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Two different synthetic approaches to novel heterocyclic hybrid compounds of 4-azapodophyllotoxin
were investigated. The obtained products were characterized by infrared spectroscopy, nuclear
magnetic resonance spectroscopy, and high-resolution mass spectrometry. MTT protocol was then
performed to examine the cytotoxic activity of these products against KB, HepG2, A549, MCF7, and Hek-
293 cell lines. The cytotoxic assessment indicated that all products displayed moderate to high
cytotoxicity against all tested cancer cell lines. The most active compound 13k containing the 2-
methoxypyridin-4-yl group exhibited selective cytotoxicity against KB, A549, and HepG2 cell lines with
the 1Csq values ranging from 0.23 to 0.27 uM, which were between 5- to 10-fold more potent than the
positive control ellipticine. Compounds 13a (HetAr = thiophen-3-yl) and 13d (HetAr = 5-bromofuran-2-
yl) displayed high cytotoxic selectivity for A549 and HepG2 cancer cell lines when compared to the
other cancer cell lines and low toxicity to the normal Hek-293 cell line. Molecular docking study was
conducted to evaluate the interaction of new synthesized compounds with the colchicine-binding-site
of tubulin. Besides that, physicochemical and pharmacokinetic properties of the most active compounds

rsc.li/rsc-advances 13h,k were predicted.

Introduction

Heterocycles, a class of cyclic organic compounds containing
at least one ring hetero atom, have played an important role in
pharmaceutical development due to their variety of biological
activities such as anti-fungal,® antimicrobial,> anti-inflamma-
tory,>* anti-diabetic,”> cytotoxic,*” anti-tumor, anti-cancer,®’
anti-viral,’* acetylcholinesterase inhibitory,"" and SARS-CoV2
inhibitory activities.” To date, heterocycles have presented
themselves as the basic core of most marketed drugs. For
examples, pyridine, a nitrogen-based heterocycle, has been
known as the structural unit of several targeted cancer drugs
such as sorafenib,"® regorafenib," and crizotinib.'® Ritonavir
(1), a sulfur-based heterocycle drug, is an FDA-approved HIV
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protease inhibitor which can act as a potential cancer thera-
peutic agent (Fig. 1)."*' Amiodarone (2), a benzofuran deriv-
ative, is an antiarrhythmic medication used in the treatment of
heart rate problems, ventricular fibrillation and ventricular
tachycardia (Fig. 1)."® The FDA has approved Jelmyto (mito-
mycin C, 3), a pyrrole-fused quinone molecule, for treatment of
adult patients with low-grade upper tract urothelial cancer
(Fig. 1).* The quinone moiety of mitomycin C is enzymatically
reduced into an active hydroquinone intermediate, which has
an extraordinary ability to crosslink DNA with high efficiency.*
Owing to the significant role of heterocyclic ring systems in
drug discovery and development, many studies have been
undertaken to develop biologically active heterocyclic
compounds.**>*

Podophyllotoxin, an important plant-derived natural
product, has several semisynthetic derivatives such as etopo-
side, teniposide and etophos, which have been employed in
chemotherapy for various cancer types.** Although podo-
phyllotoxin and its derivatives have been known as tubulin
polymerization or DNA topoisomerase II inhibitors, they are too
toxic for therapeutic use and causes some side effects. To
overcome such problems, great interest has been paid to the
synthesis of 4-azapodophyllotoxin derivatives in order to obtain
the new anticancer agents with little side effects (Fig. 2). 4-Aza-
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Fig. 1 Chemical structure of FDA approved drugs containing
heterocyclic ring system.

podophyllotoxins have exhibited a broad spectrum of biological
activities including cancer cell growth inhibition,** caspase-3
dependent apoptosis,* cell cycle arrest in the G2/M phase,*
inhibition of tubulin polymerization and cellular microtubule
disassembly**¢ and vascular disruption effect.?” Several hybrid
compounds of 4-aza-podophyllotoxin with heterocycles have
been developed and evaluated the anticancer activity.***' For
instance, Kamal et al, has prepared a series of 4-aza-
podophyllotoxin with heterocycles including benzothiazole-
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podophyllotoxin  hybrids 6, pyrimidine-podophyllotoxin
hybrids 7, and, indole-podophyllotoxin hybrids 8 which have
inhibited tubulin polymerization, induced cell cycle arrest at
G2/M phase and caspase-3 dependent apoptotic cell death in
non-small lung A549 cell line.*® Pyrazole-podophyllotoxin
hybrids which have been synthesized by Magedov et al., have
showed apoptosis induction in cancerous Jurkat cells even after
a short 24 h exposure. Azaanthraquinone-podophyllotoxin
hybrids 11, which have been designed by replacing of y-butyr-
olactone ring D of 4-aza-podophyllotoxin with naphthoquinone,
have exhibited medium cytotoxic activity against hepatoma
carcinoma HepG2 and Hela cell lines.*” Interestingly,
azaanthraquinone-podophyllotoxin hybrids 12, reported in our
previous study,*** have possessed excellent cytotoxic activity
against hepatoma carcinoma HepG2 and non-small lung SK-Lu-
1 cell lines with ICs, < 0.04 pM (Fig. 2). Hybrid compounds 12
were demonstrated to exhibit cytotoxicity by inducing cell cycle
arrest at G2/M phase, activating caspase-3/7 activation, and
promoting apoptosis in a concentration-dependent manner. In
spite of the many researches focused on the synthesis of aza-
podophyllotoxin hybrids, the replacement of ring E with
heterocycles has not attracted enough attention so far.
Accordingly, in the view of the above mentioned facts and as
a continuation of our efforts on the synthesis of biologically
active compounds,*** herein, we have focused our research
interest toward the synthesis of novel azaanthraquinone-
podophyllotoxin hybrids with heterocyclic ring E 13 via

OMe
MeO. OMe
OMe o)
N/
A A P
MeO™ N
7 H

Polymerization tubulin inhibitor
Apoptosis in A549 cells

hybrids

Benzothiazole-

Quinoline- -
podophyliotoxin podophyliotoxin
hybrids hybrids
 ———————
N
10H
R3=Cl, CHj, 4-Aza-podophyllotoxins R' = 4-Me
Anti cancer ICs0 = 25.68 nM (MCF7 cells)  Polymerization tubulin inhibitor
R'= 3-NO, Apoptosis in A549 cells
Aza-anthraquinone- _
podophyliotoxin 1C50 = 25.98 nM (SW1116 cells)
hybrids
OMe

ICs0 = 14.56 M (HepG2)
ICso = 27 uM (Hela)

R = OMe, Br, NO,, H
ICso < 0.04 uM (HepG2,SK-Lu-1)

O HetAr o

| I o
N
H
13
HetAr: Heterocyclic aromatic group

(0]

Our target compounds in this work

Fig. 2 Hybrid compounds of 4-aza-podophyllotoxin with heterocycles.
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microwave-assisted multicomponent reactions (Fig. 2), and
evaluation of their cytotoxic activity against various cancer cell
lines by using MTT colorimetric method. Besides, synthesized
compounds 13 were docked into the binding sites of colchicine
in tubulin and their binding energies as well as physicochem-
ical and pharmacokinetic properties were determined.

Results and discussion
Chemistry

Two convenient multicomponent synthetic approaches have been
adopted to synthesize the target compounds 13 (Scheme 1). In the
approach A, a range of structurally diverse heteroaromatic alde-
hydes 16 was subjected to the four-component reactions with 2-
hydroxy-naphthoquinone (14), tetronic acid (15) and ammonium
acetate (17) in glacial acetic acid (gl. AcOH) at 120 °C in 20 min
under microwave irradiation, leading to products 13 in low yield
ranging from 20 to 34% (Table 1). The formation of products 13
possibly started from Knoevenagel condensation of 2-hydroxy-1,4-
naphthoquinone (14) with aldehydes, followed by Michael addi-
tion to 4-aminofuran-2(5H)-one 19, produced from the reaction of
tetronic acid 15 with ammonia. The adduct 21 underwent tauto-
merization, intramolecular cyclization and dehydration to form
products 13 (Scheme 2).

