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MYCN gene amplification critically drives neuroblastoma aggressiveness and poor outcomes,

necessitating precise preoperative identification to guide risk-adapted therapies. Current invasive

detection methods present substantial challenges for pediatric patients. To address this unmet need, we

developed a noninvasive MRI-based radiomic signature for predicting MYCN amplification status in

childhood abdominal neuroblastoma. In this prospective study, 99 patients with pathologically confirmed

abdominal neuroblastoma underwent preoperative MRI between April 2019 and September 2021. From

T2-weighted images, 1409 radiomic features were extracted per subject. Through two-sample statistical

testing and least absolute shrinkage and selection operator (LASSO) regression, we constructed an

optimized radiomic signature incorporating six highly discriminative features. The signature achieved

exceptional performance (AUC = 0.91) in predicting MYCN amplification, significantly outperforming

neuron-specific enolase levels (AUC = 0.68, p-value < 0.001) and all individual radiomic features. When

integrated with neuron-specific enolase via multivariate logistic regression, the model achieved

comparable performance (AUC = 0.91) to the signature only. Our findings establish the clinical viability

of this MRI-based approach for noninvasively stratifying MYCN amplification status, offering significant

potential to optimize surgical planning and therapeutic strategies for pediatric neuroblastoma.

Introduction

Neuroblastoma (NB) is a malignant embryonal tumor
originating from the postganglionic sympathetic ganglia.1 It
is common in children aged 1 to 5 years, easy to metastasize,
and has a poor prognosis.2 Several studies have revealed the
molecular characteristics of NB that about 25% of NB
children have MYCN gene amplification, which drives the
occurrence of high-frequency mutations in tumors and is
closely related to high-risk grouping and poor prognosis.3,4

Therefore, it is necessary to assess the MYCN status in

diagnosing NB patients for tailored treatments to improve
their clinical outcomes. However, the MYCN status is usually
obtained by pathological biopsy of tumor samples, which is
invasive and may cause complications or bleeding in pediatric
patients.5 In addition, the MYCN gene status cannot be
determined in most NB tumors at the initial diagnosis, which
seriously affects risk stratification results and treatment
strategies. Children exhibiting upregulation of this oncogene
are automatically placed in the high-risk group before
treatment begins, independent of other disease
characteristics, and generally need targeted therapeutic
interventions.6 Hence, it is of great clinical significance to
explore a non-invasive method suitable for children to predict
MYCN expansion.

Radiomics is an emerging technology that employs data
characterization algorithms to automate the quantitative
analysis of a series of radio-phenotypic characteristics that
potentially reflect biological properties of the pathology,
clinical phenotypes, and genetic and molecular markers.7,8

Recent studies have confirmed the potential of
radiogenomics analysis based on computed tomography (CT)
to predict various tumor-specific genes,9,10 but this
examination method is injurious for children.11 Magnetic
resonance imaging (MRI) is a radiation-free examination
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method, which has been used to diagnose and characterize
neuroblastoma in previous studies.12–14 In addition, the MRI-
based radiomic analysis method has played an important
role in characterizing various types of tumors15–17 and has
improved patients' diagnoses.

The study aims to establish a radiomic signature based on
MRI, evaluate its feasibility of predicting MYCN amplification
in children with abdominal NB, and compare its
performance with the neuron-specific enolase (NSE) level
often used in clinical practice.

Materials and methods
Subjects

Our research has been performed in accordance with the
Declaration of Helsinki, and was reviewed and approved by
the Ethics Committee of the Children's Hospital Affiliated to
Zhejiang University School of Medicine, and all guardians of
the subjects understood the contents of the examination
before conduction and signed the informed consent form
(2021-IRB-117).

