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Hg2(HTe2O5)(PO4): a novel phosphate crystal with
enhanced birefringence enabled by the synergistic
modification of multiple functional groups†
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Birefringent crystals are crucial for the miniaturization of optical devices. Phosphate crystals, characterized

by their highly symmetrical tetrahedral structures, exhibit excellent stability and wide optical bandgaps.

However, their intrinsic symmetry typically results in low birefringence, with most phosphate compounds

having birefringence values below 0.1. Efforts to enhance birefringence by introducing highly anisotropic

ions and groups have been impeded by the tetrahedral coordination of phosphate, which often leads to

the cancellation of anisotropic effects. To address this challenge, we propose an approach that leverages

the synergistic modification of multiple functional groups to disrupt the anisotropic cancellation in phos-

phate crystals and significantly enhance their birefringence. Specifically, we incorporate Te(IV), which fea-

tures stereo-chemically active lone pairs, and Hg(II), known for its high polarizability and deformability,

into the phosphate system. We synthesized a novel phosphate compound, Hg2(HTe2O5)(PO4), which exhi-

bits a calculated birefringence of 0.162 at 546 nm and a measured birefringence of 0.168 at 546 nm. This

value is comparable to that of the commercial birefringent material CaCO3 (Δn = 0.172@546 nm) and sur-

passes most previously reported phosphate materials. Additionally, Hg2(HTe2O5)(PO4) demonstrates a

wide bandgap and excellent stability. Using the PAWED method, we determined that the significant bire-

fringence of Hg2(HTe2O5)(PO4) is primarily due to the combined contributions of the HgO7 polyhedra

(19.86%), PO4 tetrahedra (29.17%), and Te2O5 groups (47.40%). Our work demonstrates that the synergistic

modification of multiple functional groups is an effective strategy for enhancing the birefringence of tetra-

hedral compounds, providing a new pathway for the development of high-performance birefringent

materials.

Introduction

Tetrahedral phosphate crystals have received significant atten-
tion in the design of optical functional crystals due to their
excellent thermal stability and short ultraviolet cutoff edges.1–4

Among them, typical compounds such as KH2PO4 (KDP) and
KTiOPO4 (KTP) have been successfully commercialized as non-
linear optical crystals.5 However, the highly symmetrical tetra-
hedral configuration of phosphate crystals generally results in

low birefringence, which poses a considerable barrier to the
miniaturization of optical devices.6–11 Therefore, enhancing
the birefringence of phosphate materials has become an
urgent and critical issue.

To enhance the birefringence of phosphates, researchers have
made efforts in several aspects: (i) combining with π-conjugated
groups,12–14 such as K2PbB5P3O17 (0.045@1064 nm),15

Cs3[(BOP)2(B3O7)3] (0.075@532 nm),16 K3B4PO10

(0.0445@532 nm)17 and (NH4)3B11PO19F3 (0.045@1064 nm);18 (ii)
introducing d10 transition metals with high polarizability,19,20

such as Na(C2H10N2)2[Zn3(PO4)2(H0.5PO4)]2 (0.060@546 nm),21

(NH4)3(H3O)Zn4(PO4)4 (0.032@1064 nm),22 and LiHgPO4

(0.068@1064 nm);23 (iii) incorporating lone-pair cations,24–28 for
example, (NH4)3[Sn2(PO4)2]Cl (0.065@1064 nm),29 Cs2Sb3O(PO4)3
(0.034@1064 nm),30 [Sn3OF]PO4 (0.104@546 nm),31 SrSn(PO4)
PO2(OH)2 (0.080@1064 nm),32 Sn2PO4I (0.664@546 nm),33

Ba2TeP2O9 (0.126@1064 nm),34 Rb2SbFP2O7 (0.15@546 nm)35

and α-NaSb3P2O10 (0.121@1064 nm);36 (iv) adding d0 transition
metal cations,37,38 like [C(NH2)3]10(MoO3)10(PO4)2(HPO4)2·5H2O
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(0.158@550 nm),39 LiTiOPO4 (0.17@1064 nm)40 and
K2MgMoP2O10 (0.187@546 nm).41 Although the introduction of
these highly anisotropic ions and groups has to some extent
improved the birefringence of phosphates, the highly symmetri-
cal tetrahedral configuration inevitably leads to the cancellation
of polarization anisotropy, resulting in most compounds having
birefringence values below 0.1.

