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We present the second part of the rigorous evaluation of modern machine learning force fields (MLFFs)

within the TEA Challenge 2023. This study provides an in-depth analysis of the performance of MACE,

SO3krates, sGDML, SOAP/GAP, and FCHL19* in modeling molecules, molecule-surface interfaces, and

periodic materials. We compare observables obtained from molecular dynamics (MD) simulations using

different MLFFs under identical conditions. Where applicable, density-functional theory (DFT) or

experiment serves as a reference to reliably assess the performance of the ML models. In the absence of

DFT benchmarks, we conduct a comparative analysis based on results from various MLFF architectures.

Our findings indicate that, at the current stage of MLFF development, the choice of ML model is in the

hands of the practitioner. When a problem falls within the scope of a given MLFF architecture, the

resulting simulations exhibit weak dependency on the specific architecture used. Instead, emphasis

should be placed on developing complete, reliable, and representative training datasets. Nonetheless,

long-range noncovalent interactions remain challenging for all MLFF models, necessitating special

caution in simulations of physical systems where such interactions are prominent, such as molecule-

surface interfaces. The findings presented here reflect the state of MLFF models as of October 2023.
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1 Introduction

The practical application of machine learning force elds (MLFF)
aims to enhance the capabilities of computational chemistry
reference methods, enabling dynamical simulations that would
otherwise be unfeasible. Achieving this goal requires a high degree
of trust in simulation results, allowing MLFF models to become
standard tools in research and industry pipelines. While archi-
tecture development is greatly facilitated by easy “pointwise”
testing of models on standardised train/test splits of toy problems,
and this approach has been standard in the machine learning
(ML) community, creating models that are actually useful for
materials and molecular science research requires complicated
system-specic evaluation. Even the earliest successful models in
the materials eld that were targeting specic systems already did
this, demonstrating high accuracy in computing observables such
as phonon spectra, phase transitions, defect formation energies,
etc., as well as pointwise accuracy of reproducing the potential-
energy surfaces and atomic forces.1–9 Later, as the computer
science community engaged with the problem of molecular
modeling, their practices also came to be prominent and, espe-
cially in works that compared different ML architectures, devel-
opers assessed the accuracy of models mostly by evaluating errors
in energies and forces relative to the ground truth they were
targeting.10–29 There is a widely held view that we need to return to
assessing observables.30 In the meantime, sophisticated MLFF
accuracy measures31–35 and visualization tools29,36 have been
developed to address MLmodels' performance on local and global
measures. It was suggested in particular that long molecular
dynamics (MD) simulations19,37–49 provide a robust test of MLFF
reliability as predictors of physical behavior when mean absolute
error (MAE) or root mean square error (RMSE) may be insufficient
or even misleading when considered on their own.50–57

In this study, we evaluate the quality of modern MLFF archi-
tectures by comparing the outcomes of MD simulations per-
formed with MACE,13,14 SO3krates,22,23 sGDML,17,18,38,58 SOAP/
GAP,2,6 and FCHL19*11,12,59,60 models. MACE and SO3krates are
equivariant message-passing graph neural networks (NNs), rep-
resenting many-body information about the geometric atomic
conguration employing spherical harmonics and radial distri-
butions function learned through multilayer perceptrons. SO3k-
rates also relies on an equivariant attention mechanism to
enhance the model's efficiency. FCHL19*, sGDML, and SOAP/
GAP are kernel-based ML architectures. FCHL19* and SOAP/
GAP are based on local atom-centered representations, while
sGDML employs a global descriptor. Full details of the MLFFs are
available in the ESI of ref. 61. We would like to highlight that the
MLFF architectures included in the TEA Challenge 2023 were
limited to those whose developers could participate in the
benchmark. This approach was adopted to minimize the risk of
misinterpretation or drawing misleading conclusions due to
potential mistraining. The complete list of modern MLFFs is
considerably broader. Prominent MLFFs that did not participate
include ANI,62 Alegro,24 ACE,63 ALIGNN-FF,64 AIMNet2,65

DeepMD,66,67 Elemental-SDNNFF,68 FIREANN,69 FLARE,70 G-
MBNN,71 GPTFF,72 MTP,73 NequIP,25 PIP,74,75 SevenNet,76 SNAP,77
© 2025 The Author(s). Published by the Royal Society of Chemistry
and M3GNet,78 among others. To ensure that the current
benchmark can be extended to include any additional MLFF
model in the future, all the data and scripts necessary to train
other ML architectures and replicate the simulations and anal-
yses are available online and upon request.

Given the computational expense of explicit electronic
structure methods, oen the only plausible test for the perfor-
mance of an ML model (apart from comparing to experimental
observables, which brings its own complexities) is another
model trained and used under identical conditions. Achieving
consistency in results across different ML architectures would
mark a signicant milestone in the development of MLFFs. This
work builds upon our previous manuscript, “Crash Testing
Machine Learning Force Fields for Molecules, Materials, and
Interfaces: Model Analysis in the TEA Challenge 2023,” which
provided a detailed analysis of force and energy predictions on
test datasets.61 In contrast, this study focuses on analyzing
various observables derived from MD simulations. Only trajec-
tories that provide sufficient statistical data under the specied
simulation conditions are considered. Each challenge is inde-
pendently analyzed to assess the ability of different MLFF
architectures to simulate specic types of systems. We focus on
evaluating the capability of MLFFs to perform classical MD
simulations under ambient and near-ambient conditions.
While these simulations cover a broad range of potential MLFF
applications, they do not address all possible scenarios. For
example, simulations that capture nuclear quantum effects,
such as imaginary-time path-integral MD,79 or those involving
chemical bond breaking, fall outside the scope of this study.
Tackling such challenges would require additional compo-
nents, including advanced sampling techniques to capture low-
probability or classically forbidden system geometries, as well
as costly multi-reference ab initio calculations to accurately
describe dissociation processes. Each of these represents an
open challenge in its own right.