A cohort of 99 patients diagnosed with abdominal NB were
consecutively enrolled in this study from April 2019 to

September 2021 and underwent abdominal MRI examinations.
The flow chart of the patient selection process is shown in
Fig. 1. The inclusion criteria were: (1) diagnosed with
pathologically confirmed NB; (2) ≤18 years old at diagnosis;
and (3) eligible for MRI. The exclusion criteria were: (1) lack of
MYCN detection; (2) incomplete MRI data; (3) prior treatment
before MRI examination; and (4) poor quality of MR images.

MYCN assessment

The MYCN status was evaluated by fluorescence in situ
hybridization (FISH) using a two-color probe and with a CEP2
centromeric probe as a reference, and MYCN amplification
was only considered when it increased 4-fold compared to
the reference value.18 According to the presence/absence of
MCYN amplification, the included patients with abdominal
NB were divided into two subgroups: with and without MYCN
amplification.

Imaging protocols

All subjects underwent MRI examinations on a 3T scanner
(Achieva, Philips Healthcare). Patients under 5 years were
sedated. A 10% chloral hydrate solution was administered

Fig. 1 Flow chart of patient selection.

Fig. 2 Flowchart of the whole processing pipeline.
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either via an enema or orally about 40 min before the
examination, with the scan being conducted while the
patient was asleep. Considering the issue of patient
cooperation, the data collection time needs to be as short
as possible, and thus only the pre-contrast T1-weighted
(T1w) and T2-weighted (T2w) sequences were executed. The
total time for completing the MR examination was ∼15
minutes. All MR images were retrieved from the picture
archiving and communication system (PACS) for subsequent
processing and analysis. Given that T2w images provide
better visualization of neuroblastoma lesions, subsequent
processing and analysis were conducted exclusively on T2w
images.

Habitat definition and processing

The workflow of this study is shown in Fig. 2. The MRI data
were loaded from the PACS system and the region of interest
(ROI) was delineated manually on the transverse T2w images
using the semi-automatic segmentation method in the 3D
Slicer software19 by two pediatric radiologists both with more
than 15 years of clinical experience. Each observer delineated
the ROI three times and measured the average. The average

results of the two observers were used as the final data. Intra-
and inter-observer consistency coefficients (ICCs) were used
to evaluate the differences of features extracted from
different ROIs. An ICC greater than 0.8 was considered to
have good consistency. The T2w images and ROIs of four NB
patients with and without MYCN amplification are displayed
in Fig. 3.

Fig. 3 Anatomical T2w images and manual segmentation of T2w regions of interest (ROI) from four neuroblastoma patients. Rows (A) and (B)
display a 5-year-old girl and a 6-year-old girl with MYCN amplification, respectively. Rows (C) and (D) show a 6-year-old girl and a 4-year-old boy
without MYCN amplification, respectively.

Table 1 Comparison of clinical features in patients with neuroblastoma

Subgroup MYCN N-MYCN P value

No. of patients 24 56 —
Age in months at diagnosis
Mean 50.7 44.9 0.47
Median 43.5 35.0
Range [3165] [2132]
SD 35.5 31.6
Male 11 29 0.62
Female 13 27
NSE (ng ml−1)
Mean 80.58 35.48 0.003*
SD 99.60 33.36

Abbreviations: SD, standard deviation; MYCN, with MYCN
amplification; N-MYCN, without MYCN amplification. * stands for
the p-value < 0.05.
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Radiomic feature extraction

The open-source Python package (PyRadiomics)20 was used to
extract radiomic features within the tumor ROI on images
from abdominal NB in children. The original MR images first
underwent N4 bias field correction, and then were subjected
to isotropic voxel resampling and signal intensity
normalization.21 Then, the preprocessed images were applied
with multiple filters including Wavelet, Laplacian of Gaussian
(LoG), Square, SquareRoot, Logarithm, and Exponential, etc.
for transformation. Images before and after filtering both
went through the feature extraction workflow. A total of 1409
radiomic features were extracted from each patient's original
MR images and filter-transformed ones. All extracted features
were standardized using z-score normalization for further
analysis.

