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Poly(lactic acid) stereocomplex microspheres as
thermally tolerant optical resonators†
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Thermally tolerant polymer optical resonators are fabricated from

a stereocomplex of poly(L-lactic acid) and poly(D-lactic acid)

through the oil-in-water miniemulsion method. The thermal stabi-

lity of the microspheres of the stereocomplex poly(lactic acid)

(SC-PLA) is superior to that of the homochiral poly(lactic acid)

(HC-PLA). As a result of the high thermal stability, the optical reso-

nator properties of the SC-PLA microspheres are preserved at an

elevated temperature of up to 230 °C, which is 70 °C higher than

that of microspheres formed from HC-PLA.

Poly(lactic acid) (PLA) is a synthetic polyester made from lactic
acid.1–4 Due to its biodegradable, biocompatible, and nontoxic
properties, PLA is widely used in biomedical applications,5–7

drug transportation,8 textile,9 and packaging.10,11 PLA has
three types of stereoisomers: poly(L-lactide acid) (PLLA), poly(D-
lactide acid) (PDLA), and their atactic polymer, poly(DL-lactic
acid) (PDLLA).12 The homopolymers of PLLA and PDLA form
semicrystalline aggregates with a melting temperature of
around 170 °C, while the atactic PDLLA copolymer forms an
amorphous aggregate with a lower melting temperature.13

One of the drawbacks of PLA is that its thermal stability is
not so high due to its low crystallinity, which limits its use in
optical and electronic applications.14 Some techniques have
been applied to enhance the thermal stability of PLA by
adding a nucleating agent,15–18 physical modification through
fibre reinforcement,19,20 the addition of inorganic particles,21

chemical modification,22 and blending it with a material with
high Tg and high heat resistance.23,24 In particular, stereocom-

plexation by mixing PLLA and PDLA has received much atten-
tion due to its enhanced thermal and mechanical
properties.25,26 A mixture of PLLA and PDLA, prepared from its
molten state or solution state, induces the formation of stereo-
complex PLA (SC-PLA) driven by the intensive intermolecular
hydrogen (H)-bonding and dipole–dipole interactions between
PLLA and PDLA (Fig. 1).27–29 Compared with homochiral PLA
(HC-PLA), SC-PLA has a melting temperature (Tm) of around
230 °C, which is higher than that of pure HC-PLA (∼170 °C),
since the intermolecular H-bonding interaction between PLLA
and PDLA chains increases the rigidity of the PLA chains.30–35

Optical resonators confine light in a small volume that
interferes with itself and shows up sharp resonant optical
signals.36 Typical optical resonators are Fabry–Pérot (F–P) reso-
nators and whispering gallery mode (WGM) resonators.37 For
F–P resonators, light is confined between counter mirrors or
crystalline facets.38 On the other hand, WGM resonators
confine light circularly by total internal reflection (TIR) at the
interface between the inner and outer media with different
refractive indices. Typical WGM resonators have shapes of

Fig. 1 Schematic illustration of the fabrication of microspheres from
HC- and SC-PLA by the O/W miniemulsion method.
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spheres, rings, polyhedra etc.39 WGM is highly sensitive to the
surface morphology because a rough surface tends to scatter
light, which reduces the light confinement efficiency in the
resonator.40 Therefore, a highly smooth surface is one of the
important factors for high quality factor (Q) microresonators.
The sharp PL peaks from the resonators are utilized for highly
sensitive chemical and biosensing applications by monitoring
the peak shift.41,42

In this work, we investigated the optical resonator pro-
perties of the microspheres formed from PLAs. The whispering
gallery mode (WGM) microresonators are fabricated from a
blend of PLLA and PDLA through the oil-in-water (O/W) mini-
emulsion method. We expect that the microresonators formed
from SC-PLA have better thermal stability than the microreso-
nators formed from pure HC-PLA. We found that the WGM
resonators from SC-PLA are much more stable even at 230 °C
in comparison with those from HC-PLA (∼170 °C).

Microspheres of HC-PLA composed of PLLA (the number
average molecular weight, Mn = 40 kg mol−1) or PDLA (Mn =
90 kg mol−1) were prepared by the O/W miniemulsion method.
Similarly, microspheres of SC-PLA composed of a blend of
PLLA and PDLA were fabricated with mixing ratios of PLLA to
PDLA (L/D) of 9/1, 7/3, 5/5, 3/7, and 1/9. The miniemulsion
method is chosen because of the efficient formation of SC-PLA
with a high reaction rate compared to other methods such as
solution blending, supercritical fluid mixing, and melted
blending.32,43 During the emulsification and subsequent
solvent evaporation processes, PLLA and PDLA form a
stereocomplex.