This article is divided into four sections as follows. In Section
2, we present a comprehensive analysis of the classical MD
simulations conducted for each system studied in the TEA
Challenge 2023. These systems include two biomolecular
systems (alanine tetrapeptide and N-acetylphenylalanyl-
pentaalanyl-lysine), a 1,8-naphthyridine/graphene interface,
and a methylammonium lead iodide perovskite. The starting
point of each of the 12 MD trajectories simulated in each
experiment and the corresponding MLFF models can be found
in the Zenodo archive https://doi.org/10.5281/zenodo.13832724
with trajectories available upon request. From their analyses, we
extract key insights into the applicability and reliability of
MLFFs, and identify opportunities for further development
and improvement. Section 3 contains guidelines for the
development, training, and application of MLFFs. Section 4
represents the overall conclusions.

2 Results and discussion
2.1 Alanine tetrapeptide

We begin our analysis of the MD trajectories provided by
different MLFF models with the simplest case among the TEA
Chem. Sci., 2025, 16, 3738–3754 | 3739
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Fig. 1 Challenge I, Alanine tetrapeptide: analysis and Ramachandran plots for MD simulations at 300 K. (a) Diagram of the peptide depicts the
peptide with atom sets A and B forming two consecutive pairs of dihedral angles (left four atoms – x-axis, right four atoms – y-axis). (b) Initial
points for 12 MD trajectories. (c) Ramachandran plots for the reference systems at 500 K and for MD simulations at 300 K using MACE, SO3krates,
and sGDML MLFFs trained on com (complete), fold (folded), and unfold (unfolded) datasets. The numbers near the clusters indicate their relative
population (in percent), while the grey number in the lower left corner of each plot shows the percentage of configurations from the MD
trajectories identified as belonging to one of the clusters. (d) Graphical representation of the transitions between different (meta)stable domains.
The values on the arrows show the number of transitions identified in the dynamics.

3740 | Chem. Sci., 2025, 16, 3738–3754 © 2025 The Author(s). Published by the Royal Society of Chemistry
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2023 challenges: the alanine tetrapeptidemolecule in Challenge
I. For a decade, organic molecules with a few dozen atoms in the
gas phase have been routinely treated with different MLFF
architectures. Additionally, such molecules are well within the
capabilities of DFT codes, which can routinely compute
hundreds of thousands of geometries without excessive
computational effort. In this particular case, the reference
dataset is comprised of 85 109 molecular geometries repre-
senting an ab initio NVTMD trajectory generated at 500 K (taken
from MD22 benchmark,58 details available in Section 2 of ref.
61). This comprehensive dataset facilitated the generation of
three distinct training sets, categorized by the distance between
the farthest non-hydrogen atoms, which served as a measure of
molecular compactness: (1) the complete set, encompassing
representative samples of both extended and compact Ac-Ala3-
NHMe structures; (2) the folded set, consisting of the 70%
most compact structures extracted from the MD trajectory; and
(3) the unfolded set, comprising the remaining 30% of less
compact structures from the same trajectory. Details of the
training procedures for different MLFFs for this and the other
Challenges are available in ESI of ref. 61.

Analysis of the MD trajectories and a comparison between
the outputs for the different MLFFs are presented here via
Ramachandran plots, as shown in Fig. 1. The Ramachandran
plots are useful for visualizing the allowed conformational
space of the peptide backbone.80 For the Ac-Ala3-NHMe tetra-
peptide, two selected pairs of dihedral angles in Fig. 1a, A and B,
are conventionally referred to as f2/j2 and f1/j1,
respectively.80–82 The initial points for MD simulations are
depicted in Fig. 1b.

In order to obtain an informative picture of the results,
analysis involving a clustering algorithm was carried out to
identify the high density regions of population during the MD
and lter out noise and unrepresentative low density areas.83,84

The full step-by-step algorithm description is available in the
ESI.† Our analysis algorithm identies different (meta)stable
domains in the Ramachandran plots, illustrated in various
colors, Fig. 1c. The transitions between these (meta)stable
domains obtained with SO3krates folded/unfolded and sGDML
complete/folded models are represented in the graph form in
Fig. 1d. It is important to note that the benchmark reference
trajectory was obtained at 500 K to allow for more extensive
sampling of the conformational space and bond lengths. To
ensure statistically signicant results, only the Ramachandran
plots for ML models that produced stable 1 ns dynamics are
presented. Consequently, the analyses are based on MLFF MD
trajectories obtained at 300 K, as most MLFF models failed to
produce stable 1 ns dynamics at 500 K. Nevertheless, the
Ramachandran plots for the reference ab inito MD at 500 K still
provide a qualitative guideline for the 300 K MLFF MD results.

The MACE models trained on both complete and folded datasets
exhibit excellent mutual agreement. However, they undersample
the upper le corner of the Ramachandran plot for A and the
upper part of the dihedral cluster for B compared to the refer-
ence data. Both of these areas correspond to the highly
unfolded conformations of the tetrapeptide. Training the MACE
model on the unfolded dataset results in better qualitative
© 2025 The Author(s). Published by the Royal Society of Chemistry
agreement with the reference MD trajectory. Quantitative
agreement estimation is challenging due to the short length of
the ab initio MD trajectory and the difference in temperatures.

