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Machine-learning (ML) methods, such as artificial neural networks (ANNs), bring the data-driven design of

chemical reactions within reach. Simultaneously with the verification of the absence of any bias in the

machine learning model as compared to the microkinetic data, interpretation techniques such as

permutation importance, SHAP values and partial dependence plots allow for a more systematic (model

agnostic) analysis of these data. In the present work, this methodology is demonstrated for Fischer–Tropsch

synthesis (FTS) on a cobalt catalyst, with methane yield as the single dominant output, as a case study. For

the purpose of this case study, the dataset required for training the ANN model is synthetically generated

using a single-event microkinetic (SEMK) model. With a number of 3 hidden layers with 20 nodes, the ANN

model is able to adequately reproduce the SEMK results. The relative ranking of the process variables, as

learnt by the ANN model, is identified using interpretation techniques, with the methane yield being most

dependent on the temperature, followed by the space-time and syngas molar inlet ratio, in the investigated

range of operating conditions. This is in line with the physicochemical understanding from SEMK. A

systematic approach for analysing microkinetic data, generally analysed on a case-specific basis, is thus

developed by combining more widely used interpretation techniques in data science with the ANN.

1 Introduction

With the increase in computational capacity and the ability to
handle large volumes of data, high-throughput experimental
trials, etc., there has been an increased interest in applying
machine learning (ML) models to chemical engineering
problems. ML methods are rapidly gaining popularity for
modelling complex nonlinear process phenomena in the field
of chemical engineering.1–4 ML is a sub-field of artificial
intelligence, where information from the data is learnt using
algorithms. Usage of different ML methods such as support
vector machine (SVM), random forest and neural networks,
etc. for classification and regression is being extensively
investigated in different areas of chemical engineering such
as electro-synthesis,5 biomass gasification,6 catalysis,7,8

molecular drug discovery,9,10 etc. The data required for
developing ML-based models are obtained from

experiments4,11 or synthetically generated using
computational models.12 These studies point at the
increasing interest in ML-based models in different sub-fields
in chemical engineering.

Among the different techniques in machine learning
mentioned above, artificial neural network (ANN) is one of
the powerful predictive tools, which works on the principle
based on the universal approximation theorem.13 ANN is
used for both regression and classification. ANN relies on the
collective working of the building units, i.e. the neurons.14

The functioning of these neurons is inspired by that of
biological ones. Here, relationships or patterns are
established from the dataset between the input and the
output in the training stage, and the ANN model uses this
information in the prediction stage. A neural network is
considered a “black box” model, as it is difficult to interpret
it in a fundamental manner when compared to models such
as linear regression (Fig. 1).

A machine learning algorithm such as ANN predicts the
outcome based on the information learnt from the training
set. The applicability and validity of such a model for a
process are currently based on accuracy measurements such
as the mean square error, mean absolute error, etc. However,
relying on these metrics alone can make them biased towards
certain input features. Any bias in the dataset will be
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reflected in the model obtained from the algorithm. Thus,
trusting the model also demands understanding why a
certain decision is made by the model.

The identification of input features which exhibit the most
pronounced contribution towards the target output
prediction in the learning process of ANN is not
straightforward. There is always a trade-off between
prediction accuracy and interpretability of a model (see
Fig. 1). For a “simple” model such as linear regression, the
weights or coefficients associated with the independent
features provide a direct quantitative measure for their
importance in the model. As the model complexity increases
from linear/logistic regression to neural networks, the
prediction accuracy increases, but the interpretability
decreases.15 To address this issue, with the recent advances
in interpretation techniques,16 the interpretability of complex
models such as ANN is being extensively investigated.