Fig. 2 shows scanning electron microscopy (SEM) images of
the resultant microspheres formed from HC- and SC-PLA. All
the microspheres have high sphericity but have different
surface morphologies. The microspheres of HC-PLA with an
L/D ratio of 10/0 containing only PLLA (Fig. 2a and b) and
SC-PLA with L/D ratios of 9/1 and 7/3 (Fig. 2c and d, respect-
ively) have rather smooth surfaces with the values of the root-
mean-square (RMS) roughness between 4 and 5 (for details on
the calculation of the RMS roughness, see the ESI†). The
surface of the microsphere becomes rough with the increase of
the content of PDLA with L/D ratios of 5/5, 3/7 and 1/9 with
the values of the RMS roughness being 6.23, 11.5, and 14.6,
respectively (Fig. 2e–g). As for the microparticles made from
only PDLA (L/D = 0/10), the surface morphology is quite rough
with an RMS roughness value as large as 46.3 (Fig. 2h). The
difference in the surface morphologies of the microspheres
from PLLA and PDLA is possibly due to the difference in the
molecular weights of these polymers, which causes the
different crystallinity of the microspheres.44

We investigated the change in the morphology of the micro-
sphere by heating. As shown in Fig. S1,† the microspheres of
HC-PLA (L/D = 10/0 and 0/10) melt when heated at 200 °C for 2
s. However, microspheres of SC-PLA with L/D ratios of 9/1, 7/3,
5/5, 3/7, and 1/9 keep their spherical morphologies after being
heated at 200 °C, indicating that the thermal stability of PLA is
remarkably improved by SC formation. Even for a microsphere
with an L/D ratio of 9/1, where the composition of HC crystal-

lites is greater than that of SC crystallites, the microsphere pre-
serves its spherical morphology upon heating at 200 °C.

The thermal stability of HC- and SC-PLA microspheres was
investigated in more detail by differential scanning calorimetry
(DSC). Fig. 3 shows the DSC thermograms (first heating) of the
HC and SC crystallites with different mixing ratios (L/D = 10/0,
9/1, 7/3, 5/5, 3/7, 1/9, and 0/10). Several characteristic endo-/
exothermic peaks were observed: endothermic peaks at
60–70 °C due to the glass transition (Tg), exothermic peaks at
90–110 °C due to the crystallization (Tc), and endothermic

Fig. 2 SEM micrographs of HC-PLA and SC-PLA microspheres prepared
by the O/W miniemulsion method with different L/D ratios of 10/0 (a
and b), 9/1 (c), 7/3 (d), 5/5 (e), 3/7 (f ), 1/9 (g), and 0/10 (h). The graphs on
the right in (b–h) show the profiles of the difference in the gray values
versus the distance (d ) at the cross section of the microspheres shown
as yellow-dotted lines in the corresponding micrographs.

Fig. 3 DSC traces of HC- and SC-PLA with different L/D ratios.
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peaks at >170 °C due to the melting of the HC and SC crystal-
lites. For HC-PLA (L/D = 10/0 and 0/10), Tm appears at 174 and
177 °C, respectively. In contrast, for SC-PLA, another peak
appeared at 227–230 °C, which is attributed to the Tm of the
SC crystallites.25 These results indicate that blending PLLA
and PDLA forms both SC and HC domains.

The thermal properties of HC- and SC-PLA are summarized
in Table 1. From the peak area of Tm in the DSC thermograms,
the melting enthalpies (ΔHm) of the HC and SC crystallites are
determined. By changing the L/D ratio from 10/0 to 5/5, the
ΔHm of HC-PLA (ΔHHC) decreases from 54 to 24 J g−1 and then
increases to 71 J g−1 by further changing the L/D ratio to 0/10.
Concomitantly, the ΔHm of SC-PLA (ΔHSC) significantly
increases from 9 to 45 J g−1 and then decreases to 15 J g−1

upon increasing the PDLA content. The ΔHHC and ΔHSC

values show minimum and maximum at an L/D ratio of 5/5,
indicating that PLA mostly forms SC domains in the 5/
5 mixture of PLLA and PDLA.45 Moreover, the decomposition
temperatures (Tdec) of both HC- and SC-PLA were determined
using thermogravimetry differential thermal analysis (TG/DTA,
Fig. S2†). For pure HC-PLLA, Tdec was at around 280 °C. As the
ratio of PDLA to PLLA increased, Tdec increased and reached
337 °C for an L/D ratio of 1/9. For pure HC-PDLA, Tdec reached
354 °C. Therefore, Tdec is mainly affected by the Mn of PLA,
where a large Mn has a high Tdec. However, the TGA profiles of
SC-PLA show a single decomposition step, indicating that the
stereocomplex state is not only a simple mixture of PLLA and
PDLA but also has a strong interaction between PLLA and
PDLA via H-bonding (Fig. 1).