In the approach B, three-component synthesis of target
products 13 from 2-amino-naphthoquinone, heteroaromatic
aldehydes, and tetronic acid was investigated. In our
preliminary studies, we indicated that the use of p-toluene-
sulfonic acid (p-TsOH) as an acid catalyst and gl. AcOH as
a solvent promoted the three-component reactions to
generate products in higher yields. Thus, p-TsOH (20 mol%)
was supplemented to the reaction mixtures in gl. AcOH, and
the reactions were then stirred at 120 °C, under microwave
irradiation (150 W). The reactions proceeded rapidly to
completion within 20 min. As shown in Table 1, under these
optimized conditions, products 13 were afforded in good
yields (60-74%). The synthetic approaches proceeded via
a sequential steps including Knoevenagel condensation of 2-
amino-1,4-naphthoquinone (14) with heteroaromatic alde-
hydes, Michael addition to tetronic acid, tautomerization,
intramolecular cyclization and dehydration (Scheme 2).
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Scheme 1 Synthesis of compounds 7 under microwave irradiation.
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It is worth mentioning that the approach B (synthesis by
three-component reactions) is likely to be more efficient for the
synthesis of target products 13 in comparison with the
approach A (synthesis by four-component reactions). In
approach B, the effect of heterocyclic substituents on aldehyde
on the outcome of reactions could be observed more clearly. For
instance, pyridinecarboxaldehyde derivatives 16k-m displayed
the highest reactivity to give the desired products 13k-m in high
yield (72-74%). The fusion of a benzene ring with five-
membered aromatic heterocyclic ring of aldehydes improved
the reaction yields compared to five-membered heterocyclic
aldehydes. Benzo[b]thiophene-3-carbaldehyde (16e) furnished
70% yield of the product 13c, whereas, thiophene-3-
carbaldehyde (16a) afforded 13a in 64% yield.

The structure of obtained compounds were examined by IR, '"H
and *C NMR, HSQC, HMBC, DEPT, and HRMS. Compound 13a
was focused for illustrating the "H and C assignments. In
general, the "H-NMR spectrum of 13a, presented a typical singlet
at 0y 10.60 ppm corresponding to an -NH group, two doublets of
doublets at 6y; 8.05 (1H, dd, = 1.2, 7.8 Hz, H6), and 7.93 (1H, dd, J
=0.6, 7.8 Hz, H9), two triples of doublets at 6;; 7.85 (1H, td, ] = 1.2,
7.2 Hz, H8), 7.81 (1H, td, J = 1.2, 7.2 Hz, H7) corresponding to four
aromatic protons in naphthoquinone ring. Three aromatic
protons in thiophene ring appeared at 6y 7.38 (1H, dd, J = 3.0,
4.8 Hz, H-5'), 7.24 (1H, dd, J = 0.6, 3.0 Hz, H-2), 7.07 (1H, dd, ] =
1.2, 4.8 Hz, H-4'). Moreover, the typical singlet at 5.11 ppm was
referred to the H-11 proton, two doublets were observed at
4.94 ppm and 4.90 ppm with a coupling constant of 16.8 Hz
assignable to the 3-CH, protons in y-butyrolactone ring. On the
other hand, the ">C NMR spectrum of product 13a displayed 19
carbon resonances, which were fully assigned with DEPT, *"H-"*C
HSQC and "H-"*C HMBC support. The DEPT-135 shows 8 positive
peaks and 1 negative peak. The negative peak at 66.1 ppm corre-
sponded to methylene (CH,) carbon C-3. Proton signal (H-11) at
5.11 ppm showed proton-carbon couplings to C-10 at 182.1 ppm,
C-1 at 171.2 ppm, C-3a at 156.1 ppm, C-4a at 139.2 ppm, C-3’ at
145.0 ppm, C4’ at 127.7 ppm, C-2' at 122.4 ppm, C-10a at
118.0 ppm, and C-11a at 101.6 ppm (Fig. 3). Moreover, under
positive HR-ESI-MS conditions, [M + H]" at m/z 350.0484, which
confirms the molecular formula for compound 13a is
C1oH,;NO,S.

glacial AcOH

20 min

gl. AcOH
p-TsOH 20 mol% 13
molecular sieves
MW, 120 °C
20 min

© 2024 The Author(s). Published by the Royal Society of Chemistry


http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d3ra07396c

Open Access Article. Published on 08 ghjennaghju 2024. Downloaded on 02/11/2025 22:15:11.

Thisarticleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

(cc)

Paper

Table 1 Synthesis of compounds 13 under microwave irradiation

View Article Online

RSC Advances

Yield (%)

Approach Approach

Entry Product A B

1 13a 29 64
2 13b 25 62
3 13c 20 60
4 13d 20 62
5 13e 33 70
6 13f 32 68
7 13g 33 69
8 13h 28 64
9 13i 27 63
10 13j 20 61
11 13k 34 74
12 131 32 72
13 13m 33 72

Cytotoxicity of synthesized compounds

All of these products were further studied cytotoxicity evalua-

tion

in vitro against cultured A549
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Scheme 2 Plausible mechanism for the formation of obtained products 13.
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Fig. 3 Key correlations of protons H-11 (black arrows), H-3 (red
arrows), H-9 (blue arrows), and H-5' (green arrows) in *H-*C HMBC
spectrum of compound 13a.

293) cell lines, in comparison to ellipticine, the positive control,
by using MTT assay (Table 2). The selective index (SI) of prod-
ucts was calculated as the ratio of the ICs, value in Hek-293
(human embryonic kidney 293) cell line to the ICs, value in
cancer cell line (Table 3). As illustrated in Table 2, all products
showed high and moderate cytotoxic activity to all tested cancer
cell lines with ICs, values ranging from 0.16 to 14.22 puM.
Cytotoxic activity of compounds 13a,h,k was better than that of
ellipticine against 4 tested cancer cell lines, a fact supporting
their anti-cancer activity. Besides, products 13f (HetAr =
benzofuran-3-yl) exerted almost 1.8-fold higher toxicity to KB
and HepG2 cells when compared with ellipticine. Notably,

View Article Online
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to cancer cell lines. In particularly, compound 13d (HetAr = 5-
bromofuran-2-yl) exhibited selective cytotoxicity against HepG2
cancer cells with ICs, value of 0.30 uM, which was 122-fold
higher than its ICs, value for Hek-293 cells (Table 3).

Molecular docking study

Based on experimental assessments, it can be initially identified
that compounds 13a-13m are good cytotoxic agents. Due to
crucial function in mitosis and cell division, microtubules,
which are produced through the polymerization of hetero-
dimers of a and B-tubulins, have been a desirable target in the
development of novel anticancer medicines.’* Meanwhile,
podophyllotoxin has long been regarded as a potent microtu-
bule destabilizing agent that binds to the tubulin colchicine
site, inhibiting tubulin polymerization and suppressing the
production of microtubules.**** Therefore, in this study, we
used molecular docking to evaluate the interaction of novel
synthesized substances with this molecular target. The natural
tubulin substrate colchicine will be used as a positive control.