The SO3krates models display distinct Ramachandran proles
depending on whether they are trained on complete, folded, or
unfolded datasets. Firstly, when trained on both complete and
folded datasets, SO3krates model also undersample regions of
highly unfolded conformations, similar to MACE. This indi-
cates that this might be due to lower simulation temperature
compared to the reference. Notably, the SO3krates model
trained on the folded dataset exhibits additional metastable
states with low populations (3% for A and 1% for B) and low
transition probabilities. For dihedral B, the SO3krates model
trained on the unfolded dataset identies an extra metastable
region with a 9% cluster population, though the transition
probability into this state is low, with only one transition
observed in 12 ns of total dynamics (12× 1 ns). The seeds of this
cluster also appear as two small clusters with a 1% population
and relatively high mutual transition rates in the SO3krates
model trained on the folded dataset. These molecular geome-
tries were not observed in MD simulations using the SO3krates
model trained on the complete dataset or by any MACE or
sGDML models. However, exploration to these regions have
been studied previously in the original SO3krates article.23 It is
worth noting that the two small clusters in the SO3 fold plot,
dihedrals B, and the two clusters in the SO3 unfold plot, dihe-
drals A, can be merged due to their relatively high transition
rates. The clustering algorithm employed here uses a pre-
dened xed number of transitions to merge clusters chosen to
suit the data in general. It does not account for their population,
providing suboptimal results when at least one of the clusters is
small.

The sGDML model trained on a complete dataset also demon-
strates acceptable results. The total number of transitions between
the two clusters identied for B is 86, slightly below the manually
selected threshold of 100 for merging the clusters into one.
However, removing parts of the reference geometries in folded or
unfolded datasets leads to signicant differences in the Ramachan-
dran proles or even MD instability. This sensitivity is attributed to
the sGDML model's interpolation in the space of a global system
descriptor of inverse distances, making the model highly
dependent on the quality and completeness of the training
dataset compared to MLFFs employing local descriptors.

In ESI, a comprehensive Table SI 1† lists the chemical bonds
responsible for the instability of all MLFF architectures trained
on different datasets at 300, 500, and 700 K. Most broken bonds
involve carbon atoms connected to other elements. Addition-
ally, there are notable differences in bond-breaking patterns
between kernel-based and equivariant NN-based ML models.
For sGDML, SOAP/GAP, and FCHL19*, the specic bond
causing molecular instability was readily identiable. By
contrast, for SO3krates, bond breaking exhibited an explosion-
like behavior, with a large part of the molecule decomposing
into atoms within a few dozen steps, making it challenging to
pinpoint the exact bond responsible for the instability.

In summary, when trained on a complete dataset, we
observed strong mutual agreement in the molecular dynamics
Chem. Sci., 2025, 16, 3738–3754 | 3741
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of the alanine tetrapeptide generated by MACE and SO3krates
models. Discrepancies arise when the training datasets lack
either folded or unfolded geometries. Both models reasonably
explored the unfolded potential energy surface (PES) basin
when trained on the unfolded dataset. The MACE folded model
is consistent with the complete one. The SO3krates folded and
unfolded models were mostly consistent, while the sGDML
MLFFs demonstrated increased sensitivity to variations in the
training data.
Fig. 2 Challenge II,N-acetylphenylalanyl-pentaalanyl-lysine peptide: An
of the peptide with sets of atoms A, B, and C forming three consecutive
axis). (b) Initial points for 12 MD trajectories. (c) Ramachandran plots for M
MACE incom (incomplete), SO3 com, SO3 incom, sGDML com, and s
population (in percent). The grey number in the bottom left corner of eac
MD trajectories identified as belonging to one of the clusters. (d) Graphic
for dihedrals C. The values on the arrows show the number of transition

3742 | Chem. Sci., 2025, 16, 3738–3754
2.2 N-Acetylphenylalanyl-pentaalanyl-lysine

The second challenge in the TEA Challenge 2023 was performed
on a larger organic system, namely the protonated Ac-Phe-Ala5-
Lys peptide. The dataset, comprising 100 000 reference geom-
etries with energies and forces calculated using the PBE0 (ref.
85) exchange-correlation functional and the nonlocal MBD
(MBD-NL)86 method for modeling dispersion interactions, was
specically generated for the TEA Challenge 2023. Full details
can be found in Section 2 of ref. 61. The main aim of the
alysis and Ramachandran plots for MD simulations at 300 K. (a) Diagram
pairs of dihedral angles (right four atoms – x-axis, left four atoms – y-
D simulations employed different MLFFmodels: MACE com (complete),
GDML incom. The numbers near the clusters indicate their relative
h plot shows the relative number of configurations (in percent) from the
al representation of transitions between different (meta)stable domains
s identified in the dynamics.

© 2025 The Author(s). Published by the Royal Society of Chemistry
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challenge was to assess the ability of MLFFs to handle different
types of reference data incompleteness. To this end, two
training datasets were created for the Ac-Phe-Ala5-Lys peptide
system based on MD simulations around the 200 lowest energy
conformers. The “complete” dataset consisted of 20 randomly
selected molecular congurations from each of these trajecto-
ries, while the “incomplete” dataset contained 32 randomly
selected congurations from only 125 trajectories. The clus-
tering algorithm used here is the same one as for Challenge I
(full details in ESI†). Fig. 2 presents the Ramachandran plots for
three selected pairs of neighboring dihedral angles along the
peptide. The dihedral angle pairs, labeled as A, B, and C (see
Fig. 2a), represent key cases for comparing different MLFFs. The
initial points for MD simulations are shown in Fig. 2b. Only the
Ramachandran plots for ML models that produced stable 1 ns
long dynamics are displayed. The FCHL19* and SOAP/GAP
MLFFs did not achieve the required 1 ns to perform
statistically-signicant analysis. Our analysis identies distinct
(meta)stable domains in the Ramachandran plots, represented
in different colors, Fig. 2c. Since the original dataset was not
derived from an MD trajectory, reference density plots are
unavailable. Transition graphs illustrate the transitions
between (meta)stable domains for dihedrals C across different
ML models, Fig. 2d.