The most prominent interpretation techniques reported in
the literature are permutation importance,17 SHAP values18–20

and partial dependence plots.21 The validity and explanation
quality of these techniques depend on the situations in
which they are used. Insights gained from different
interpretation techniques allow revealing the relative impact
of each input feature on the output. The combined effects
and correlation of different input features may also be
identified. The contribution of a particular feature in a
multidimensional dataset can then be evaluated based on
process expertise.22 At present, these interpretation
techniques, which are model agnostic in nature, are mostly
used in medicine,23–26 finance,27,28 etc. However, the
application of these techniques in the field of chemical
modelling is currently under-explored.22 These techniques
along with ML models can help in unravelling the hidden
trends in kinetic data obtained from different chemical
reactions and for their systematic analysis.

Fischer–Tropsch synthesis (FTS) is one such interesting
chemical reaction where these techniques can be useful. FTS is
widely investigated from synthesis gas that can be obtained
from a wide variety of origins to synthesize hydrocarbons.29,30

The composition of non-petroleum-based hydrocarbons
obtained via FTS depends upon a number of process features,
such as the feedstock (syngas ratios obtained after gasification)
nature, the catalyst used, and the process operating conditions.
The FTS reaction has been widely investigated
experimentally29,30 via density functional theory31 and by
different kinetic models.32,33 A single-event microkinetic model
is one such versatile, comprehensive kinetic model developed
to deal with complex mixtures34 in reactions such as
hydrocracking,35 catalytic cracking,36 Fischer–Tropsch
synthesis,37,38 etc. The analysis of the kinetic data obtained
with such models is usually carried out on a case-specific basis,
demanding expertise in working with these models. In the
recent decade, literature has also been reported on the use of
ANN-based models for modelling the FTS.39–41 However, these
studies are limited to the building of the neural network to
predict the output components with limited focus on how each
input feature plays a role in the prediction process.

In this work, a case study on the interpretation of a “black-
box” ANN regression model developed from the microkinetic
data corresponding to Fischer–Tropsch synthesis (FTS) is
assessed with the help of different interpretation techniques
mentioned above. This opens up the possibility of more
systematic analysis and interpretation of kinetic data with the
help of methods currently used widely in data science. The
interpretability of ML models such as ANN can also build
confidence in them to accurately predict results and draw
chemical trends/insights. We could thus use them as an
alternative to (micro)kinetic modeling and even to analyse the
behavior of existing (micro)kinetic models using ‘non-classical’
contribution analysis techniques.

2 Procedures
2.1 Theoretical background

An ANN is an efficient data-driven model which can learn
the hidden patterns in a dataset and transform input data
into output.14

As shown in Fig. 2, an ANN is composed of components
called neurons (colored circles). A set of neurons is
subsequently stacked to form layers, which are classified as:

• Input layer: contains the input features, i.e., for the FTS
process: temperature, space-time and syngas molar inlet ratio.

• Hidden layer(s): the layer(s) of neurons between the
input and the output layers.

• Output layer: the layer of neurons that corresponds to
the (predicted) output of the model, i.e. methane yield for the
current FTS process.

The output is generated by assigning weights to the
neurons and applying activation functions to the input,
output and hidden layers. The connections between the
neurons have a weight that does a linear transformation on

Fig. 1 Graphical representation of variation in interpretability of a
model with change in accuracy as reported in the literature.15 The
interpretability of a model decreases with increase in accuracy and
complexity of a model.
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the input value, while the activation function does a non-
linear transformation. Although there are different types of
activation functions, the most conventional ones are the
sigmoid and the rectified linear unit (ReLU) for the input
(and output) and the hidden layers, respectively.14 The
sigmoid activation function ensures that the network
captures the non-linearity of the input–output relation, while
the ReLU activation function in the hidden layers effectively
avoids the vanishing gradient problem.42

The output values at each iteration, also denoted as epoch
in the field, are obtained after the input information is fed via
a feed-forward propagation. A back-propagation algorithm is
used to train the neural network by recalculating the revised
weights based on the error obtained from the output value.