Table 3 Selective index for active compounds

Selective index

Entry Compound KB A549 HepG2 MCF7
product 13k (HetAr = 2-methoxypyridin-4-yl) exhibited the
significantly potent and selective cytotoxicity against KB, A549, 1 13a 16.00 47.90 16.00 11.12
and HepG2 cell lines with the ICs, values ranging from 0.23 to i igb 13; ji; ;'ég 1'23
0.27 uM. The cytotoxic activity of prqduct 13k tO\fvard K].S, A54?, 5 13d 13.19 18.00 122,40 358
and HepG2 cancer cells was approximately 10 times higher in 4 13e 1.02 1.12 1.07 0.85
relation to normal Hek-293 cells (Table 3). Product 13h (HetAr= 7 13f 17.98 2.81 15.10 1.56
2-chlorothiazol-5-yl) showed the highest growth inhibitory 8 13g 1.31 4.18 1.03 1.16
activity against A549 and MCF7 cancer cell lines and normal ?0 igh 13 g'zg i;; 1'32

. 1 . . . .
Hek-29€’> cells with IC5, values of 0.16,- 1.07, and 1:38 [11.% S 13 0.63 0.69 0.86 116
respectively. Compound 13a (HetAr = thiophen-3-yl) displayed 1, 13k 9.30 9.30 10.81 1.86
higher cytotoxic selectivity for A549 cancer cells when compared 13 131 2.18 4.74 1.85 1.39
to the other cancer cell lines and low toxicity to normal Hek-293 14 13m 3.61 5.92 2.87 2.31
cell line with IC5, = 22.90 uM, what can indicate their specificity ~ 1° Ellipticine 288 3.94 265 268
Table 2 Cytotoxicity of the products 7 against KB, HepG2, A549, MCF7, and Hek-293 cell lines
1Cs0, ptM

Product KB A549 HepG2 MCF7 Hek-293
13a 1.43 £ 0.14 0.48 + 0.03 1.43 £ 0.15 2.06 £+ 0.66 22.90 + 2.18
13b 10.05 £+ 1.17 3.09 + 0.39 12.36 £+ 1.29 12.63 + 1.14 13.80 + 1.41
13c 14.22 +1.23 3.06 = 0.27 3.75 + 0.69 12.15 + 1.14 14.55 + 1.35
13d 2.81 + 0.32 2.06 + 0.22 0.30 + 0.06 10.36 + 1.29 37.12 £ 3.30
13e 10.94 + 1.40 9.94 + 0.73 10.42 £+ 1.18 13.07 + 1.60 11.17 + 0.85
13f 1.10 £+ 0.09 7.02 + 0.91 1.30 +£ 0.13 12.65 + 1.20 19.69 £+ 1.70
13g 9.94 4+ 0.65 3.13 £ 0.20 12.67 £ 1.40 11.27 + 1.78 13.07 £ 1.70
13h 1.12 £+ 0.10 0.16 + 0.02 0.81 + 0.11 1.07 + 0.10 1.38 £ 0.18
13i 10.74 £ 1.27 2.27 £ 0.22 7.80 £ 0.53 10.41 + 0.80 12.26 + 1.13
13j 6.00 + 0.63 5.43 £ 0.39 4.35 + 0.57 3.24 £ 0.36 3.75 £ 0.69
13k 0.27 £ 0.24 0.27 £+ 0.21 0.23 + 0.02 1.34 4+ 0.16 2.48 + 0.32
131 4.69 + 0.58 2.15 + 0.25 5.52 + 0.86 7.34 £ 0.94 10.21 + 1.24
13m 4.63 + 1.04 2.83 £ 0.54 5.83 = 0.86 7.26 + 1.29 16.73 £1.94
Ellipticine 1.95 + 0.12 1.42 £+ 0.08 2.11 + 0.16 2.09 £+ 0.16 5.60 £+ 0.37
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Fig. 5 Contribution (%) of the different energy terms to the binding
affinity (score) of tubulin-ligands: the van der Waals interaction energy
(Vwint), Hydrogen Bond energy (Hbond), the hydrophobic energy
(Hphob), internal conformation energy (Eintl), the desolvation of
exposed H-bond donors and acceptors (Dsolv), the solvation elec-
trostatics energy change upon binding (SolEl), the potential of mean
force score (mfScore).

Firstly, colchicine were redocked into the active site in tubulin
to validate the docking process. As the results, the redocked
conformers tightly bound to the colchicine binding site of tubulin
with a very high matching with the co-crystallized structure
(RMSD = 0.3339 A). Moreover, it preserves the key interactions
such as hydrogen bonds with Val181, Ala180... of the o subunit
through its methoxytropone ring, hydrophobic interactions with
Leuf242, Cysp241, AlaB354, and Alap316 (Fig. 4A),>> suggesting
the validity of established docking protocol.

© 2024 The Author(s). Published by the Royal Society of Chemistry

In the next step, podophyllotoxin, which is considered
reference compound was also docked into the binding site of
tubulin. The results were similar to those previously deter-
mined.** As can be seen in Fig. 4, this compound exhibited
a large interaction network with residues in the binding site.
Some of the key interactions should be mentioned here are the
hydrogen bonds with Val178, Ala180... of the a subunit and
numerous hydrophobic interactions with Cys241, Ala250,
Leu248, Leu255, Ala354, and Ala316 of the B subunit (Fig. 4B).
The binding energy was determined to be —18.68 kcal mol ™",
and hydrogen bonding and hydrophobic stacking interactions
the most contributed components (Fig. 5). The results obtained
confirmed the similarity and accuracy of the docking protocol.

After validating the docking protocol, all 13 synthesized
compounds (13a-13m) were docked into the binding site of
colchicine in tubulin, using the above validated protocol. The
binding energies and the main interactions between the
compounds and tubulin in comparison with podophyllotoxin
are summarized in Table 4 and Fig. 4-6.

Overall, the docking results of 13 substances 13a-13m were
similar to colchicine and those previously published.* They are
all capable of binding to the active site of colchicine in tubulin.
The colchicine binding site was divided into three zones
including zones 1, 2, and 3 according to Massaroti et al.>* zone 1
is surrounded by the residues Vala181, Sera178, Metp259,
Asno101, and is situated at the o subunit interface. Located in
the B subunit, zone 2 is an accessory hydrophobic pocket made

RSC Adv, 2024, 14,1838-1853 | 1843
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Table 4 Binding energy between compounds 13a—13m and active site of tubulin compared to co-crystallized compounds

Binding energy

Cpd (kcal mol™")  Interaction with residues
13a —16.38 H-bond: Val 181a, Thr 179a, Ala 1800

Hydrophobic: Ala 3548, Leu 248, Ala 3168, Lys 352f, Met 2598
13b —13.79 H-bond: Val 181, Thr 179¢, Ala 1800, Ala 3543, Ala 31783

Hydrophobic: Leu 2488, Ala 316p, Lys 352, Met 2593
13c¢ —14.55 H-bond: Val 181a, Thr 179¢, Ala 1800

Hydrophobic: Ala 3548, Leu 248, Ala 3168, Lys 352f, Met 2598
13d —15.29 H-bond: Val 181a, Thr 179¢, Ala 1800

Hydrophobic: Ala 3548, Leu 248, Ala 3168, Lys 352f, Met 2598, Ile 3188, Cys 241f3
13e —14.09 H-bond: Val 181a, Thr 179¢, Ala 1800

Hydrophobic: Ala 3548, Leu 248, Ala 3168, Lys 352f, Met 259, Leu 255, Cys 241
13f —16.45 H-bond: Val 181a, Thr 1790, Ala 180, Asn 1010, Leu 2558, Ala 2508

Hydrophobic: Ala 3548, Leu 248, Ala 3168, Lys 352f, Met 259, Leu 2553, Asn 258, Ala 2508
13g —15.08 H-bond: Val 181a, Thr 179a, Ala 1800, Leu 2558, Lys 352

Hydrophobic: Ala 354f3, Leu 248f, Ala 316, Lys 352, Met 259, Leu 2558, Asn 258, Ala 2508, Cys 24183
13h —17.86 H-bond: Val 181a, Thr 179¢, Ala 1800

Hydrophobic: Ala 3548, Leu 248, Ala 3168, Lys 352f, Met 2598, Ile 3188, Cys 241f
13i —13.83 H-bond: Val 181a, Ala 180a, Asn 101a, Ala 31783

Hydrophobic: Ala 354f3, Leu 248f, Leu 2558, Ala 316, Lys 352, Met 2598, Ile 3183
13j —15.64 H-bond: Val 181a, Thr 179a, Ala 180, Ala 3178, Lys 3528

Hydrophobic: Ala 3543, Leu 248, Ala 3168, Lys 352f3, Met 2598
13k —18.45 H-bond: Val 181, Thr 179«, Ala 180a, Ala 317

Hydrophobic: Ala 3548, Leu 248, Ala 3168, Lys 352, Met 2598, Ile 318p, Cys 241f3
131 —15.78 H-bond: Val 181a, Thr 179a, Ala 180, Ala 3178, Lys 3528

Hydrophobic: Ala 3543, Leu 248, Ala 3168, Lys 35283, Met 2598
13m —16.8 H-bond: Val 1810, Ala 180a, Ala 3178, Ala 3163, Asn 101a, Asp251p, Ala 2508