To address this challenge, we propose a strategy of synergis-
tic modification using multiple functional groups to enhance
the birefringence of phosphates. First, different functional
groups exhibit varying degrees of polarization anisotropy,
which can prevent the complete cancellation of polarization
anisotropy when coordinated with phosphate groups.
Moreover, the interactions between different functional groups
can avoid their coordination with phosphate in a regular tetra-
hedral form. Therefore, we attempt to introduce multiple func-
tional groups to improve the birefringence of phosphates.

The d10 transition metal Hg features diverse coordination
configurations, high polarizability, and deformability, all of
which positively contribute to birefringence.42–44 Meanwhile,
Te(IV) with lone-pair electrons also possesses strong anisotropy,
which is beneficial for enhancing the birefringence of
compounds.45–48 More importantly, our previous work in
Hg-based and Te-based birefringent materials has yielded
fruitful results, successfully pushing the birefringence of sul-
fates to 0.542 at 546 nm.49 To obtain phosphate materials with
large birefringence, we attempt to combine the above two
groups with phosphates. We have conducted research in the
Hg–Te–P–O system and successfully synthesized Hg2(HTe2O5)
(PO4). This compound exhibits a large birefringence of 0.162
at 546 nm, a wide bandgap of 3.58 eV, and excellent stability.
This paper will introduce its synthesis, structure, optical pro-
perties, and theoretical calculations.

Results and discussion

Compound Hg2(HTe2O5)(PO4) was successfully synthesized via
a conventional hydrothermal method using TeO2, HgO, and
H3PO3 as starting materials at 230 °C, yielding a product with
a 36% yield. Detailed synthetic procedures can be found in the
“Synthesis” section of the ESI.† The purity of the Hg2(HTe2O5)
(PO4) was confirmed by powder X-ray diffraction (XRD), as
shown in Fig. S1.† Detailed crystallographic information is
provided in Table S1 of the ESI.†

Hg2(HTe2O5)(PO4) crystallizes in the triclinic space group P1̄
with the following unit cell parameters: a = 5.8856(3) Å, b =
7.2589(3) Å, c = 10.1972(4) Å, α = 81.006(3)°, β = 74.483(3)°, γ =
82.959(4)°, and V = 413.12(3) Å3. The asymmetric unit consists
of two Hg atoms, two Te atoms, one P atom, one H atom, and
nine O atoms, comprising a total of fifteen atoms, all of which
are located in general positions. In this structure, each P atom
is tetrahedrally coordinated to four O atoms, with P–O bond
lengths ranging from 1.539(6) to 1.560(6) Å. The Te atoms are
coordinated to three O atoms in a trigonal pyramidal geome-
try, with Te–O bond lengths ranging from 1.870(6) to 1.999(5)

Å. The Hg atoms are coordinated to seven O atoms, forming a
HgO7 polyhedron, with Hg–O bond lengths ranging from
2.108(6) to 2.805(5) Å. Bond valence calculations reveal that
the bond valences of Hg, Te, and P are 2.047–2.139,
3.461–3.536, and 4.696, respectively, indicating oxidation
states of +2, +4, and +5. The lower oxidation state of Te may be
attributed to the neglect of Te–O bonds longer than 2.0 Å. If
these bonds are considered, the oxidation states of Te(1) and
Te(2) can be increased to 4.176 and 3.802, respectively.

Hg2(HTe2O5)(PO4) exhibits a three-dimensional (3D) struc-
ture composed of two-dimensional (2D) mercury tellurite
layers bridged by phosphate tetrahedra (Fig. 1). Within this
structure, two Hg(1)O7 polyhedra share oxygen atoms to form
Hg(1)2O12 dimers, which are further interconnected with two
Hg(2)O7 polyhedra to create a mercuric oxide six-membered
ring as the fundamental building unit (Fig. 1a). These six-
membered rings extend to form a 2D mercury oxide layer
(Fig. 1d). The Te2O5 units are connected to this layer through
oxygen atoms O(1), O(2), O(3), O(4) and O(5), thereby con-
structing the mercury tellurite layers (Fig. 1c). The phosphate
tetrahedra bridge these layers by linking four oxygen atoms to
two Hg(1) and two Hg(2) atoms (Fig. 1b), ultimately forming
the 3D network structure of the compound (Fig. 1e).