2.2 Artificial neural network construction and analysis

An experimentally validated, single-event microkinetic model
developed for the cobalt catalyst based FTS process37 with a

single dominant output, methane, is incorporated into a 1-D
pseudo-homogeneous plug flow reactor model and is used to in
silico generate kinetic data to develop an ANN model. Insights
on the decision-making process of the ANN model are obtained
with the help of different interpretation techniques such as
permutation importance, SHAP value and partial dependence
plots. The steps involved in the development of the ANN model
and the explanation (interpretation) of results are shown in
Fig. 3. The important steps involved in the process are:

• Step 1: generation of datasets
A dataset comprising 120 data points is generated under

the following operating conditions: space-time 9–22 kgcat s
molCO

−1, syngas molar inlet ratio 3–10 mol mol−1,
temperature 483–503 K, and a total pressure of 1.85 bar, as
reported by Van Belleghem et al.37 The catalyst and operating
conditions in the cited work37 are such that a single
dominant output, i.e. methane, is produced. Detailed
physicochemical insights on this data from a kinetic model's
perspective are discussed in the cited work.37

Fig. 2 Schematic representation of an ANN consisting of 3 input features in the input layer, 3 hidden layers with 10 neurons in each layer and 1
output feature in the output layer. The input features in the representation are temperature, space-time (W/FCO) and syngas molar inlet ratio (H2/
CO) and the output is methane yield (YCH4

).

Fig. 3 Schematic representation of the different steps involved in ANN model development and interpretation of the model. Data from SEMK
simulations (green box) are used for training the ANN model (grey box) which is then analysed using different interpretation techniques (yellow box).
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The dataset is split into training and validation datasets
with 75 and 45 data points, respectively. The input features
used for training the network are space-time (W/FCO), syngas
molar inlet ratio (H2/CO) and temperature, with methane yield
(YCH4

) as output. As the dataset is composed of input features
with different units, standardization is performed, where each
feature is centered and scaled before training the ANN:

z ¼ i − μ
σ

(1)

where i is the input feature, μ and σ are the mean and standard
deviation of the input feature, respectively, in the training
dataset, and z is the transformed input feature.

The validation dataset is then also transformed using μ and
σ obtained for the training dataset. Once the scaled datasets
have been created, the ANN is trained in the next step.

• Step 2: training and prediction
The scaled input features of the training dataset are fed

into the neural network and the model is trained as follows:
1. The weights associated with the neurons are

initialized.43

2. Information is shared from one layer to the other to
calculate a prediction ŷi via a feed-forward propagation.

3. After the feed-forward propagation step, a loss function
is calculated which, in this work, equals the mean square
error, MSE (see eqn (2)), based on the methane yield.

MSE ¼
Xn
j¼1

ŷj − yj
� �2

n
(2)

where n represents the total number of observations, ŷj is the
ANN predicted output and yj is the observed output.

4. The loss function, MSE, is minimised via a back-
propagation step. In this step the gradients of the loss
function are calculated, and the error is used to update the
new weights associated with the neurons.

5. The feed-forward propagation and the back-propagation
steps are repeated iteratively (epochs) until the global
minimum of the loss function is obtained. In this work, an
Adam optimizer44 is used for reaching the global minimum.

6. The final weights associated with the neurons in the
network are then used for making predictions using the
ANN model.

Once the model is trained, the predictions are made on
the so-called validation dataset.

• Step 3: interpretability of the learning process of ANN
The interpretation of the performance of the ANN model

developed for FTS is analysed using model agnostic
interpretation techniques. The analysis is carried out by
investigating the training set using different interpretation
techniques such as permutation importance, SHAP value and
partial dependence (PD) plots. With the help of permutation
importance, the importance of each feature across the entire
dataset is obtained. Next, with the help of SHAP values the
relevance of each feature in each set of operating conditions
is obtained. The combined impact of different input features

as interpreted by the developed ANN model is then discussed
with the help of partial dependence plots. The steps involved
in the calculation of each of these interpretation techniques
is further explained in detail below.