Hydrophobic: Ala 3548, Leu 248, Ala 3168, Lys 3528, Met 259, Leu255p, Thr 3538

Podophylotoxin —18.68

H-bond: Ser 178a, Ala 180a, Ala 3178, Ala 316, Asn 101a, Asp251f, Ala 250

Hydrophobic: Val 238, Cis 2418, Leu 2488, Ala 316f3, Ala 318f, Lys 352, Met 2598, Leu2558, Thr 3533

Colchicin —19.18

H-bond: Val 181a, Ala 180a, Ala 2508, Asp251f, val 3158, asn 3508

Hydrophobic: Leu 2558, Leu 2488, Leu 242, Cys 241, Ile 3188, Ala 3548, Ile 378f3, Ala 31683, Met 359, Lys 35283

up of the residues LysP352, ValB318, AlaB317, AlaB316,
LeuP255, AlaB250, Leuf248, LeuP242, and CysP241 zone 3,
which is buried deeper inside the B subunit, is formed by the
residues Thrp239, ValB238, Tyrf202, GluB200, Phefp169,
Asnf167, GInB136, and Ilep4... Therein, these studied confor-
mations with rigid structures are capable of stretching into the
deeper zone 2 of the B-subunit.>* Almost all the synthesized
compounds conserved these key interactions such as the
hydrogen bond between the carbonyl group of the quinone ring
and Vala181, Alac180; the hydrophobic interactions which are
mainly pi-alkyl stacking with most residues of zone 2 like
LysB352, AlaB317, AlaB316, Leuf255, Alaf250, and so on.
Moreover, all compounds formed hydrogen bonds between N
and Thra179 that do not exist in colchicine,” making it bind to
the active site more strongly.

The docking poses and binding energies also showed good
ability to discriminate the good ligands from the bad ones. 13b
and 13c were determined to be two of the weakest ligands of
tubulin. As can be seen in Fig. 6, these compounds were quite
different from 13k and 13h in alignment with podophyllotoxin.
In fact, fewer interactions were observed in 13b and 13c¢, being
several stacking interactions with HetAr with residues in the
B subunit, such as Asn101, Ala250, Leu248, and Ala316 the most
important ones. In particular, the orientation of HetAr in 13b
and 13c were different from 13k and 13h, suggesting the change
in their target interactions.

1844 | RSC Adv, 2024, 14, 1838-1853

The relative binding energies were determined based on
a GBSA/MM-type function implemented into ICM pro.*® In
addition, other energy terms extracted from the final complex,
including Hbond, Vwin. Accordingly, compound 13k has the
strongest binding energy at —18.05 kcal mol . Besides general
interactions, it also formed hydrogen bonds between the
lactone ring and Asn101a of zone 1, and between the carbonyl
group of the quinone ring and LeuB255 of zone 2. Additionally,
it interacts better with more residues of zone 2 of colchicine
binding site through its substituent. Compound 13h had good
binding energy of —17.86 kcal mol " resulted by key hydrogen
bonds with residues of zone 1 and hydrophobic interactions
which are similar to compound 13k (Fig. 6). The results also
highlighted the highest values of Hbond and Hphob energies of
13h and 13k compared to the other derivatives, which corre-
lated well with the order ranking of all the compounds (Fig. 5).
There is a concurrence between the binding energy and the ICM
docking mfScore which refers to the strength of the inhibitor-
tubulin interaction. The mfScore values of 13h and 13k were
—102.91 and —103.1 kcal mol !, which are similar to podo-
phyllotoxin. Interestingly, Hbonds appear to have small impact
on the binding ability of synthesized compounds. While
hydrogen bonding energies of 13b and 13c are quite high, their
overall energies computed by GBSA/MM-type and mfScore
functions showed significantly lower than podophyllotoxin and
colchicine (see Table S1t). For the generated docking

© 2024 The Author(s). Published by the Royal Society of Chemistry
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Fig. 6 (A) Superimposition of docking poses of 13b (purple carbon), 13c (cyan carbon), 13h (orange carbon), and 13k (green carbon) against

podophyllotoxin (yellow carbon). (B) Topological interactions of 13b, 13c, 13h, and 13k with the residues in the active sites of & and B-tubulin

domains (labeled with A and B prefixes).

conformations, the hydrophobic and van der Waals interaction
appear to be the driving forces for binding ability of tested
compounds. Over podophyllotoxin all, the docking results are
in consistency with our previous findings, and in turn match
well with experimental ranking using the cytotoxicity tests.®”%

Physicochemical and pharmacokinetic properties prediction

The above experimental test revealed that all 13 compounds
exhibit good activity against a variety of cancer cell lines. In
which, the two chemicals 13h and 13k have the most potential.

© 2024 The Author(s). Published by the Royal Society of Chemistry

So, we performed assessments related to physicochemical and
pharmacokinetic feature as a criteria for drug-likeness
evaluation.

First, radar plot of the physicochemical properties in Fig. 7
showed that both compounds met most of the criteria,
excepting logP and logS. This issue may affect to their
membrane permeability. However, according to the prediction
of SwissADME, the LogP,,, value of them are less than 5.0 that
is suitable for absorption.”>*® In terms of solubility, based on
ESOL topological model, they classified as moderately soluble

RSC Adv, 2024, 14, 1838-1853 | 1845


http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d3ra07396c

Open Access Article. Published on 08 ghjennaghju 2024. Downloaded on 02/11/2025 22:15:11.

Thisarticleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

(cc)

View Article Online

RSC Advances Paper
13h MW 13k Mw
LogP nRig LogP nRig
600 A
= > 4.71 30
Logs Ry - A 4 fChar Logs —__ 3741 % 4 fChar
3 3
0.5 0.5
o 100 o g o 100 o 0
-4 74
LogD 3.019 4.403 8 " nHet LogD 2,918 -4.448 7 nHet
: 15 15
3 4 1 3 -4 1

0

0 0 0 LR 0 0
6 1 17 7 17
12 d 0 18 12 ¢ P Q 18
nHA 3 MaxRing nHA 3 MaxRing
5 5
7 < L # 7 108.84 2
140 ) 40
nHD nRing nHD fa nRing
11 11
TPSA nRot TPSA nRot
Upper Limit Lower Limit Compound Properties

Fig.7 Radar diagram illustrating the physicochemical characteristics of 13h and 13k. MW: molecular weight, nRig: number of rigid bonds, fChar:
formal charge, nHet: number of heteroatoms, MaxRing: number of atoms in the biggest ring, NRing: number of rings, nRot: number of rotatable
bonds, TPSA: topological polar surface area (A%), nHD: number of hydrogen bond donors, nHA: number of hydrogen bond acceptors, logD: log
of octanol partition coefficient at physiological pH 7.4, logS: log of aqueous solubility (mol L™, and logP: log of octanol partition coefficient.

chemicals (Table 4). In addition, 13h and 13k were predicted to
have zero alert according to the Pan Assay Interference
Compounds (PAINS) which is desired to avoid promiscuous
behavior and nonselective reactivity with proteins.