Thermogravimetric analysis (TGA) of Hg2(HTe2O5)(PO4) was
investigated under a N2 atmosphere over a temperature range
of 20 to 1200 °C (Fig. S2†). The compound was found to be
stable up to 300 °C. Upon heating to 1200 °C, the compound
exhibited a weight loss equivalent to the release of 0.5 mole-
cules of H2O, 2 molecules of Hg, and 1 molecule of TeO2. The
experimental weight loss was 87.9%, which is in good agree-
ment with the calculated theoretical value of 87.6%.
Additionally, the compound was exposed to air for up to six
months and remained stable throughout the exposure period,
indicating its robustness under atmospheric conditions.

The infrared spectrum (IR) Hg2(HTe2O5)(PO4) was per-
formed using KBr as a background at room temperature
(Fig. S3†). The results revealed distinct absorption peaks at
3459 cm−1, 1651 cm−1 and 1602 cm−1, which are attributed to
the vibrational absorption of O–H bonds. Additionally, absorp-
tion peaks at 990 cm−1, 1083 cm−1, and 1352 cm−1 correspond
to the asymmetric and symmetric stretching vibrations of P–O
bonds. Peaks in the range of 777–860 cm−1 and 535 cm−1 are
associated with the symmetric stretching and bending
vibrations of P–O bonds. The absorption peaks for Te–O bonds
appear in the ranges of 459–535 cm−1 and 615–674 cm−1.
These observed peaks are consistent with those reported in the
literature. Compared with the IR spectrum of the compound
HgI2HgII(Te2O4)2(HPO4)2, Hg2(HTe2O5)(PO4) does not show the
characteristic P–H peaks around 2350 cm−1, which further
confirms the correctness of the hydrogen addition in our struc-
tural analysis.50 Additionally, the assignments of these absorp-
tion peaks are consistent with those reported in the
literature.51–54

The UV–Vis–NIR spectrum of Hg2(HTe2O5)(PO4) was
measured in the range of 2000 to 200 nm (Fig. 2). The results
show that the UV cutoff edge of this compound is at 282 nm,

Inorganic Chemistry Frontiers Research Article

This journal is © the Partner Organisations 2025 Inorg. Chem. Front., 2025, 12, 4712–4719 | 4713

Pu
bl

is
he

d 
on

 1
5 

ap
ri

le
 2

02
5.

 D
ow

nl
oa

de
d 

on
 1

6/
10

/2
02

5 
6:

38
:1

5.
 

View Article Online

https://doi.org/10.1039/d5qi00757g


corresponding to an experimental band gap of 3.58 eV. This
band gap is comparable to or even larger than those of pre-
viously reported Hg-based compounds, such as Hg2(SeO3)

(TeO3) (3.5 eV),55 Hg3Se(SeO3)(SO4) (3.5 eV),42 Rb2Hg2(SeO3)
(3.6 eV),56 Hg3(Te3O8)(SO4) (3.36 eV)57 and Hg2Ga(SeO3)2F (2.8
eV).58

In Fig. S4,† the birefringence of Hg2(HTe2O5)(PO4) was
measured at 546 nm using a polarizing microscope.
Hg2(HTe2O5)(PO4) exhibited complete extinction under posi-
tive polarization. The optical path difference was observed to
be 0.954 μm for a crystal thickness of 5.67 μm. By employing
the formula R = Δn × T (where R represents the optical path
difference, Δn is the birefringence, and T is the thickness),59

the experimental birefringence of Hg2(HTe2O5)(PO4) at 546 nm
was determined to be 0.168.

To gain a deeper understanding of the relationship between
the structure and optical properties, we employed density func-
tional theory (DFT) to investigate the electronic structure and
linear optical properties of Hg2(HTe2O5)(PO4). The calculations
reveal that Hg2(HTe2O5)(PO4) is an indirect bandgap material
with a theoretical bandgap of 2.755 eV (Fig. S5†). Due to the
limitations of the GGA-PBE functional, the theoretical
bandgap is underestimated.60–62 To reduce the computational
error, we subsequently applied a scissor operator of 0.825 eV
in our calculations. The total and partial density of states

Fig. 1 Mercuric oxide six-membered ring (a), the coordination environments of PO4 group (b), the coordination environments of Te2O5 group (c),
two-dimensional layer structure of mercury oxide (d) and three-dimensional structure of Hg2(HTe2O5)(PO4) (e).