Statistical analysis

All statistical analyses were performed with MATLAB
(R2021b, MathWorks). The differences between subgroups in
age and gender were assessed with a two-sample independent
t-test and chi-square test, respectively. The NSE level
difference between subgroups was also evaluated using a
two-sample independent t-test. We performed 100 iterations
of 5-fold cross-validation split to ensure robust results and
mitigate the impact of random partitioning. The following
feature selection was performed on the training set only. The
Shapiro–Wilk test was used to evaluate the normality of all
extracted radiomic features. The two-sample independent
t-test (for data following a normal distribution) and rank sum

test (for data not following a normal distribution) were
performed to select the features that exhibited significant
differences in the MYCN amplification status between
groups. The features with a p-value below 0.05 were retained
for further selection. The least absolute shrinkage and
selection operator (LASSO) algorithm was used for further
feature screening.22 Due to the number of the training set,
up to six radiomic features were retained as a feature subset
in each fold of each iteration.23 Then, we tallied the
frequency of each feature across all subsets and selected the
top six as the final feature set. The Pearson correlation
coefficient was used to assess the collinearity and
redundancy between the retained radiomic features. We
performed another 100 iterations of 5-fold cross-validation
split for model construction. In each fold of each iteration, a
LASSO model was trained using the training set, and the
radiomic signature was derived as a linear combination of
the six features from the testing set and their corresponding
coefficients determined by the LASSO model. The
performance of each retained radiomic feature, NSE level,
and radiomic signature was assessed by the receiver
operating characteristic curve (ROC) analysis. In addition, the
radiomic signature was combined with the NSE level using a
multivariate logistic regression model for exploring whether
the NSE level could provide additional value. The
performance was assessed based on the average area under

Table 2 The six radiomic features retained after feature selection

Filter Category Feature Frequency

Wavelet-LLH GLRLM RunLengthNonUniformityNormalized 0.856
Wavelet-HHL First order Skewness 0.820
Wavelet-HLL GLCM ClusterShade 0.732
Gradient GLCM Correlation 0.338
Wavelet-LLL NGTDM Busyness 0.296
Wavelet-HHH GLRLM HighGrayLevelRunEmphasis 0.284

Table 3 Comparison of the six retained radiomic features after feature
selection between two subgroups

Feature MYCN N-MYCN P value

F1 0.096 ± 0.024 0.081 ([0.046, 0.110]) 0.003*
F2 0.075 ± 0.187 −0.089 ± 0.176 <0.001*
F3 −696.8 ± 1375.1 312.5 ± 1275.7 0.002*
F4 0.627 ([0.531, 0.735]) 0.670 ([0.563, 0.815]) 0.009*
F5 0.003 ± 0.003 0.002 ± 0.001 0.004*
F6 2.503 ([2.484, 2.528]) 2.497± 0.011 0.01*

Abbreviations: MYCN, with MYCN amplification; N-MYCN, without
MYCN amplification; F1–6 represent the six features in Table 2. *
stands for the p-value < 0.05. Footnote: data that follow a normal
distribution are presented as mean ± standard deviation, and those
that do not follow a normal distribution are presented as median
(range).

Fig. 4 The heatmap of the correlation coefficient between the 6
radiomic features retained. F1–6 represent the six features in Table 2.
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the ROC curve (AUC), positive predicted value (PPV), negative
predicted value (NPV), sensitivity, and specificity computed
over 100 repeated testing sets. The statistical significance of
the differences between the AUC values was assessed with
the Delong test method.24 The p-value below 0.05 indicates
statistical significance in all tests.

Results and discussion
Patient demographics

As presented in Fig. 1, among the 99 neuroblastoma patients
enrolled, 4 subjects were excluded due to lack of MYCN
results, 9 subjects excluded owing to prior treatment about
NB, 3 subjects excluded because of incomplete MRI data, and

3 subjects excluded for poor image quality. For the 80
patients finally included in this study, 24 cases had MYCN
amplification and 56 cases did not have MYCN amplification.
There were no significant differences between the two
subgroups in age and gender. In contrast, the NSE level
exhibited a significant difference between the two subgroups.
Patients' demographics are listed in Table 1.