In addition, these two compounds were subjected to drug-
likeness prediction. Table 5 demonstrates that 13h and 13k

Table 5 Drug-like and pharmacokinetic properties of 13h and 13k

successfully accomplished all the drug-likeness rules with no
violations but failed to pass lead-likeness rule due to their
molecular weight.*”

Second, the properties related to Absorption, Distribution,
Metabolism and Excretion (ADME) were analyzed. According to
the absorption, the predicted values showed that both

Predicted parameters 13h 13k

Drug likeness

Lipinski Accept Accept

Goshe Accept Accept

Veber Accept Accept

Egan Accept Accept

Muegge Accept Accept
Bioavailability score 0.55 0.55
Lead-likeness No, (MW > 350) No, (MW > 350)
PAINS 0 alert 0 alert
Absorption

Gastrointestinal absorption High High
Pgp-substrate No No

Log K, (skin permeation) —6.72 cm s ! —6.72cm s !
Distribution

Plasma protein binding 100.0% (not optimal) 97.87% (not optimal)
Volume distribution 0.402 0.413
Blood-brain barrier (BBB) penetration No No

Metabolism
CYP interaction*

Excretion
Clearance (CL)
Half-life (T7,)

1846 | RSC Adv, 2024, 14, 1838-1853

CYP1A2 inhibitor (0.94)
CYP2C9 inhibitor (0.66)

3.043 mL min~" kg (low)
0.066 h (short)

CYP1A2 inhibitor (0.92)
CYP2C9 inhibitor (0.75)
CYP2D6 substrate (0.58)

3.317 mL min~" kg (low)
0.194 (short)

© 2024 The Author(s). Published by the Royal Society of Chemistry
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1

Fig. 8 BOILED-Egg diagram of two potent compounds 13h and 13k.
Abbreviation: BBB: blood-brain barrier; HIA: human intestinal
absorption; PGP+: P-glycoprotein substrate; PGP-: P-glycoprotein
non-substrate.

compounds have high human intestinal absorption.*® Accord-
ing to the BOILED-Egg plot (Fig. 8), they were not glycoprotein-P
substrate and shas high intestinal absorption percent.>>*
Prediction of skin permeability showed that they are less
permeable across the skin. In addition, 13f and 13h could not
across the blood-brain barrier, suggesting a little effect on the
central nervous system (CNS). These compounds were esti-
mated to have high plasma protein binding which may narrow
their therapeutic index. Both compounds showed optimal
volume of distribution. In accordance with the first-pass
metabolism, hepatic cytochrome plays a pivotal role in cata-
lytic reactions. Our predictions showed that 13h and 13k mainly
interacted with CYP1A2 and CYP2C9, suggesting potential
drug-drug interactions with some medications and food.**
These compounds were also estimated to have low clearance
together with a short half-life in human body.

ADMETlab 2.0 was subsequently used to anticipate toxicity
of 13h and 13k (Table 6).°> Accordingly, both compounds are
not hERG blockers, suggesting low cardiotoxicity effect.*
Besides, they did not show human hepatoxicity, mutagenic
effect, and eye corrosion. However, 13k may cause reactions
with the skin and respiratory tract. Meanwhile 13h showed no
interaction with most organs excepting the respiratory system.

View Article Online
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In general, these derivatives provided suitable physicochemical
and ADMET profiles to be considered as good anticancer
compounds for further hit-to-lead optimization stages.

Experimental
Materials and methods

All chemicals were used as received without any further purifi-
cation and obtained from Aldrich or Merck. Microwave irradi-
ation experiments were performed using an Anton Paar
Microwave Synthetic Reactor Monowave 400. Merck silica gel 60
F254 plates and Merck silica gel 60 (240-400 mesh) were used
for thin-layer chromatography and column flash chromatog-
raphy, respectively. Melting points were measured in open
capillaries on a Buchi melting point B-545 apparatus (Buchi
Instrument, Switzerland) and the values reported are uncor-
rected. A SCIEX X500 QTOF mass spectrometer in ESI (+) or ESI
(=) mode was used to calculate the HRMS spectra. IR spectra
have been recorded as KBr pellets, with a PerkinElmer Spectrum
Two FT-IR spectrometer. NMR experiments were acquired using
a Bruker Avance III spectrometer (600 and 125/150 MHz).

General procedure for synthesis of compounds 13a-m

Approach A: Under microwave irradiation (150 W), a mixture of
2-hydroxy-1,4-naphthoquinone (14, 1 mmol), tetronic acid (15, 1
mmol), heteroaromatic aldehyde (16a-m, 1 mmol), and
NH,OAc (17, 3.0 mmol) in glacial acetic acid (3 mL) was stirred
for 20 min at 120 °C. The reaction mixture was then poured into
water (20 mL) and extracted with dichloromethane (3 x 20 mL),
washed with brine (3 x 10 mL). The combined organic layer was
dried over anhydrous Na,SO,, concentrated in vacuo, and
purified by column chromatography using a dichloromethane-
acetone eluent (20: 1, 25: 2, v/v) to furnish products 13a-m.
Approach B: Under microwave irradiation (150 W), a mixture
of 2-amino-1,4-naphthoquinone (18, 1 mmol), tetronic acid (15,
1 mmol), heteroaromatic aldehyde (16a-m, 1 mmol), and p-
TsOH (0.02 mmol) in glacial acetic acid (3 mL) was stirred for
20 min at 120 °C. The reaction mixture was then poured into
water (20 mL), extracted with dichloromethane (3 x 20 mL), and
washed with brine (3 x 10 mL). The combined organic layer was
dried over anhydrous Na,SO,, concentrated in vacuo, and

Table 6 Toxicity predicted using ADMETlab 2.0 of the two most potential compounds

Toxicity®

13h 13k

hERG blockers

Human hepatotoxicity

AMES toxicity

Rat oral acute toxicity

FDA maximum (recommended) daily
dose

Skin sensitization

Respiratory toxicity

Eye irritation

“ The values in parentheses display the probability of being toxic.

© 2024 The Author(s). Published by the Royal Society of Chemistry

Inactive (0.002)
Negative (0.425)
No (0.324)

No (0.412)
Negative (0.11)

Inactive (0.009)
Negative (0.12)
No (0.273)

No (0.436)
Negative (0.235)

No (0.497) Yes (0.747)
Yes (0.687) Yes (0.893)
No (0.263) No (0.135)