2.2.1 Permutation importance. The features to which the
ANN algorithm has assigned higher weighting or prominence
in its prediction are identified via determining the
permutation importance.17,45 The importance of each input
feature can be different for the yield of each output
component. Thus, identifying the input feature importance
can assist in achieving the targeted enhancement of desired
output products. The permutation importance of the ANN
model for FTS is calculated as follows:

1. A neural network model is made using the training
dataset containing different input features, and the model
error‡ for the training dataset is calculated.

2. To calculate the permutation importance of an input
feature (for example, space-time, W/FCO), a new dataset is
created by shuffling the rows of that feature in the training
dataset (Fig. 4).

3. A prediction for this new dataset is made using the model
developed in step 1 above, and the model error is calculated.

4. The permutation importance of the feature is then
calculated as the difference of model errors obtained in step
3 and step 1 above.

5. The above steps are repeated for the other input
features (i.e. for temperature and syngas molar inlet ratio,
H2/CO) to obtain their permutation importance.

The feature resulting in the biggest difference in model
error contributes the most to the model prediction, while the
feature with the smallest difference contributes the least.

2.2.2 SHAP values. Unlike permutation importance, which
represents the feature importance across the entire dataset,
SHAP values (Shapley values) are meant for a more local
interpretation by pinpointing the contribution of each feature
in each set of operating conditions. These values are used to
explain the complex decision making of an ANN model with
the help of simplified linear models. A complex ANN model
that identifies non-linear patterns in the data is developed
using the training dataset. Multiple linear, more easily
interpretable models (also see Fig. 5), which describe
individual data points are then built to interpret the complex
ANN model.

Instead of trying to explain the model in all its complexity,
SHAP values focus on how a complex model such as ANN
behaves around a single data point. By considering the
impact of features on individual data points and then
aggregating them, the interplay of combinations of features
can be revealed. The SHAP value gives the importance of a
feature by comparing the model output obtained with and
without that feature. The SHAP value for each feature is
calculated as follows:

‡ The model error is the difference between the actual output and the
prediction.
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1. To calculate the SHAP value of a feature i, create all
possible subsets of features (SS) from features F, i.e. SS ⊂ F, the
feature i being excluded from F. After creating the subsets:

(a) Train a model MĲSS1∪i) including the feature i and
another model MĲSS1) without it, where SS1 is one of the
subsets of input features.

(b) Predict the output YMĲSS1∪i) with the model MĲSS1∪i),
using input features in SS1, and the feature i.

(c) Predict the output YMĲSS1) with the model MĲSS1), using
input features in SS1, and calculate the difference from the
model prediction including the feature i obtained in step 3.

2. Step 1 is repeated for all possible subsets of input features
(without the feature i), i.e. SS1, SS2, SS3, etc., as the effect of
excluding the feature i also depends on other input features.

3. The SHAP value (Shapley score) for feature i, ϕi, is then
calculated as:

ϕi ¼
X
SSi⊂ F

SSnj j! Fnj j − SSnj j − 1ð Þ!
Fnj j! YM SS1∪ið Þ −YM SS1ð Þ

� �
(3)

where SSn represents the number of features in the subset
and Fn represents the total number of features.

4. Repeat the above steps for all other features to calculate
their SHAP values.

The above calculation can be carried out using the SHAP
library,46 which calculates SHAP values significantly faster than
calculating them via all possible combinations of features.

2.2.3 Partial dependence plot. Partial dependence (PD)
plots represent the marginal effect of (a combination of)
selected input features on the output of a machine learning
model, such as ANN. Visualizing the impact of higher-
dimensional feature space on output prediction is difficult
when compared to 1D and 2D visualizations. This is
overcome by visualizing the partial dependence of the output
on selected small subsets of the input features. Though a
collection of these plots for different input features can be
made, it does not provide a comprehensive depiction.
However, PD plots are extremely useful for preliminary
identification of trends, especially when the input features
have lower-order interactions and when the features not
included in the plot have less impact on the output. The
steps involved in the calculations for visualizing using PD
plots are mathematically intensive and are discussed in detail
in the cited work.47 The Python files used to develop the ANN
and for their interpretation are provided in the ESI.†

3 Results and discussion
3.1 Neural network identification and comparison with SEMK

To identify the best performing network, multiple ANN
configurations with a different number of neurons and
hidden layers were trained using the dataset generated via
SEMK simulations. As typically done, sigmoid activation
functions are used in the input and output layer, whereas

Fig. 4 Graphical representation of the permutation importance principle. The model error is calculated using the ANN prediction without
permutation (left) and the ANN prediction with permutation (right) of input features such as W/FCO.

