrossRef CAS.
  11. A. C. Larson and R. B. von Dreele, General Structure Analysis System (GSAS), Los Alamos National Laboratories, Report LAUR 86-748, 1990.
  12. S. Geller, J. Chem. Phys., 1956, 24, 1236 CrossRef CAS.
  13. R. J. Hill and H. D. Flack, J. Appl. Crystallogr., 1987, 20, 356 CrossRef CAS.
  14. R. E. Watson and A. J. Freeman, Acta Crystallogr., 1961, 14, 27 CrossRef CAS.
  15. P. D. Battle and C. W. Jones, Mater. Res. Bull., 1987, 22, 1623 CrossRef CAS.
  16. L. J. D. Jongh and A. R. Miedema, Adv. Phys., 1974, 23, 1 CAS.
  17. M. P. Attfield, P. D. Battle, S. K. Bollen, T. C. Gibb and R. J. Whitehead, J. Solid State Chem., 1992, 100, 37 CrossRef CAS.
  18. B. C. Tofield and B. E. F. Fender, J. Phys. Chem. Solids, 1970, 31, 2741 CrossRef CAS.
Click here to see how this site uses Cookies. View our privacy policy here.