RSC Adv, 2024, 14,1838-1853 | 1847
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purified by column chromatography using a dichloromethane-
acetone eluent (20: 1, 25:2, v/v) to furnish products 13a-m.
11-(Thiophen-3-yl)-4,11-dihydrobenzo[g]furo[3,4-b]quinolin-
1,5,10(3H)-trione (13a). Yield 101 mg (29% - approach A),
224 mg (64% - approach B), orange solid, mp. 298-299 °C. IR
(KBI) vmax/cm ™! 3238, 3086, 2967, 2930, 2890, 1709, 1657, 1636
1606, 1589, 1500, 1395, 1351, 1334, 1303, 1240, 1191, 1070,
1015, 932, 838, 783, 727. 'H NMR (DMSO-d, 600 MHz): 6 10.60
(1H, s, -NH), 8.05 (1H, dd,J = 1.2, 7.8 Hz, H-6), 7.93 (1H, dd, ] =
0.6, 7.8 Hz, H-9), 7.85 (1H, td, J = 1.2, 7.2 Hz, H-8), 7.81 (1H, td, J
=1.2,7.2 Hz, H-7), 7.38 (1H, dd, J = 3.0, 4.8 Hz, H-5), 7.24 (1H,
dd, ] = 0.6, 3.0 Hz, H-2'), 7.07 (1H, dd, ] = 1.2, 4.8 Hz, H-4'), 5.11
(1H, s, H-11), 4.97 (1H, d, J = 16.8 Hz, H%-3), 4.87 (1H, d, ] =
16.8 Hz, H"-3). '*C NMR (DMSO-ds, 125 MHz) § 182.1 (C-10),
179.6 (C-5), 171.2 (C-1), 156.1 (C-3a), 145.0 (C-3), 139.2 (C-4a),
134.9 (C-8), 133.4 (C-7), 131.9 (C-9a), 130.3 (C-5a), 127.7 (C-4),
126.0 (C-6), 125.8 (C-9), 125.8 (C-5'), 122.4 (C-2'), 118.0 (C-10a),
101.6 (C-11a), 66.1 (C-3), 29.7 (C-11). HRMS (ESI): Found m/z
350.0484 [M + H]'", caled. for [C1oH;,NO,S]": 350.0482.
11-(Furan-3-yl)-4,11-dihydrobenzo[g]furo[3,4-b]quinolin-
1,5,10(3H)-trione (13b). Yield 83 mg (25% - approach A), 207 mg
(62% - approach B), yellow-brown solid, mp. 345-346 °C. IR
(KBI) pmay/cm ! 3199, 3118, 2961, 2927, 2857, 1712, 1658, 1628,
1604, 1590, 1503, 1396, 1357, 1335, 1303, 1194, 1071, 1014, 934,
874, 794, 727. 'H NMR (DMSO-ds, 600 MHz): 6 10.57 (1H, s, -
NH), 8.06 (1H, dd, J = 1.2, 7.2 Hz, H-6), 7.93 (1H, dd, J = 1.2,
7.2 Hz, H-9), 7.86 (1H, td, J = 1.2, 7.2 Hz, H-8), 7.82 (1H, td, ] =
1.2, 7.2 Hz, H-7), 7.49 (1H, t, ] = 1.2 Hz), 7.47 (1H, t, ] = 0.6 Hz),
6.40 (1H, dd, J = 0.6, 1.8 Hz), 4.98 (1H, d, ] = 16.2 Hz, H*-3), 4.94
(1H, s, H-11), 4.87 (1H, dd, J = 1.2, 16.2 Hz, H>3). ">*C NMR
(DMSO-de, 125 MHz) § 182.1 (C-10), 179.5 (C-5), 171.2 (C-1),
156.3 (C-3a), 143.0, 140.2, 139.2 (C4a), 134.9 (C8), 133.3 (C-7),
131.9 (C-9a), 130.2 (C-5a), 128.5, 125.9 (C6), 125.7 (C9), 117.6
(C-10a), 110.5, 101.0 (C-11a), 66.1 (C-3), 25.3 (C-11). HRMS (ESI):
Found m/z 334.0693 [M + H]", caled. for [C1oH;,NO5]": 334.0710.
11-(Furan-2-yl)-4,11-dihydrobenzo[g]furo[3,4-b]quinolin-
1,5,10(3H)-trione (13c). Yield 67 mg (20% - approach A), 200 mg
(60% - approach B), orange solid, mp. 304-305 °C. IR (KBr) ;ax/
em™' 3202, 3153, 2965, 2932, 1716, 1659, 1631, 1604, 1590,
1504, 1396, 1352, 1335, 1303, 1195, 1070, 1014, 933, 727. 'H
NMR (DMSO-d, 600 MHz): 6 10.70 (1H, s, NH), 8.06 (1H, dd, ] =
1.2,7.2 Hz, H-6),7.96 (1H, dd, ] = 1.2, 7.2 Hz, H-9), 7.87 (1H, td, ]
=1.2,7.2 Hz, H-8), 7.83 (1H, td, J = 1.2, 7.2 Hz, H-7), 7.46 (1H,
dd,J = 0.6, 1.8 Hz), 6.32 (1H, q,J = 1.8 Hz), 6.19 (1H, d, ] = 3.0
Hz), 5.14 (1H, s, H-11), 4.99 (1H, d, ] = 16.8 Hz, H*-3), 4.88 (1H,
dd, J = 1.2, 16.8 Hz, H>3). >*C NMR (DMSO-dg, 125 MHz)
0 182.0, 179.5, 170.9, 156.6, 155.5, 141.9, 139.3, 135.1, 133.5,
131.8, 130.1, 126.1, 125.8, 115.9, 110.7, 106.6, 99.6, 66.1, 28.5.
Found m/z 356.0513 [M + Na]', caled. for [CioH;;NNaO,]":
356.0529.
11-(5-Bromofuran-2-yl)-4,11-dihydrobenzo[g]furo[3,4-b]qui-
nolin-1,5,10(3H)-trione (13d). Yield 82 mg (20% - approach A),
256 mg (62% - approach B), orange-yellow solid, mp. 371-372 °©
C. IR (KBI) ypac/cm ! 3249, 1726, 1662, 1599, 1592, 1499, 1476,
1459, 1439, 1400, 1332, 1298, 1192, 1159, 1134, 1114, 1068,
1012, 960, 926, 779, 727. "H NMR (DMSO-d, 600 MHz): 6 10.74
(1H, s, NH), 8.06 (1H, dd, J = 0.8, 7.8 Hz, H-6), 7.96 (1H, dd, ] =
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1.2, 7.8 Hz, H-9), 7.87 (1H, td, ] = 1.2, 7.8 Hz, H-8), 7.83 (1H, td, ]
= 1.8, 7.8 Hz, H-7), 6.42 (1H, d, J = 3.0 Hz), 6.28 (1H, d, ] = 3.0
Hz), 5.11 (1H, s, H-11), 5.02 (1H, d, J = 16.8 Hz, H*-3), 4.91 (1H,
dd, J = 1.2, 16.8 Hz, H>3). >*C NMR (DMSO-ds, 125 MHz)
6 181.9, 179.4, 170.8, 158.0, 156.6, 139.5, 135.0, 133.5, 131.7,
130.2, 126.1, 125.8, 119.6, 115.2, 112.7, 109.8, 99.1, 66.2, 28.9.
Found m/z 411.9832 and 413.9772 [M + HJ', caled. for
[C1oH,,BrNO5]": 411.9816 and 413.9795.
11-(Benzo[b]thiophen-3-yl)-4,11-dihydrobenzo[g]furo[3,4-b]
quinolin-1,5,10(3H)-trione (13e). Yield 132 mg (33% - approach
A), 279 mg (70% - approach B), red-brown solid, mp. 295-296 °©
C. IR (KB) vpa/cm ' 3445, 3212, 3070, 2923, 2853, 1728, 1661,
1595, 1501, 1397, 1332, 1299, 1194, 1135, 1068, 1010, 922, 786,
762, 722. "H NMR (DMSO-ds, 600 MHz): 6 10.72 (1H, s, NH), 8.24
(1H, d, ] = 7.8 Hz), 8.08-8.06 (1H, m), 7.91 (1H, d, J = 7.8 Hz),
7.84-7.79 (3H, m), 7.55 (1H, s), 7.46 (1H, td, ] = 1.2, 7.8 Hz), 7.38
(1H, td, J = 0.6, 7.8 Hz), 5.40 (1H, s), 4.97 (1H, d, J = 16.8 Hz),
4.91 (1H, d,J = 16.8 Hz). "*C NMR (DMSO-dg, 125 MHz) 6 182.0,
179.6, 171.1, 155.6, 141.21, 139.4, 139.2, 137.5, 134.8, 133.4,
131.8, 130.3, 126.4, 126.0, 125.7, 124.3, 124.0, 122.8, 122.5,
118.3, 102.0, 66.1, 27.9. HRMS (ESI): Found m/z 422.0429 [M +
Na]’, caled. for [C,3H;3NNa0,S]": 422.0458.
11-(Benzofuran-3-yl)-4,11-dihydrobenzo[g]furo[3,4-b]quino-
lin-1,5,10(3H)-trione (13f). Yield 123 mg (32% - approach A),
261 mg (68% - approach B), brown solid, mp. 295-296 °C. IR
(KBI) rmax/cm ™! 3215, 3097, 1749, 1734, 1664, 1640, 1597, 1506,
1451, 1399, 1341, 1301, 1196, 1110, 1066, 1009, 750, 725. ‘H
NMR (DMSO-dg, 600 MHz): 6 10.77 (1H, s), 8.08-8.05 (1H, m),
7.91 (1H, s), 7.90-7.89 (1H, m), 7.83 (1H, td, ] = 1.8, 7.2 Hz), 7.80
(1H,td,J =1.8,7.2 Hz), 7.78 (1H, d,] = 1.2, 6.6 Hz), 7.50 (1H, d,
=1.2,7.2 Hz), 7.28 (1H, td,J = 1.8, 7.2 Hz), 7.26 (1H, td, ] = 1.8,
7.2 Hz), 5.24 (1H, s), 4.99 (1H, d, J = 16.8 Hz), 4.92 (1H, dd, ] =
1.2,16.8 Hz), 3.73 (3H, s). >C NMR (DMSO-dg, 125 MHz) 6 182.1,
179.5, 171.1, 156.4, 154.7, 144.4, 139.5, 134.9, 133.4, 131.9,
130.3, 126.3, 126.0, 125.7, 124.2, 123.9, 122.7, 120.3, 117.1,
111.2, 100.9, 66.1, 24.6. HRMS (ESI): Found m/z 384.0846 [M +
HJ', caled. for [Cy3H14,NOs]": 384.0866.
11-(Benzo[ b]thiophen-2-yl)-4,11-dihydrobenzo[g]furo[3,4-b]
quinolin-1,5,10(3H)-trione (13g). Yield 132 mg (33% - approach
A), 276 mg (69% - approach B), red-brown solid, mp. 302-303 °©
C. IR (KBI) vmay/cm ' 3466, 3050, 2924, 2853, 2263, 2126, 1773,
1740, 1667, 1637, 1591, 1495, 1431, 1394, 1341, 1296, 1192,
1157, 1137, 1066, 999, 927, 822, 788, 770, 748, 719. 'H NMR
(DMSO-d,, 600 MHz): 6 10.84 (1H, s), 8.08 (1H, dd, J = 1.2, 7.2
Hz), 7.97 (1H, d, ] = 7.2 Hz), 7.87 (1H, td, ] = 1.2, 7.2 Hz), 7.85-
7.81 (2H, m), 7.71 (1H, d,J = 7.8 Hz), 7.30 (1H, d,J = 1.2, 7.2 Hz),
7.25 (1H,d,J = 1.2, 8.4 Hz), 7.24 (1H, 5), 5.38 (1H, s), 5.06 (1H, d,
J=16.2 Hz), 4.96 (1H, dd, J = 1.2, 16.2 Hz). ">C NMR (DMSO-d,,
125 MHz) 6 182.0, 179.4, 170.9, 156.5, 148.1, 139.4, 139.0, 138.9,
135.0, 133.5, 131.8, 130.2, 126.1, 125.9, 124.3, 124.0, 123.4,
122.3, 121.7, 117.2, 100.9, 66.2, 30.3. HRMS (ESI): Found m/z
400.0623 [M + HJ", caled. for [C,3H,,NO,S]": 400.0638.
11-(2-Chlorothiazol-5-yl)-4,11-dihydrobenzo[g]furo[3,4-b]
quinolin-1,5,10(3H)-trione (13h). Yield 108 mg (28% - approach
A), 246 mg (64% - approach B), yellow-brown solid, mp. 383-
384 °C. IR (KBr) vpay/em ' 3341, 3092, 2922, 2852, 1774, 1734,
1660, 1602, 1525, 1507, 1478, 1443, 1414, 1397, 1335, 1300,