Fig. 2 The UV–Vis–NIR diffuse reflectance spectra of Hg2(HTe2O5)(PO4).
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(DOS) diagrams show that the valence band maximum of
Hg2(HTe2O5)(PO4) is primarily composed of O-2p orbitals,
while the conduction band minimum is mainly contributed by
Te-5p and Hg-6s orbitals. Therefore, the bandgap of this com-
pound is predominantly determined by the O, Te, and Hg
atoms (Fig. 3).

The linear optical response properties of Hg2(HTe2O5)(PO4)
were calculated based on the complex dielectric function ε(ω)
= ε1(ω) + iε2(ω) (Fig. 4).

63 This compound is a biaxial crystal
and exhibits different refractive indices along the x, y, and z
axes. The calculations show that the birefringence of this com-
pound is 0.162 at 546 nm and 0.147 at 1064 nm, which is close
to the measured birefringence of 0.168 at 546 nm. Through
the synergistic modification of multiple functional groups, we
successfully increased the birefringence of the phosphate
material to above 0.1, reaching a level comparable to that of
the commercial birefringent crystal CaCO3 (0.172@546 nm).64

The birefringence of this compound is significantly higher
than that of some previously reported phosphate birefringent
materials, such as LiHgPO4 (0.068@1064 nm)23 and SnHPO4

(0.078@550 nm).65 Excitingly, the birefringence of
Hg2(HTe2O5)(PO4) even surpasses that of some lone-pair
systems, such as Hg2(SeO3)(TeO3) (0.097@546 nm),55

Cs2Hg3(SeO3)4 (0.043@546 nm),56 Sb4O5I2 (0.084@1064 nm),66

Rb3Sb2OCl7 (0.098@1064 nm)67 and AgAl(Te4O10)
(0.092@1064 nm).68

To further elucidate the origin of the large birefringence in
Hg2(HTe2O5)(PO4), we conducted an analysis using the
Polarizability Anisotropy Weighted Electron Density (PAWED)
method (Fig. 5).69 Our findings indicate that the significant
birefringence of Hg2(HTe2O5)(PO4) is primarily attributed to
the synergistic contributions from the HgO7 polyhedra, Te2O5

groups, and PO4 tetrahedra. Specifically, the contributions
from these structural units are 19.86%, 47.40%, and 29.17%,
respectively. This suggests that the HgO7 polyhedra, Te2O5

groups, and PO4 tetrahedra play a dominant role in the bire-
fringence, with the Te2O5 groups contributing the most.

Fig. 3 The total and partial density of states for Hg2(HTe2O5)(PO4).

Fig. 4 The calculated refractive indices and birefringence values of
Hg2(HTe2O5)(PO4).

Fig. 5 PAWED plots in the VB and CB for Hg2(HTe2O5)(PO4).
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Conclusions

In summary, we have successfully synthesized the phosphate
tellurite compound Hg2(HTe2O5)(PO4) via a hydrothermal reac-
tion, based on the strategy of synergistic modification by mul-
tiple functional groups. This compound features a novel 3D
structure composed of 2D mercury tellurite layers bridged by
phosphate tetrahedra. Excitingly, Hg2(HTe2O5)(PO4) exhibits
good optical properties. It has a large birefringence of 0.162 at
546 nm and 0.147 at 1064 nm, a band gap of 3.58 eV, and
thermal stability up to 300 °C. Additionally, it remains stable
when exposed to air for up to six months. These characteristics
make Hg2(HTe2O5)(PO4) a promising candidate as a birefrin-
gent material. PAWED calculations have revealed that the large
birefringence is a result of the synergistic effects between the
HgO7 unit (19.86%), PO4 group (29.17%) and Te2O5 unit
(47.40%). Our work not only introduces a new phosphate bire-
fringent material but also provides a novel approach to
enhance the birefringence of tetrahedral compounds. This
method of synergistic modification by multiple functional
groups may inspire the development of other high-perform-
ance birefringent materials.
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