Fig. 5 Graphical representation of how a SHAP model assists in the
interpretation of complex ANN models with the help of linear models.
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ReLU activation functions are used in the hidden layers,
owing to their better performance compared to the other
activation function combinations.14

The number of hidden layers and neurons in each hidden
layer are systematically varied to obtain the best performing
model. This is assessed via the parity plot and R2 value. In
Fig. 6(a), the variation in the R2 value of the methane yield
for the validation dataset is presented as a function of the
number of hidden layers and the number of neurons within
a hidden layer. A maximum R2 value of 0.99 is obtained using
a neural network composed of 3 hidden layers with 20
neurons in each layer. With an increase in the number of
neurons, for a fixed number of hidden layers, the R2 value
initially increases and attains an optimum value, depending
on the number of hidden layers. With a further increase in
the number of neurons, the R2 value as calculated against
the validation dataset decreases, indicating an over-fitting.

The neural network configuration that yields the highest R2

value is chosen as the optimal one. Thus, all the analyses
reported in this work are carried out using a neural network
with 3 hidden layers each containing 20 neurons. This
information is more explicit from the parity diagram (Fig. 6(b).
From Fig. 7 it is observed that for the optimal neural network
configuration, the mean square value of output yield (MSE) for
both training and validation datasets converges to a stable
value (indicating best learning) after 80 epochs.

To show the predictive capability of the ANN, the methane
yield (YCH4

) obtained with ANN and SEMK simulations are
compared in Fig. 8, in which the methane yield is plotted as

a function of space-time, at a syngas molar inlet ratio of 10
mol mol−1. It is observed that the methane yield increases
with both space-time and temperature. As indicated by the
slope of the lines (constant temperature) in Fig. 8, the
influence of the space-time on the methane yield increases
with temperature. The methane yield obtained at the highest
temperature and space-time for a syngas molar inlet ratio of
10 mol mol−1 is about triple that at the lowest temperature
and space-time. As the results obtained from SEMK
simulations and ANN predictions show a similar trend, it is
concluded that the developed ANN model accurately predicts

Fig. 6 R2 value (a) and parity diagrams (b) of methane yield obtained with SEMK simulations and ANN predictions when using the validation
dataset. Different ANN models with 1–3 hidden layers and 10–30 neurons in each layer are shown.

Fig. 7 Convergence of the mean square error (MSE) of the methane
yield, YCH4

obtained with the ANN model consisting of 3 hidden layers
with 20 neurons in each layer. The MSE for the ANN model converges
after 80 epochs (iterations).
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the output generated by the SEMK model in terms of the
methane yield.

3.2 Interpretation of the ANN model

3.2.1 Global interpretation using permutation importance.
The feature resulting in the biggest difference in model error
contributes overall the most to the model predictions, while
the feature with the smallest difference contributes the least.
Within the investigated range of operating conditions, it can be
observed from Fig. 9 that the most prominent feature in the
ANN model is the temperature. However, no confirmation on
the prominence of space-time over syngas molar inlet ratio or

vice versa is obtained. The relative feature importance of
temperature in the investigated training dataset is
approximately 5 times that of both the space-time and the
syngas molar inlet ratio. As discussed in sections 2.2.1 and
2.2.2, though the information on the global influence of a
feature is obtained, the permutation importance analysis does
not yield any information on the impact of the value of each
feature with respect to the other features for a specific set of
inputs (i.e. locally). For example, no information can be
extracted on whether the temperature has the same importance
at a different space-time and a syngas molar inlet ratio.