We begin by comparing the MD results of the MACE and
SO3krates models, each trained on complete (com) and
incomplete (incom) datasets, Fig. 2c. The most noticeable
difference is the increased number of clusters in the dynamics
generated by the models trained on the incomplete dataset,
primarily reecting variations in the starting points for the MD
simulations. Additional red clusters appear for the A and B
dihedrals due to distinct starting points in the incomplete
trajectories (highlighted by red circles in Fig. 2b). These starting
points signicantly differ from other initial congurations,
leading to divergences in the Ramachandran plots. Both
models, however, accurately reproduce the close-to-equilibrium
regions of the PES for A and B, providing similar positions of the
minima and shapes of the probability distributions around
them (within 3% agreement in population distributions
between clusters).

For the C dihedrals, a block of four starting points (high-
lighted by an orange circle in Fig. 2b) appears like an orange
cluster. Additionally, a shi in the red cluster position from 0 to
–p/2 along the Y-axis is attributed to differences in starting
congurations between the complete and incomplete datasets
(emphasized by a red circle in Fig. 2b). Differences in the MLFFs
from the MACE and SO3krates architectures signicantly
inuence the distribution of the C dihedrals, as supported by
transition graphs in Fig. 2d, differing especially in the case of
training on an incomplete dataset. The MACE MLFF shows
a 54% relative population for the complete C dihedral case for
the largest cluster (–p/2, p/2) compared to 60% with the
SO3krates MLFF. This difference stems from a higher transition
probability within the MACE PES from this state to the green
cluster (–p, p/2). Conversely, the green cluster population is
higher with the MACE PES at 40%, compared to 32% for the
SO3krates PES, due to a nearly twice higher transition
© 2025 The Author(s). Published by the Royal Society of Chemistry
probability between the green and red (p, 0) metastable states
with the SO3krates MLFF trained on the complete dataset.

These results suggest that the primary difference between
MACE and SO3krates MLFFs lies in the description of out-of-
equilibrium regions of the PES, which are responsible for rare
transitions or large geometry uctuations. This is also under-
pinned by the PES analyses provided in the rst part of the
manuscript, see Fig. 5, of ref. 61 or the MD results of Challenge
III presented later in this article. Further comparison of the
MACE and SO3krates models trained on the incomplete dataset
for the C dihedrals supports this. Noticeably different transition
patterns emerge, as well as differing cluster populations and
even the appearance of an extra metastable state (blue cluster)
within the PES reconstructed with the MACE MLFF (incomplete
dataset). It is also likely that such differences would emerge
between different MLFFs trained on the same data with the
same architecture, just using a different set of initial weights.
We want to state, though, that the statistically converged anal-
yses of the transition patterns would require more extended MD
simulations or the employment of enhanced sampling tech-
niques which is beyond the scope of the current work. Simul-
taneously, the MACE and SO3krates architectures, when trained
on the complete dataset, demonstrate remarkable mutual
agreement in modeling the dynamics of the Ac-Phe-Ala5-Lys
peptide. This consistency underscores the capability of
modern MLFFs based on equivariant NN with different archi-
tectures to handle relatively large and complex organic mole-
cules and model their dynamics and transitions.

For the sGDML architecture, we observe only qualitative
agreement with the results from both NNs in Challenge II. The
shape and population of clusters differ signicantly due to the
global nature of the sGDML model, which requires a reliable
and comprehensive set of representative query congurations
for effective interpolation between system states. Achieving
such a representative set is challenging for large molecules
undergoing complex structural transformations, especially with
a relatively small training dataset of 4000 congurations.
Consequently, the sGDML model operates in a low-data regime,
leading to a notable depreciation in performance.

In ESI, Table SI 2† details the broken chemical bonds
responsible for the instability of MD simulations across all
MLFF architectures. We observe behavior similar to that re-
ported for Challenge I. Notably, the kernel-based MLFFs
utilizing local descriptors, namely SOAP/GAP and FCHL19*,
could not sustain stable dynamics over a 1 ns duration for both
peptides evaluated in this study. This nding indicates that MD
simulations employing global sGDML models or NN architec-
tures, incorporating nonlocality through message-passing
elements, exhibit greater stability than MLFFs based solely on
local ML models.

In summary, our observations indicate that the results for
MACE, SO3krates, and sGDML MLFFs in this test were consis-
tent with those from Challenge I. Overall, we can conclude that
equivariant NN MLFFs can reliably reproduce the dynamics of
organic molecules (at least up to 100 atoms). The main
discrepancies between MD results occur when the training
datasets lack representative reference geometries. This suggests
Chem. Sci., 2025, 16, 3738–3754 | 3743
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that active learning or similar iterative approaches87–89 should
become an integral part of MLFF training procedures to ensure
the completeness and representativeness of training datasets.
2.3 1,8-Naphthyridine molecule on graphene