© 2024 The Author(s). Published by the Royal Society of Chemistry
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1267, 1240, 1199, 1159, 1140, 1044, 1019, 927, 878, 826, 776,
721, 705. "H NMR (DMSO-dg, 600 MHz): 6 10.86 (1H, s), 8.06
(1H, dd, ] = 1.2, 7.8 Hz), 7.99 (1H, dd, J = 1.2, 7.8 Hz), 7.88 (1H,
td,J=1.2,7.8 Hz), 7.83 (1H, td, /= 1.2, 7.8 Hz), 7.48 (1H, d, ] =
0.6 Hz), 5.29 (1H, s), 5.06 (1H, d, J = 16.8 Hz), 4.94 (1H, dd, ] =
1.2, 16.8 Hz). *C NMR (DMSO-dg, 125 MHz) 6 182.1, 179.3,
170.9, 169.7, 157.1, 143.9, 139.7, 139.5, 135.1, 133.6, 131.7,
130.3, 127.0, 125.9, 116.3, 99.9, 66.4, 27.7. HRMS (ESI): Found
m/z 385.0026 [M + H]", caled. for [C,3H;oCIN,0,S]": 385.0044.
11-(1,5-Dimethyl-1H-pyrazol-4-yl)-4,11-dihydrobenzo[g]furo
[3,4-b]quinolin-1,5,10(3H)-trione (13i). Yield 98 mg (27% -
approach A), 228 mg (63% — approach B), red-brown solid, mp.
262-263 °C. IR (KBI) Vma/em™* 3439, 3290, 3163, 3077, 2925,
2854, 1722, 1660, 1596, 1490, 1428, 1393, 1331, 1298, 1267,
1191, 1134, 1108, 1065, 1037, 1011, 929, 884, 828, 792, 723. 'H
NMR (DMSO-dg, 600 MHz): § 10.52 (1H, s), 8.04 (1H, dd, J = 1.2,
7.8 Hz), 7.89 (1H, dd, J = 1.2, 7.8 Hz), 7.82 (1H, td, ] = 1.2, 7.8
Hz), 7.79 (1H, td, J = 1.2, 7.8 Hz), 7.11 (1H, s), 4.94 (1H, d, ] =
16.2 Hz), 4.85 (1H, dd, ] = 1.2, 16.2 Hz), 4.79 (1H, ), 3.63 (3H, s),
2.30 (3H, s). 1*C NMR (DMSO-d,, 150 MHz) 6 182.2,179.7, 171.3,
155.3, 138.6, 137.2, 134.9, 134.7, 133.3, 131.9, 130.2, 126.0,
125.7, 122.4, 118.5, 102.0, 66.0, 36.0, 24.7, 9.1. HRMS (ESI):
Found m/z 362.1118 [M + H]", caled. for [CyoHi6N;04]":
362.1135.
11-(1H-pyrazol-5-yl)-4,11-dihydrobenzo[g]furo[3,4-b]quino-
lin-1,5,10(3H)-trione (13j). Yield 67 mg (20% - approach A),
203 mg (61% - approach B), pink-red solid, mp. 310-311 °C. IR
(KBI) vma/cm ™~ 3337, 3249, 3207, 3148, 2960, 2927, 1725, 1664,
1630, 1590, 1499, 1398, 1354, 1304, 1199, 1167, 1054, 1011, 933,
784725. *"H NMR (DMSO-dg, 600 MHz): 6 12.39 (1H, br. s, NH),
10.55 (1H, s), 8.05 (1H, d, J = 7.2 Hz), 7.94 (1H, d, J = 7.2 Hz),
7.86 (1H, t,J = 7.2 Hz), 7.81 (1H, t, ] = 7.2 Hz), 7.52 (1H, br. s),
6.13 (1H, br. s), 5.11 (1H, br. s), 4.93 (1H, d, J = 16.8 Hz), 4.87
(1H, d, J = 16.8 Hz). *C NMR (DMSO-ds, 125 MHz) 6 182.1,
179.6, 171.2, 156.0, 135.0, 133.4, 131.9, 130.1, 126.0, 125.8,
103.2, 66.0, 29.8. HRMS (ESI): Found m/z 334.0808 [M + HJ',
caled. for [C13H1,N30,4]": 334.0822.
11-(2-Methoxypyridin-4-yl)-4,11-dihydrobenzo[g]furo[3,4-b]
quinolin-1,5,10(3H)-trione (13k). Yield 127 mg (34% - approach
A), 277 mg (74% - approach B), red-brown solid, mp. 245-246 °©
C. IR (KBI) vpa/cm " 3455, 3044, 3014, 2984, 2941, 2893, 2740,
1739, 1665, 1630, 1601, 1561, 1505, 1478, 1396, 1341, 1300,
1192,1167,1147, 1068, 1045, 1021, 1004, 940, 786, 728. "H NMR
(DMSO-d,, 600 MHz): 6 10.69 (1H, s), 8.07 (1H, dd, J = 1.2, 7.2
Hz), 8.04 (1H, dd, J = 1.2, 5.4 Hz), 7.90 (1H, dd, J = 1.2, 7.2 Hz),
7.86-7.81 (2H, m), 6.99 (1H, dd, J = 1.2, 5.4 Hz), 6.74 (1H, s),
4.99 (1H, s), 4.98 (1H, d, ] = 16.8 Hz), 4.90 (1H, dd, ] = 16.8 Hz),
3.79 (3H, s). ">*C NMR (DMSO-dg, 125 MHz) § 182.0, 179.3, 170.9,
163.8, 156.5, 155.2, 146.6, 140.1, 134.8, 133.4, 131.8, 130.3,
126.0, 125.7, 117.1, 116.9, 109.7, 100.8, 66.2, 53.0, 34.7. HRMS
(ESI): Found m/z 375.0960 [M + H]", caled. for [C,,H 5N,05]":
375.0976.
11-(3-Fluoropyridin-2-yl)-4,11-dihydrobenzo[g]furo[3,4-b]
quinolin-1,5,10(3H)-trione (13l). Yield 116 mg (32% - approach
A), 261 mg (72% - approach B), grey-red solid, mp. 288-289 °C.
IR (KBr) vma/em ™ 3349, 3221, 3081, 2928, 2857, 1747, 1671,
1660, 1630, 1607, 1497, 1442, 1397, 1343, 1303, 1194, 1066,
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1005, 803, 724. "H NMR (DMSO-ds, 600 MHz): 6 10.48 (1H, s),
8.25-8.23 (1H, m), 8.07 (1H, dd, J = 2.4, 8.4 Hz), 7.88-7.84 (1H,
m), 7.83-7.78 (2H, m), 7.63-7.58 (1H, m), 7.27 (1H, quint,/ = 5.4
Hz), 5.51 (1H, s), 4.92 (2H, t, J = 16.2 Hz). "*C NMR (DMSO-dg,
125 MHz) 6 181.6,179.3,170.4, 156.4, 155.3 (1C, d, ] = 256.3 Hz),
149.8 (1C, d, J = 15 Hz), 145.0 (1C, d, J = 6.3 Hz), 139.9, 134.8,
133.2, 131.5, 129.8, 125.8, 125.5, 123.5 (1H, d, / = 3.8 Hz), 122.4
(1H, d, J = 20 Hz), 118.0, 100.3, 65.9, 30.7. HRMS (ESI): Found
m/z 363.0760 [M + H]", caled. for [C,0H1,FN,04]": 363.0776.
11-(2-Methoxy-5-(trifluoromethyl)pyridin-3-yl)-4,11-dihy-