3.2.2 Local interpretation of the model using SHAP value.
The SHAP values obtained for each input feature considered
in the ANN model of the FTS process are shown in Fig. 10.
These values represent the local contribution of each feature
in each set of operating conditions. The features are arranged
in the order of their importance in the FTS process for the
range of operating conditions in the training dataset. The
feature with the highest importance is the one with the
widest range of SHAP values obtained for that feature. Also,
based on the SHAP values, the temperature is identified as
the most influential feature, followed by space-time and
syngas molar inlet ratio. The average yield in the training
dataset, indicated by a SHAP value of zero, serves as the base
value for the analysis. The relative contribution is calculated
with respect to this base value. Each dot (•) indicates the
contribution of that feature towards the methane yield. The
coloring used for the dots are indicative of the value of the
respective feature, with blue representing lower values, while
red represents higher values. From Fig. 10, it is observed that
the impact of each feature is monotonous in nature and thus
an increase in each feature value leads to an increase in yield.
As the temperature, space-time or syngas molar inlet ratio
increases from a low value (blue dots) to a high value (red
dots), the contribution of that input feature to the methane
yield, which is initially low with respect to the base value
(represented by a negative SHAP value), increases. Thus, an
increase in the input feature results in a positive contribution
(represented by a positive SHAP value) to the methane yield.
The dispersion of the data points with comparable feature
values (indicated by the spread of same-coloured dots) also

Fig. 8 Comparison of the methane yield, YCH4
obtained by SEMK

simulations (•) and that with the ANN model (−) as a function of space-
time (W/FCO) for varying temperatures at a syngas molar inlet ratio (H2/
CO) of 10 mol mol−1. The ANN model consists of 3 hidden layers with
20 neurons in each layer. The 95% confidence limit for the yield
obtained with different initializations of the ANN model is represented
by the shaded region around the mean ANN prediction (represented
by solid line).

Fig. 9 Relative importance of each input feature on a global level (i.e.
averaged over the entire range of operating conditions in the training
dataset). The relative importance is obtained by scaling the results with
that of temperature. The relative importance is calculated using the
Python package, Eli5.48

Fig. 10 Local interpretation of importance of each input on the
training dataset. The local feature importance is quantified in terms of
contribution towards yield with respect to the average methane yield
obtained from the entire training dataset. The plot is generated using
the Python package, SHAP.46
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indicates a strong combined influence of features on the
methane yield. These are in line with the results obtained
with experimentally validated SEMK simulations.37

3.2.3 Interpretation of the model using partial dependence
plots. After the preliminary identification of the most
important features, their combined impact is analysed with
the help of partial dependence (PD) plots, thus targeting the
most relevant features. From the analysis on permutation
importance and SHAP values, it is evident that the
importance of the features in the ANN model prediction
(methane yield) follows the order: temperature, space-time
and syngas molar inlet ratio.

The combined impact of two input features on the methane
yield is shown in Fig. 11. The effect of the 3rd feature is
averaged out (by plane averaging the results along the 3rd
feature). The combined influence of space-time and
temperature is considered in Fig. 11(a). The methane yield
increases with an increase of both temperature and space-time.
The increase in yield with temperature is more prominent at a
higher space-time. The maximum methane yield averaged
along the syngas molar inlet ratio (0.11 mol mol−1) is obtained
at the highest temperature and the highest space-time. Though
the yield increases with space-time at a fixed temperature, the
change in yield is less prominent when compared to the
change in methane yield with the change in temperature.
These observations are in line with the SEMK simulation