For modern MLFFs, dealing with either a 1,8-Naphthyridine
molecule or a pristine graphene sheet separately is easy.
However, combining the two systems introduces additional
complexity, namely the molecule–substrate interaction
responsible for multiple key properties of the system. MLFFs
have to learn this interaction simultaneously with the much
stronger covalent bonds in 1,8-naphthyridine and graphene. In
our analyses, the focus is on four measures that capture the
molecule–substrate interaction. Firstly, the distribution of the
distance D between the graphene sheet and the molecule,
dened as a distance between the averaged graphene plane
(AGP) and the center of mass of the molecule, is considered.
Secondly, the incline angle between the molecule and the
surface, dened as the angle between the averaged plane of the
molecule (H atoms excluded) and the AGP is analysed. Lastly,
the tilt and slant angles are investigated. See plots of all the
interaction's aspects in Fig. 3. Note that the molecule is
symmetrical for the tilt rotation (the tilt angle is dened in the
range [0, p/2]), while it is asymmetric for the slant rotation (the
slant angle is dened in the range [–p/2, p/2]). Fig. 3 illustrates
the results for MLFF MD simulations conducted at 300 and 500
K. Notably, all ML models encounter angles and distances that
extend signicantly beyond those observed in shorter reference
MD simulations at 500 K, indicating that the MLFF models
operate in an extrapolation regime.

At 300 K, sGDML, SO3krates, and MACE produced similar
patterns for all four examined dependencies. This includes subtle
features found in agreement between models observed in the
plot of incline angle probability as a function of surface-to-
molecule distance. A notable split for angles close to p/2
(molecular orientation perpendicular to the graphene surface)
is visible for sGDML, SO3krates, and MACE. The split arises
from the asymmetry in the molecule's slant rotation, where the
side containing N atoms can approach the surface closer than
the sides with H atoms attached to C atoms. The molecular
asymmetry also explains the trend to negative slant values in the
distance versus slant angle plots. Furthermore, it is the reason
for the asymmetric large uctuations of the slant angle in the
tilt versus slant angle plots – a negative slant angle indicates that
the side of the molecule with N atoms is closer to the surface.
The main disagreement between the models is a tendency for
the molecule to desorb from the surface when SO3krates
models is employed. This tendency is absent in the MD simu-
lations produced with the MACE and sGDML MLFFs.

At 500 K, the predictions between the MLFFs begin to diverge.
The MD simulations obtained with MACE and SO3krates
models differ drastically from those produced by sGDML. Both
the MACE and SO3krates models predict the molecule's
desorption from the surface, while the sGDML model keeps the
molecule within an 8 Å distance. This suggests that the PES
prole for the molecule in the direction perpendicular to the
3744 | Chem. Sci., 2025, 16, 3738–3754
graphene surface predicted by sGDML differs from that pre-
dicted by the NNs. To verify this conjecture, the molecule-
surface interaction energy is computed as a function of the
distance, see Fig. 3b. The computation starts from the relaxed
structure (obtained using the reference DFT setup), and
conrmations are produced, for which the z-coordinates of the
atoms belonging to the molecule are moved further from or
closer to the surface in 0.1 Å steps. This provides us with the
DU(D) dependence computed at the reference level of accuracy.
The same calculations are repeated using the MACE, SO3krates,
sGDML, SOAP/GAP, and FCHL19* models. Notably, some
MLFFs failed to provide reasonable energy predictions at large
molecule-to-surface distances. Therefore, the minimum energy
within the distance range of 3 to 4 Å is chosen for each method
as the zero energy level. The thin black line in Fig. 3b corre-
sponds to the DFT energy at an innite molecule-to-surface
separation.

In complete agreement with the MD simulations, the SO3k-
rates and MACE models signicantly underestimate the potential
energy minima compared to the DFT reference. Fig. 3b shows the
difference between the DFT andMLFFs energy predictions at an
8 Å distance as small numbers on the top. Notably, this distance
is beyond the cutoff for both NNs, leading them to predict zero
interaction between the molecule and the surface. The MACE
model underestimates the molecule-surface interaction energy
at 8 Å by 2.9 kcal mol−1 and SO3krates by 4.4 kcal mol−1. For the
adsorption minimum, when aligning the DFT and MLFFs
energies at innite distance, the MACE and SO3krates models
underestimate the value by 3.5 and 4.9 kcal mol−1, respectively.

Interestingly, this underestimation of the molecule-surface
interaction minimum aligns with the high accuracy in predict-
ing the force acting on the molecule as a whole in the test set. The
reference molecule-to-surface distances are limited to an
interval of 3 to 5 Å. Within this range, the curvature of the DU(D)
function obtained from DFT calculations and those predicted
by MACE and SO3krates models agree. Moreover, these
distances fall within the cutoff radii for MACE and SO3krates,
which are 6 Å and 5 Å, respectively. This results in minor MAEs
in forces, 0.12 kcal (mol−1 Å−1) for MACE and 0.58 kcal (mol−1

Å−1) for SO3krates, despite a signicant underestimation of the
barrier.

Fig. 3c and d illustrate the differences of free energies of
adsorption calculated employing different MLFFs. The free
energies derived from MD trajectories via the thermodynamic
integration method,90 are signicantly smaller than the
adsorption energy estimations calculated as the difference
between the energy of the DFT-optimized structure and the
state, for which the molecule and the surface are at innite
separation. This discrepancy arises due to the substantial
rotational freedom of the molecule's plane relative to the
surface plane. Specically, the free energy minima predicted by
the MACE and SO3krates models at 500 K are only 5.8 and
4.4 kcal mol−1, respectively, whereas the adsorption energies
predicted by these models are 11.3 and 9.8 kcal mol−1.