To understand the crystalline states of HC- and SC-PLA,
powder X-ray diffraction (PXRD) measurements were con-
ducted. As shown in Fig. 4a, powder samples of HC-PLA with
L/D ratios of 10/0 and 0/10 show diffraction peaks at 2θ = 14.9,
16.7, 19.1, and 22.4°, which are assigned to the (010), (110)/
(200), (203), (015) planes of the HC crystallites, respectively. In
comparison, powder samples with the blend of PDLA and
PLLA exhibit three additional diffraction peaks at 12.0, 20.8,
and 24.1°, which are assigned to the (110), (300)/(030), (220)
planes of the SC crystallites, respectively.25,26,46 For the sample
with an L/D ratio of 5/5, diffractions from the HC crystallites
mostly disappeared. The percentages of the crystallites (Xc) of
HC- and SC-PLA are calculated from the intensity ratios of the
diffraction peaks of the HC and SC crystallites to the entire

diffraction. The Xc value of HC decreases when the L/D ratio
changes from 10/0 to 5/5 and then increases when the L/D
ratio reaches 0/10 (Fig. 4b, blue). Conversely, the Xc value of SC
increases (decreases) when that of HC decreases (increases)
(Fig. 4b, red).

PXRD measurements were further conducted by elevating
the temperature from 25 to 220 °C (Fig. S3†). For samples with
L/D ratios of 10/0, 1/9, 9/1, and 0/10, the diffraction peaks of
the HC crystallites disappear at 200 °C due to the melting of
the HC crystallites. For samples with L/D ratios of 7/3, 5/5, and
3/7, small diffraction peaks from the HC crystallites remain at
200 °C, but they completely disappear at 220 °C. In contrast,
the diffraction peaks of the SC crystallites remain even at
220 °C. These results are consistent with the DSC results,
where the Tm of HC-PLA is around 180 °C while that of SC-PLA
is around 230 °C.47 Fig. 4c–f plot the Xc values versus tempera-
ture for the HC and SC crystallites. The Xc value of the HC crys-
tallites abruptly drops at 200 °C, and simultaneously, the Xc
value of the SC crystallites increases at 200 °C. These results
indicate that the melting of the HC domain subsequently
induces the formation of the SC domains.

The microspherical structure with a smooth surface is
advantageous for use as a WGM optical resonator.48–50 As
schematically drawn in Fig. 5a, photoluminescence (PL) gener-

Table 1 Summary of the thermal behaviour of HC- and SC-PLA micro-
spheres with different L/D ratios

Sample
Tg
(°C)

Tc
(°C)

Tm, HC
(°C)

Tm, SC
(°C)

ΔHHC
(J g−1)

ΔHSC
(J g−1)

HC-PLA 10/0 — 109 174 — 54 —
SC-PLA 9/1 65 93 176 227 47 9
SC-PLA 7/3 66 95 175 229 24 42
SC-PLA 5/5 66 96 177 230 24 45
SC-PLA 3/7 67 98 177 229 24 41
SC-PLA 1/9 67 98 179 227 33 15
HC-PLA 0/10 — — 177 — 71 —

Fig. 4 (a) PXRD patterns of HC- and SC-PLA microspheres. (b) The rela-
tive degree of crystallinity (Xc) of the HC and SC crystallites. (c–f )
Relative degree of Xc versus temperature in the range of 25 to 220 °C for
HC and SC crystallites of PLA with L/D ratios of 10/0 (c), 9/1 (d), 7/3 (e),
and 5/5 (f ).
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ated at the surface of the polymer microsphere is confined via
total internal reflection at the medium/air interface and inter-
feres with itself showing up sharp and periodic resonant PL
lines.51–58 To investigate the optical resonator properties of the
PLA microspheres, HC- and SC-PLA microspheres are doped
with a fluorescent dye, zinc(II) tetraphenylporphyrin (ZnTPP),
with Tm (∼350 °C) higher than that of PLA. The ZnTPP-doped
HC- or SC-PLA microspheres are dispersed on a quartz sub-
strate by a spin coating method. PL spectra of a single HC- and
SC-PLA microsphere are recorded upon focused laser exci-
tation with a 405 nm continuous wave (cw) laser to a single
microsphere.59–63 At 30 °C, the PL spectra of a HC-PLA micro-
sphere show periodic PL lines, attributed to WGMs (Fig. 5b).
As shown in Fig. S4,† these resonant peaks are assigned to
transverse electric (TE) and transverse magnetic (TM) modes.
The free spectral range (FSR) of four microspheres with
different sizes is plotted in Fig. S5.† The FSR is measured
using the following equation:

FSR ¼ ðλ 2=nπÞ � ð1=dÞ;

which indicates that the PLA microspheres certainly act as an
optical resonator.64 The clear WGM peaks in the PL spectra are
maintained upon thermal heating of the microspheres up to
160 °C (see Fig. S6a† for more details). By further heating at

170 °C, these WGM PL peaks disappear due to the melting of
HC-PLA that causes the deformation of the microspherical
morphology.