results reported in Fig. 8. The combined influence of syngas
molar inlet ratio and temperature in Fig. 11(b) also indicates
the monotonous increase in methane yield with temperature. It
is observed that at a lower temperature, the yield is almost
unaffected by the syngas molar inlet ratio, while at a higher
temperature, the effect of the syngas molar inlet ratio becomes
pronounced. From Fig. 11(c), it is observed that at lower space-
time the yield is almost unaffected by the syngas molar inlet
ratio. However, with an increase in space-time, the dependence
of the methane yield on syngas molar inlet ratio increases.
From the PD plot analysis it is, however, observed that the
maximum yield observed in Fig. 11(a)–(c) varies, depending on
the feature importance of the features, whose effect is averaged
out in each plot. Although the influence of each feature on the
methane yield is determined using the PD plots, it however
remains important to check the impact of the averaged feature
to confirm the results. This observation is consistent with the
nature of these plots, as discussed in section 2.2.3.

4 Conclusions and perspectives

A machine learning model based on ANN for cobalt-catalysed
Fischer–Tropsch synthesis with a single dominant output,
methane, is developed using a synthetic dataset generated via
a single-event microkinetic (SEMK) model. The optimal ANN
model for the FTS process in the investigated range of

Fig. 11 Marginal effect of 2 input features simultaneously considered on the methane yield. The effect of the 3rd feature is averaged out in each
subplot, i.e. the results are plane-averaged along the 3rd feature. Effect of space-time (W/FCO) and temperature (a), temperature and syngas molar
inlet ratio (H2/CO) (b), and space-time and syngas molar inlet ratio (c) in the range of investigated operating conditions. The input features are
standardized for better visualization using the mean and standard deviation of each input feature in the training dataset: temperature (492.8 ± 7.07
K), W/FCO (17 ± 3.5 kgcat s molCO

−1), H2/CO (7.4 ± 1.8 mol mol−1). The PD plots are visualized using the Python package, pdpbox.49
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operating conditions consists of 3 hidden layers with 20
neurons in each layer. This optimal network has an R2 value
of 0.99. After confirming that the methane yield obtained
with the ANN model represents the one obtained with SEMK
simulations, a systematic analysis of the kinetic data is
carried out using different interpretation techniques.

For the Fischer–Tropsch process, in the range of
investigated operating conditions, analysis of the ANN model
using interpretation techniques shows that the prominent
features follow the order temperature > space-time > syngas
molar inlet ratio. The global importance of temperature is
roughly 5 times that of space-time and syngas molar inlet ratio.
The investigation of the local contribution of each feature
(SHAP value) shows a monotonous increase in methane yield
with increasing feature values. The coupled impact of input
features on the methane yield is observed in the partial
dependence plots, with the maximum yield (averaged along the
syngas molar inlet ratio) of 0.11 mol mol−1 obtained at the
highest temperature and space-time. It is confirmed that
analysis of kinetic data can be carried out with the help of an
interpretable ANN model. A deeper understanding of the FTS
reaction mechanism with the help of these techniques can be
achieved using a multi-stage ANN, with process variables as the
initial input to predict intermediate outputs such as surface
coverages. These coverages can then be fed as an input into the
next stage of ANN to predict the performances.

The current work thus shows that more widely applied
techniques in data science can now be applied for systematic
analysis and interpretation of kinetic data. Similar analysis
using experimental data can also help experimenters in their
preliminary analysis to detect hidden trends in the data and
thus to identify important features. Extensive studies using
the different techniques used in this work, for different
chemical processes, will also help to identify the most
important features. The understanding gained on the
decision making by “black-box” ML models such as ANN also
enhances the confidence in building hybrid “kinetic ML”
models to explain complex chemical processes.

Nomenclature

FCO Carbon monoxide molar flow rate at the reactor
inlet, mol s−1

H2/CO Syngas molar inlet ratio, mol mol−1

W/FCO Space-time, kgcat s molCO
−1

YCH4
Methane yield, mol mol−1

i Feature of interest
ANN Artificial neural network
F All input features except feature i of interest
FTS Fischer–Tropsch synthesis
ML Machine learning
MSE Mean square error
SEMK Single-event microkinetics
SS Subset of input features
T Temperature, K
W Catalyst mass, kg
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