The kernel-based models also face signicant challenges in
reproducing the molecule-surface interaction. The sGDML model
over-stabilizes the system due to an articial barrier at
© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig. 3 Analysis of MDs for 1,8-Naphthyridine molecule adsorbed on graphene. (a) Schematic representation of the molecule and definitions of
tilt and slant angles. (b) Interaction energy profile (DU) as a function of the distance between the centers of mass of the molecule and graphene.
(c) and (d) Free energy change profile from MD simulations at 300 and 500 K, respectively. (e) Distributions of incline, tilt, and slant angles at
different molecule-to-surface distances, and the tilt-slant angle distribution in MD simulations at 300 and 500 K using MACE, SO3krates, and
sGDML models compared to the reference dataset.
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Fig. 4 Observables extracted from the MD simulations of the orthorhombic phase of MAPbI3. (a) Distribution of C–N bond orientation in
spherical coordinates. The numbers near the maxima indicate the participation ratios of the bond orientation for four different regions of f. 3D
spatial representations of the distribution within the PbI framework on a logarithmic scale are shown in the upper right corners. (b) Spectral
analysis of the velocity autocorrelation function (solid lines) obtained from MD simulations using SO3krates (green), MACE (red), and SOAP/GAP
(orange) models at 300 K, compared to the experimental infrared spectrum93 (black) and DFT within the harmonic approximation93 (blue). The
vertical bars indicate phonon frequencies calculated within the harmonic approximation for each MLFF model, spanning a frequency range of
800 cm−1 to 1800 cm−1.
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intermediate distances. For instance, at 8 Å, the model over-
estimates the DFT energy by 13.6 kcal mol−1. The articial
barrier only disappears at much larger distances, above 30 Å.
The SOAP/GAPmodel fails to reproduce anymolecule-to-surface
attraction, providing a at interaction prole immediately aer
the expected physisorption minima around 3.2 Å. The behavior
of DU(D) within the FCHL19* MLFF lies somewhere between
SOAP/GAP and the NNs. Qualitatively, the model reproduces the
repulsion and a part of the attraction regions but with addi-
tional peculiar minima and the largest error at 8 Å distance of
21.2 kcal mol−1 among all MLFFs participating in the TEA
Challenge 2023.

A signicant point is that adding more training points with
a better sampling of molecule-to-surface distances can only
help the global sGDML MLFF to improve the description of the
molecule-surface interaction. The nite cutoffs intrinsic to all
other MLFFs participating in TEA 2023 would prevent them
from correctly describing the molecule adsorption process or
long-term dynamics unless additional elements targeting long-
range interactions are incorporated into these MLFFs. We
would like to emphasize that the above statement pertains
specically to the versions of the MLFFmodels that participated
in the TEA Challenge 2023. The updated version of SO3krates
(the pre-trained SO3LR model91 for bio-molecular simulations
includes long-range electrostatic and universal dispersion
3746 | Chem. Sci., 2025, 16, 3738–3754
interactions) includes the option to incorporate long-range
interactions. With the appropriate reference data, SO3LR
could accurately describe the adsorption process.

In ESI, Table SI 3† details the broken chemical bonds for the
instability of MD simulations across all MLFF architectures.

In summary, molecule–surface interfaces need careful
attention when using MLFFs for simulations. Modern MLFFs
achieve high accuracy, capturing detailed system behavior with
MAEs and RMSEs in the fraction of one kcal mol−1 and kcal
(mol−1 Å−1). However, they require embedding long-range
interaction models into MLFF architectures to handle system
elements beyond the intrinsic cutoff distances, enhancing
simulation accuracy and reliability.
2.4 Methylammonium lead iodide perovskite

The periodic structure of MAPbI3 features an organic methyl-
ammonium (MA) cation at the center of the inorganic eight
corner-sharing [PbI6]4-octahedral. The stability of the simula-
tions was assessed by applying two different thresholds for the
organic and inorganic parts of the structure: 2 and 4.3 Å,
respectively. The organic threshold was dened using the
covalent radius. In contrast, the inorganic threshold was based
on experimental results from various scattering techniques for
the radial distribution function of the Pb–I ionic bond.92
© 2025 The Author(s). Published by the Royal Society of Chemistry
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MA cations within the PbI framework are characterized by
ionic interactions with the rest of the lattice. To investigate how
ML models reproduce these weak interactions, we computed
the distribution of the orientation of the C–N bond of MA
cations. The results in spherical coordinates are shown in
Fig. 4a for the MACE and SO3krates models in cases where MD
simulations produced sufficiently long (over 10 ns) trajectories.
The polar angle q is the angle between the z-axis and the C–N
bond, while the azimuthal angle f is the angle between the
orthogonal projection of the bond on the x–y plane and the x-
axis. The upper right corner of the distribution plot for each set
of MDs presents a 3-dimensional representation of the C–N
orientation on a log scale for peak visibility. The numbers near
the maxima of the distributions indicate the probability of the
bond orientation for four regions: −p < f < −p/2, −p/2 < f < 0,
0 < f < p/2 and p/2 < f < p. The bond tends to orient into
cavities in the PbI framework along the x and y axes for all
presented MDs. As expected, the distribution for SO3krates at
500 K is more smeared than that for both NNs at 300 K. The
unlikely orientation of the bond along the z-axis relates to the
alignment of this axis with the c-axis of the orthorhombic
structure of MAPbI3.