Feature selection

The intra- and inter-observer consistency coefficients of the
features extracted from different ROIs were 0.91 and 0.84,
respectively. Among the 1409 radiomic features extracted, 6
features were retained after feature selection, including 1 first
order feature, 2 GLCM features, 2 GIRLM features, and 1
NGTDM feature (Table 2). As displayed in Table 3, these
features were significantly different between patients with
and without MYCN amplification ( p values < 0.05), with their
frequencies across all feature subsets shown in Table 2.
Fig. 4 shows the heatmap of the correlation coefficient
between the 6 radiomic features retained.

Comparison and predicting performance of single radiomic
features

Table 3 shows the differences in the 6 radiomic features
retained between the two subgroups. Radiomic features that
follow a normal distribution are presented as mean ± standard

Table 4 The performance of the single retained radiomic features for
predicting MYCN amplification of abdominal NB across 100 runs of 5-fold
cross-validation

Feature PPV NPV Sensitivity Specificity AUC

F1 0.76 0.80 0.42 0.94 0.72
F2 0.76 0.83 0.53 0.92 0.76
F3 0.56 0.83 0.57 0.82 0.75
F4 0.54 0.80 0.47 0.85 0.70
F5 0.67 0.78 0.34 0.93 0.67
F6 0.75 0.79 0.39 0.94 0.69

Abbreviations: F1–6 represent the six features in Table 2.

Fig. 5 ROC curves of single radiomic features retained for predicting MYCN amplification of abdominal NB. (A)–(F) correspond to F1–6 in Table 4.

Sensors & DiagnosticsPaper

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 1

0 
ot

to
br

e 
20

25
. D

ow
nl

oa
de

d 
on

 1
4/

02
/2

02
6 

7:
11

:5
4.

 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n-

N
on

C
om

m
er

ci
al

 3
.0

 U
np

or
te

d 
L

ic
en

ce
.

View Article Online

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d5sd00089k


Sens. Diagn., 2025, 4, 1114–1121 | 1119© 2025 The Author(s). Published by the Royal Society of Chemistry

deviation, and those that do not follow a normal
distribution are presented as median (range). Table 4
presents the performance of each radiomic feature for
predicting MYCN amplification in pediatric NB patients over
100 repeated testing sets. The corresponding ROC curves of
those features are shown in Fig. 5. The skewness of the
wavelet-HHL transformed image was the best one with an
AUC of 0.76 ( p values < 0.01 compared with other features,
except the ClusterShade of the wavelet-HLL transformed
image) for predicting MYCN amplification.

Comparison of the predicting performance between the
radiomic signature and NSE level

As displayed in Table 5, the NSE level achieved an AUC of
0.68 for predicting MYCN amplification in abdominal NB
across 100 repeated testing sets. In comparison, the radiomic
signature obtained by a linear combination of the 6 radiomic
features yielded a significantly higher AUC of 0.91 ( p-value <

0.001). Furthermore, the radiomic signature performed
significantly better than the single radiomic features ( p
values < 0.001). In addition, the multivariate logistic
regression model combined the NSE level and radiomic
signature and achieved comparable performance (AUC =
0.91) to the signature only ( p-value = 0.07) for predicting
MYCN amplification. The ROC curves of the NSE level,
radiomic signature, and combined model are exhibited in
Fig. 6, respectively.