The optical resonator properties are observed for the micro-
spheres of SC-PLA with L/D ratios of 9/1 and 7/3 (Fig. 5c and d,
respectively). Intriguingly, the thermal stability of the microre-
sonator is preserved upon thermal heating up to 230 °C. The
WGM PL peaks disappear by heating the microspheres at
240 °C (see Fig. S6b and c† for more details). In Fig. 5e, temp-
erature dependencies of the WGM peak intensity, normalized
by the PL intensity of the background unconfined PL, are
plotted. It is obvious that the thermal stability of the optical
resonator is higher by ∼70 °C for the microspheres of SC-PLA
with L/D ratios of 9/1 and 7/3 than that of the HC-PLA micro-
spheres (L/D = 10/0). It is worth noting that the phase tran-
sition of PLA affects the shape of PL spectra, possibly caused
by the change in the aggregation manner of ZnTPP in the PLA
microspheres. We confirm that the ratio of the PL intensities
at 603 and 643 nm (I603/I643) from a cast film of the PLA micro-
spheres varies at the phase transition temperature (Fig. S7†).

To gain insight into the resonant properties in more detail,
the Q factor, defined as the wavelength of the resonant peaks
divided by their full width at half maximum (FWHM), is evalu-
ated.65 Fig. 5f plots the Q factor of the PL peaks versus the
heating temperature. The Q factor gradually increases upon
heating, possibly due to the improvement of the surface rough-
ness. However, phase transition causes the loss of the Q factor
caused by the scattering of the confined light by the crystalline
domains. For example, the Q factor of the HC-PLA microsphere
(L/D = 10/0) dropped from 500 to 360 at 110 °C, where phase
transition occurs from glass to the crystalline state. A further
drop in the Q factor occurs at 170 °C, where melting of the
HC-PLA microsphere takes place with the collapse of its micro-
spherical morphology. In the case of SC-PLA with L/D ratios of
9/1 and 7/3, the Q factor drops once at ∼200 °C, where HC-PLA
crystallites melt and SC-PLA crystallites form, and finally drops
off at 240 °C, at which the SC-PLA completely melts.

For comparison, SC-PLA microspheres with L/D ratios of 5/
5, 3/7, and 1/9 display quite poor WGM PL (Fig. S8†), because
the surface morphology of the microspheres is rather rough
with the RMS roughness greater than 6 (Fig. 2). The light con-
finement is sensitive to the surface roughness, where the
rough surface causes a scattering of the confined light, leading
to the loss of the optical resonator properties.65 Similarly,
HC-PLA microspheres from PDLA (L/D = 0/10) do not show
WGM PL due to the ill-defined spherical morphology
(Fig. S8†).

In conclusion, we successfully prepared thermally tolerant
optical resonators from stereocomplex crystallites of PLA
formed by blending PLLA and PDLA through the oil-in-water
miniemulsion method. The SC-PLA microspheres exhibit
higher thermal stability in comparison with the HC-PLA micro-
spheres, where the melting temperature of SC-PLA is more
than 50 °C higher than that of HC-PLA. The relative degree of
crystallinity of SC-PLA is maximum when the content of PLLA
and PDLA is 5/5, as evaluated by PXRD studies. The tempera-

Fig. 5 (a) Schematic representation of the light confinement and WGM
PL. (b–d) PL spectra of a single PLA microsphere after being annealed
for 2 s upon photoexcitation at 405 nm with a cw laser. (e) Plots of the
normalized PL intensity of the microspheres with L/D = 10/0, 9/1, and 7/
3 versus annealing temperature. (f ) Plots of the Q factor of the micro-
spheres with L/D = 10/0, 9/1, and 7/3 versus annealing temperature.
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ture-dependent PXRD results clearly show that PLAs maintain
the stereocomplex structure even when the temperature
reaches 220 °C. The temperature-dependent µ-PL spectra show
that the SC-PLA resonators exhibit higher thermal tolerance in
comparison with the HC-PLA resonators, where the WGM reso-
nance properties of SC-PLA are preserved even at 230 °C. This
work demonstrates a powerful strategy of stereocomplex for-
mation toward thermally tolerant bio-related materials for
optical applications.
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