We would like to briey address the stability issues
encountered with the MACE model during MD simulations at
500 K. The MACE model permitted signicant uctuations in
the positions of Pb atoms, which ultimately compromised the
structural integrity of the system when these atoms approached
the MA molecule. This instability can be attributed to the
inadequate sampling of large atomic uctuations in the refer-
ence dataset, which was derived from relatively short ab initio
MD simulations.94 Additionally, the training dataset lacked
supplementary data necessary for the ML models to capture
these large-scale atomic movements accurately. Notably, the
escape events involving Pb atoms in our simulations occurred
aer signicantly longer times compared to the reference
dynamics. Despite this, the SO3krates model demonstrated
a markedly improved stability. In our tests, SO3krates resulted
in only 2 out of 12 failed 1 ns long trajectories, compared to 12
out of 12 failures with MACE. However, it is important to note
that SO3krates also encountered similar issues twice, under-
scoring the current limitations in accurately describing inter-
atomic interactions at distances beyond the typical covalent
bond range in a sparse training data regime. A comparative
analysis of atomic radial distribution functions fromMACE and
SO3krates MD simulations at 500 K, alongside 1 ps ab initioMD
results at the same temperature, is provided in ESI.†

Fig. 4b presents the spectral analysis of the MAPbI3 system
for MACE, SO3krates, and SOAP/GAP models. This analysis
yields the vibrational frequencies of the system, derived
through the Fourier transform of the velocity autocorrelation
function (VAF), which provides insights into vibrational
dynamics. The experimental infrared (IR) spectrum and a DFT-
simulated IR spectrum (within the harmonic approximation)
are also shown for reference. Since IR intensities are governed
by changes in dipole moments, while VAF spectra are based on
velocity correlations, the resulting peaks from the VAF method
are generally broader, with different intensity ratios.
© 2025 The Author(s). Published by the Royal Society of Chemistry
Nevertheless, the VAF-based frequency positions can still be
compared meaningfully to the IR spectra. Unlike the harmonic
approximation assumed in DFT, the VAF approach can recover
anharmonic vibrational modes. For instance, a notable feature
at 200 cm−1 is observed in both the MD-derived and experi-
mental IR spectra but is absent from the DFT predictions.
Overall, all MLFF models produce nearly identical spectra, showing
good agreement with experimental data and DFT in terms of peak
positions.

At the same time, the experimental peaks observed at 360 and
1140 cm−1 were not detected by either MLFF. We attribute this
discrepancy to the limitations of the reference DFT calculations.
Notably, these peaks are also absent in the DFT spectra pre-
sented in Fig. 4. However, it is important to note that the DFT
functionals used in this study differ from those in ref. 93.
Unfortunately, computing the IR spectra for MAPbI3 with the
unit cell size used for the TEA Challenge 2023 at the level of
accuracy PBE + MBD-NL is not feasible.

Additionally, phonon frequencies, depicted as vertical bars
on Fig. 4b, were calculated within the harmonic approximation
for each model, covering the frequency range from 800 cm−1 to
1800 cm−1. To obtain these frequencies, the 2 × 2 × 2 MAPbI3
system was rst optimized separately by each MLFF model
using the BFGS algorithm implemented in ASE, with a conver-
gence criterion set to a maximum force component of 0.005 eV
Å−1.95 The phonon frequencies were then derived from these
optimized structures using the nite differencemethod for each
respective model, employing a 0.01 Å displacement. These
frequencies are consistent across themodels and align well with
the IR spectra, demonstrating the MLFFs' ability to accurately
capture the region of the PES near the system's equilibrium
state. However, differences between the MACE, SO3krates, and
SOAP/GAP models are slightly more pronounced in the
harmonic spectra compared to the VAF spectra. This highlights
the greater sensitivity of physical properties that depend on
specic regions of the PES to the accuracy of the MLFFs, in
contrast to more “global” statistical properties like VAFs, which
reect a broader portion of the PES.

In ESI, Table SI 4† details the broken chemical bonds mani-
festing in the instability of MD simulations across all MLFF
architectures. The stability of MD simulations of MAPbI3 was
primarily compromised by broken covalent bonds within MA
cations, although C–N bond breaks were less frequent. Interest-
ingly, the instabilities observed in the MD trajectories generated
using the MACE model were triggered by signicant uctuations
of the Pb atoms rather than covalent bond breakage.

In summary, kernel-based MLFFs failed to provide stable
MD trajectories, with only the SOAP/GAP model successfully
generating 2 out of 12 one ns-long trajectories without loss of
structural integrity. In contrast, equivariant NNs demonstrated
reliable stability and efficiency. Spectral analysis showed that
MACE, SO3krates, and SOAP/GAP models aligned well with
experimental and DFT-derived spectra, despite missing some
peaks, likely due to limitations in the reference DFT calcula-
tions. Therefore, the main bottleneck for atomistic simulations
in this class of systems (similar to organic molecules) is
Chem. Sci., 2025, 16, 3738–3754 | 3747
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obtaining high-quality and representative reference data rather
than the MLFF architectures themselves.
3 Guidelines for MLFF

The last two decades of developing MLFFs can be characterized
as a rapidly growing research activity to create efficient, accu-
rate, scalable, and transferable ML architectures. While this
work continues and no architecture design has been universally
accepted yet, other factors have become equally important. At
the current level of accuracy achieved by modern MLFFs, the
quality and completeness of training data and the training
process have become dening factors. Below, we present a list of
guidelines to follow in the development, training, and appli-
cation of MLFFs.

(1) Cross-validation: even the most advanced single MLFF
architecture should not be blindly trusted. Cross-checking
results between different MLFF models can help to increase
the reliability of simulations, particularly where reference data
(computational or experimental) is sparse or unavailable.

(2) Detailed performance analysis: comparing MLFFs'
performance based on overall MAE, RMSE, or similar aggregate
measures are only sensible for simple and small systems with
comprehensive datasets. In more complex cases, a detailed
analysis of MLFF performance (per atom, per chemical element,
per environment type) is crucial.

(3) Reducing heterogeneity of atomic errors: reducing the
heterogeneity of atomistic MAEs while maintaining acceptable
overall accuracy leads to more reliable MLFFs than those
trained solely to minimize aggregated errors.