Due to the extensive tumor heterogeneity among children
with NB, the prognosis varies significantly with different
stages and risk factors.2 The MYCN gene is a significant
member of the MYC oncogene family and has a strong
oncogenic potential.25 In NB with MYCN amplification, the
tumor cells proliferate malignantly and spread into the blood
to cause systemic metastasis in the early stage, and the
higher the amplification, the worse the prognosis. In
addition, MYCN amplification is closely correlated with the
highly enriched blood vessels in NB, indicating that MYCN is
involved in oncogenic transformation and promotes the
angiogenesis and metastasis of NB. Since it is unique to the
tumor and is not disturbed by external factors, the associated
prognosis can be judged more accurately and
independently.26 As a tumor marker of NB, NSE is a glycolytic
enzyme in the glycolysis pathway that normally exists in
neurons and nerve-derived cells, and is released when the
cells are destroyed. It has great clinical value in the early
diagnosis of NB, and its elevation usually indicates an
advanced stage and poor prognosis.27

Radiomics has the potential to assess the spatial
heterogeneity of tumors as a non-invasive ‘multiple virtual
biopsy’ tool.28 The characteristics of the tumor can be
comprehensively evaluated, and the accuracy of preoperative
evaluation and prognosis prediction can be improved by
combining radiomic features and clinical data, which has
been confirmed in previous investigations.29 In this study, we
investigated the feasibility of the MRI-based radiomic
signature for predicting MYCN amplification among pediatric
patients with abdominal NB. The radiomic signature
achieved more favorable performance than the NSE level, but
the combined radiomic signature–NSE model achieved
comparable performance to the signature only. Furthermore,
in this study, we screened 6 features from a large set of
radiomic features associated with MYCN amplification by
feature selection. Among these retained features, 5 features
belong to the texture feature type, including GLCM, GLRLM,
and NGTDM features. These indirectly reflect NB tumor
heterogeneity, suggesting a correlation between abnormal

Table 5 The performance of the NSE level, radiomic signature, and
combined model for predicting MYCN amplification of abdominal NB
across 100 runs of 5-fold cross-validation

Factor PPV NPV Sensitivity Specificity AUC

NSE 0.79 0.79 0.40 0.95 0.68
Rad 0.95 0.90 0.73 0.97 0.91
Rad + NSE 0.94 0.91 0.76 0.97 0.91

Abbreviations: Rad, radiomic signature.

Fig. 6 ROC curves of the NSE level (A), radiomic signature (B), and combined model (C) for predicting MYCN amplification of abdominal NB.
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MYCN amplification in NB patients and their poor
prognoses. Although pathological biopsy is still the gold
standard for diagnosing MYCN amplification at present, the
radiomic signature can be used in the diagnostic workflow
for cases where it is technically difficult to perform a safe
biopsy or where the patient's condition is temporarily not
suitable for biopsy. Predicting MYCN amplification
preoperatively using routinely acquired MRI enables early
identification of high-risk patients before conventional
pathological biopsy results are available, which allows
clinicians to expedite treatment selection and optimize
surgical planning. Prompt risk-adapted therapy may improve
event-free survival or overall survival in MYCN-amplified
neuroblastoma patients.

There were some limitations in this study. First, although
the radiomic signature based on MRI has yielded favorable
performance in predicting MYCN amplification of pediatric
NB, the generalizability of this finding is limited due to the
small patient sample number from just one medical center.
Multi-center external validation will be conducted in the
future. Second, the radiomic signature was established only
based on T2w MR images, other structural MRI30 and
molecular MRI can also be integrated into future studies for
further improvement. Third, the choice of the classification
method is critical for performance.31 This study only used
the ROC analysis method to assess the performance of the
radiomic features and signature, and whether other machine
learning-based models32 have better performance was not
evaluated. We will further explore machine learning-based
models in the future. Last, we did not explore the correlation
between the radiomic signature and endpoints with clear
clinical significance, such as event-free survival, overall
survival, or specific treatment response. Subsequent efforts
will involve systematically collecting and integrating clinical
outcome data, conducting survival analyses, and delving into
the associations between the radiomic signature and
prognosis.

Conclusion

In conclusion, we proposed an MRI-based radiomic signature
for predicting MYCN amplification in children with
abdominal NB. Our findings show that the proposed
signature has achieved favorable performance, indicative of
great potential as a future biomarker in NB diagnoses.
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