drobenzo[g]furo[3,4-b]quinolin-1,5,10(3H)-trione (13m). Yield
146 mg (33% — approach A), 318 mg (72% — approach B), yellow-
orange solid, mp. 289-290 °C. IR (KBr) vpa/cm ' 3285, 3079,
3027, 2997, 2950, 1725, 1663, 1603, 1577, 1495, 1437, 1400,
1322, 1297, 1246, 1195, 1144, 1116, 1093, 1072, 1015, 940, 724.
'H NMR (DMSO-dg, 600 MHz): 6 10.63 (1H, s), 8.41 (1H, d, ] =
1.2 Hz), 8.05 (1H, dd, J = 1.2, 7.2 Hz), 8.00 (1H, d, J = 2.4 Hz),
7.85 (1H, dd, J = 1.2, 7.2 Hz), 7.84-7.78 (2H, m), 5.34 (1H, s),
4.95 (1H, d,J = 16.2 Hz), 4.89 (1H, dd, ] = 0.6, 16.2 Hz), 3.96 (3H,
s). *C NMR (DMSO-d,, 150 MHz) 6 181.9, 179.4, 170.7, 163.2,
156.8,142.9 (1C, d, J = 4.5 Hz), 140.5, 135.3, 134.9, 133.3, 131.8,
130.1,127.3, 125.9, 125.7, 124.1 (1C, q, ] = 270 Hz), 118.8 (1C, q,
J = 31.5 Hz), 117.0, 100.2, 66.0, 54.2, 30.6. HRMS (ESI): Found
m/z 443.0836 [M + H]", calcd. for [Cp,H14F3N,05]": 443.0849.

MTT assay

The investigated cancer cell lines were purchased from the
American Type Culture Collection (ATCC, USA). The cytotoxicity
of the newly synthesized series of compounds was studied
against non-small lung (A549, CCL-185""), epidermoid carci-
noma (KB, CCL-17""), breast (MCF7, HTB-22""), hepatocellular
carcinoma (HepG2, HB-8065 ), cancer cells, and human
embryonic kidney (Hek-293, CRL-1573"") cells, which were
cultured in DMEM (Dulbeccos Modified Eagle Medium)
medium, supplemented with 10% fetal bovine serum, 100 U
ml~" penicillin, and 100 pg mL™" streptomycin, at 37 °C in
humidified atmosphere (95% air and 5% CO,). Solutions of
compounds 13a-m in DMSO at different concentratrions (1.00,
0.25, 0.0625, and 0.0156 pug mL~ ") were added to human cancer
cell lines (3 x 10* cells per ml). After 3 days-incubation, 10 ul
solution of 5 mg mL ™' MTT in sodium phosphate buffer (PBS,
0.1 M, pH 7.4) was then supplemented, the cells were incubated
at 37 °C for 4 h, and then removed medium. The obtained
formazan crystals were dissolved by DMSO (150 pl). A Biotek
Epoch 2 microplate reader was used to measure the absorbance
of the solutions at 540 nm.***

Molecular docking study

Molecular docking studies were performed for all the synthe-
sized compounds against the tubulin target. To do so, the
tubulin-colchicine complex (PDB ID: 402B) was taken from the
Protein Data Bank.”” They were prepared for docking assays
following the standard protocol implemented into ICM Pro
(x64) software.***® The chains o and B tubulin were retained,
followed by deleting all the water molecules, optimizing all
hydrogens and optimizing HisProAsnGInCys, setting MMFF
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forcefield, and predicting the binding site of Colchicine by
using ICMpocketfinder.” The 2D structures of synthesized
compounds 13a-13m were generated using ChemDraw 20.1.1,
then imported to ICM Pro software and convert to 3D confor-
mations for docking. Before docking synthesized compounds,
the co-crystallized ligand colchicine was removed, and redocked
into the binding site of Tubulin. Conformational sampling is
based on the biased probability Monte Carlo (BPMC) procedure.
The ICM scoring function is a GBSA/MM-type,*® which is
weighted according to the following parameters (i) internal
force-field energy of the ligand, (ii) entropy loss of the ligand
between bound and unbound states, (iii) ligand-receptor
hydrogen bond interactions, (iv) polar and non-polar solvation
energy differences between bound and unbound states, (V)
electrostatic energy, (vi) hydrophobic energy, and (vii) hydrogen
bond donor or acceptor desolvation. The binding energy (kcal
mol’l) is calculated via equation: AG = AErr + TAStor + a5-
AEygond + @2AEuppesol T 03AEsois1 + €4AEpphob + A5Qsize.*® For
each ligand, 50 conformations were generated, and the
conformations with better binding scores and key interactions
similar to colchicine were selected for further studies. The
docking results were then visualized using BIOVIA Discovery
Studio Visualizer 2021.

Physicochemical and pharmacokinetic properties prediction

Calculations of the physicochemical parameters of synthesized
compounds relevant to ADME were performed using Swis-
SAMDE, a free online cheminformatics tool.”” Computed
parameters are related to the evaluation of drug-likeness, lead-
likeness characteristics such as Lipinski, Veber, Goshe, Egan,
and Muegge rules.®® Additionally, their toxicity was also pre-
dicted by another web-based tool - ADMETIlab 2.0.°%* The
parameters can be rapidly determined by easily inputting the
SMILES codes of the compounds into the website.

Conclusions

A series of new heterocyclic hybrid compounds of 4-azapodo-
phyllotoxin were successfully synthesized via microwave-
assisted multicomponent reactions. The efficient synthesis of
novel hybrid compounds has been expected to facilitate the
discovery of numerous classes of bioactive heterocyclic
compounds. Obviously, the in vitro cytotoxic assessment and
molecular docking study revealed that all products showed
cytotoxic activity and they are all capable of binding to the active
site of colchicine in tubulin. Compounds 13a (HetAr =
thiophen-3-yl), and 13d (HetAr = 5-bromofuran-2-yl) displayed
high cytotoxic selectivity for A549 and HepG2 cancer cell lines
when compared to the other cancer cell lines and low toxicity to
normal Hek-293 cell line with IC5, = 22.90 £ 2.18 and 37.12 +
3.30 uM, respectively. The most active compound 13k contain-
ing 2-methoxypyridin-4-yl group exhibited significant cytotox-
icity against human lung adenocarcinoma cells, human mouth
epidermal carcinoma cells, and human hepatocellular carci-
noma cells with ICs, ranging from 0.23 to 0.27 pM. Compound
13h (HetAr = 2-chlorothiazol-5-yl) displayed the highest toxicity
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against A549 cells with IC5, = 0.16 £ 0.02 pM. Notably,
compounds 13h,k, which have strong binding energy with the
active site of tubulin at —17.86, and —18.05 kcal mol %,
respectively, provided suitable physicochemical and ADMET
profiles to be considered as good anticancer compounds. Taken
together, these potent cytotoxic compounds have potential for
investigation into the anticancer activity.
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