(4) Training dataset quality: the completeness and compo-
sition of training datasets signicantly impacts MLFF perfor-
mance. Using datasets that over-represent certain types of states
can decrease overall MAE and RMSE but might lead to incorrect
simulation results.

(5) Active learning: active learning and similar iterative tech-
niques for correcting the training set should be intrinsic elements
of the MLFF training process. Additionally, complementing the
training dataset with structures corresponding to very small and
very large interatomic distances, even if such situations are
unlikely in expected application conditions, can improve MLFF
quality, by enforcing the proper asymptotic behaviours.

(6) Incorporating multiscale forces: for systems with a mul-
tiscale composition (e.g., atoms forming molecules, molecules
forming molecular clusters), adding corresponding force terms
into the MLFF loss function during training (with appropriate
weights) can improve the reliability of system behavior during
simulations.96 Minimizing only total atomistic errors might be
insufficient and could lead to incorrect behavior of larger-scale
system components.

(7) Appropriate accuracy levels: depending on the applica-
tion, MLFFs with MAEs of, for instance, 0.5 or 0.1 kcal (mol−1

Å−1) might produce the same results in MD simulations. A more
accurate model requires more computationally demanding
reference data and is slower in production and training, without
providing any signicant practical benets. Even within the
3748 | Chem. Sci., 2025, 16, 3738–3754
same MLFF architecture, modellers should explore the tradeoff
between model size, accuracy, and computational efficiency.

(8) Saving training information: it is crucial to document the
complete training settings (hyperparameters), MLFF soware
version, and details of the training and validation datasets to
ensure future applicability and potential retraining of an ML
model. Ideally, this information should be automatically
embedded in the MLFF model les, enabling the exact repro-
duction of the training process if the initial dataset is available.

(9) Transparency: developers of MLFFs should provide
comprehensive details about modications between different
soware and ML model versions, optimal preprocessing of
training data beyond the intrinsic MLFF procedures, and any
related offsets present in the outputs.

By adhering to these guidelines, the development and
application of MLFFs can achieve greater reliability, ensuring
more robust and trustworthy simulations.

4 Conclusions

The TEA Challenge 2023 extensively examined contemporary
MLFF architectures, starting with error and stability assess-
ments in the initial paper, “Crash Testing Machine Learning
Force Fields for Molecules, Materials, and Interfaces: Model
Analysis in the TEA Challenge 2023”. In this paper, we advance
to a comprehensive comparative analysis of MD simulations
conducted under identical conditions. Our objective is not to
single out the best MLFF model but to present a current snap-
shot of the eld, identifying reliable application areas and those
requiring further improvement. This study focuses on three
types of physical systems: organic molecules, molecule-surface
interfaces, and 3D periodic systems.

For organic molecules, we observed excellent agreement
between MD results obtained using MACE and SO3krates
MLFFs when trained on comprehensive datasets. Discrepancies
were primarily in the transition regions between (meta)stable
states or large atomic uctuations, likely due to the incom-
pleteness of the training dataset rather than theML architecture
itself. The sGDML model also performed well for the smaller
peptide, providing reliable MD trajectories. In contrast, the
other two kernel-based ML models, SOAP/GAP and FCHL19*,
exhibited insufficient stability, rendering them unsuitable for
extended MD simulations.

Despite the success with MLFFs trained on comprehensive
datasets, the dynamics of alanine tetrapeptide and N-
acetylphenylalanyl-pentaalanyl-lysine molecules in Challenges I
and II revealed noticeable artifacts whenMLFFs were trained on
incomplete datasets. This issue affected both kernel-based
models and neural networks, underscoring the importance of
reliable, high-quality, and comprehensive training data as
a major bottleneck in developing effective MLFFs for organic
molecules. Incorporating active learning or similar iterative
approaches into MLFF training procedures is crucial to ensure
thorough and representative datasets.

In Challenge III, which focused on studying the molecule-
surface interface of a 1,8-Naphthyridine molecule on gra-
phene, we identied signicant limitations across all MLFFs
© 2025 The Author(s). Published by the Royal Society of Chemistry
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participating in the TEA Challenge 2023. Although MLFFs have
demonstrated strong performance in modeling covalent bonds,
they currently lack the mechanisms needed to effectively
capture long-range interactions. Consequently, none of the
machine learning models were able to accurately reproduce the
molecule desorption process, which can occur during extended
MD simulations at virtually any temperature. Enhancing the
reference dataset with more congurations that include larger
molecule-to-surface distances would necessitate incorporating
MLFF components that account for long-range non-covalent
interactions. These mechanisms were absent in all but the
sGDML MLFFs that participated in the TEA Challenge 2023.
Nonetheless, addressing long-range non-covalent interactions
remains a major focus for development, and by the time of the
manuscript's publication, corresponding architectural
elements had been proposed and implemented in some of the
MLFFs. One should check the description of the relevant
version of an MLFF soware package.

Lastly, our evaluation of the 3D periodic system MAPbI3,
kernel-based MLFFs struggled to maintain stable molecular
dynamics trajectories without structural integrity loss.
Conversely, MACE and SO3krates architectures provided stable
and similar MD trajectories at 300 K, effectively sampling the
part of the PES well-represented in the training dataset. Spectral
analysis indicated good alignment of MACE, SO3krates, and
SOAP/GAP models with experimental and DFT-derived spectra.
Therefore, periodic systems like MAPbI3 can be considered
within the reliable application range of modern MLFFs. The
primary challenge for accurate atomistic simulations is once
again obtaining high-quality and representative reference data.
Additionally, optimizingmodels with respect to their model size
to avoid unnecessary computational overhead is essential,
especially in long-duration MD simulations of large systems,
where achieving signicant speedups is crucial.
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