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A data-driven approach to predicting band
gap, excitation, and emission energies for
Eu2+-activated phosphors†
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Satendra Pal Singh,a Woon Bae Park*b and Kee-Sun Sohn *a

The prediction of excitation band edge wavelength (EBEW) and peak emission wavelength (PEW) for

Eu2+-activated phosphors is intricate in practice, although a theoretical interpretation has been well

established. A data-driven approach could be of great help for EBEW and PEW prediction. We collected

91 Eu2+-activated phosphors, the host structures of which exhibit a single activator site and the EBEW and

PEW of which are available at the critical activator concentration. We extracted 29 descriptors (input fea-

tures) that implicate the elemental and structural traits of phosphor hosts, and set up an integrated

machine-learning (ML) platform consisting of 18 ML algorithms that allowed prediction of the EBEW and

PEW as well as the DFT-calculated band gap (Eg). The acquired dataset involving 91 phosphors was insuffi-

cient for the 29-input-feature problem and the real-world data collected from the literature have a so-

called dirty nature due to inaccurate, unstandardized experiments. Despite an unavoidable paucity of data

and the dirty-data problems of real-world data-based ML implementation, we obtained acceptable

holdout dataset test results for PEW predications such as R2 > 0.6, MSE < 0.02, and test_R2/training_R2 >

0.77 for four ML algorithms. The EBEW and Eg predictions returned slightly better test results than these

PEW examples.

Introduction

Phosphors play a crucial role in light-emitting diode (LED)
applications, and many Ce3+, Eu2+, and Mn4+-activated novel
LED phosphors have been consistently discovered.1–10 Data-
driven approaches have recently been mainstays in the field of
phosphor research to facilitate phosphor discovery.11–20 The
first data-driven approach11 to inorganic phosphors was
initiated in 2015 by the present authors, wherein confirmatory
factor analysis was employed to predict the peak emission
wavelength for Eu2+-activated phosphors. Thereafter, other
promising data-driven approaches have been reported.12–16 A
monumental ML-based phosphor discovery was reported by
Brgoch et al.,16 wherein a ML technique (support vector
machine) in conjunction with a materials project database17

and DFT calculations was used for the Debye temperature pre-
diction of 2071 phosphor hosts, which eventually led to the
discovery of a brilliant novel phosphor, NaBaB9O15:Eu

2+, which
is the first example of the use of DFT calculations and ML
algorithms for data-driven phosphor discovery. Brgoch et al.,18

thereafter, improved the ML portion by introducing an XG
boost algorithm. In the meantime, a series of well-organized
data-driven phosphor predictions have also been well estab-
lished by Ong et al.12–15 Brik et al.19 very recently reported the
use of a semi-data-driven approach using a basic linear
regression along with an appropriate knowledge-based feature
selection, and revealed a relationship between the structural
properties of the hosts and the optical properties of the Eu2+

dopant. In addition to phosphor research, there have been
many more advances in data-driven materials discovery
approaches in other inorganic science areas.21–24

The ML approach to phosphor research has practical chal-
lenges such as real-world data paucity, scattered data distri-
bution due to inconsistent experimental settings (the dirty
nature of real-world data), feature (descriptor) selection com-
plexity, and a difficulty in relevant algorithm selection. There
is a serious lack of real-world data for inorganic phosphors,
and standardized, labeled data acquisition is far from com-
plete. In such situations, domain knowledge allows the ML
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approach to achieve a more reasonable level of data acqui-
sition. In this regard, specific knowledge of phosphor physics
and chemistry was employed for the data acquisition, and this
differs from the blind gathering of irrelevant data. For
instance, the phosphor data used for the present ML approach
was confined to Eu2+-activated phosphors with a single activa-
tor site and further limited to the excitation band edge wave-
length (EBEW) and peak emission wavelength (PEW) data
measured at a critical Eu2+ concentration that must be
obtained from concentration-quenching data (= phosphor per-
formance data with respect to the activator concentration).
Notwithstanding the lack of real data for the band gap of the
host (Eg), we collected the appropriate Eg values by employing
density functional theory (DFT) calculations and the materials
project database.17 As a result, only 91 phosphors have been
collected. As far as we could ascertain, these entries are the
only cases, as the list was narrowed down from more than
10 000 papers dealing with Eu2+-activated phosphors.

Brgoch et al.16 sorted out the data paucity problem by
employing a massive amount of DFT-generated data for in-
organic compounds (including non-phosphor materials) resid-
ing in a well-established database as training data and further
expanding the fully trained ML model to a small phosphor
dataset. This could be considered a brilliant case of transfer
learning, which currently is a booming trend in applications of
ML.25 In addition, a successful transfer-learning example26 was
reported based on DFT-based formation energy data collected
from an open quantum materials database (OQMD).27 However,
we aimed to develop a small ML model by focusing only on a
very specific phosphor group in a narrow range, viz., phosphors
with a single-activator site and those with EBEW and PEW data
gleaned from the concentration-quenching data. No previous
dataset has included EBEW and PEW, although a massive
amount of collected data exists for DFT-calculated Debye temp-
erature, formation energy, band gap, elastic constant, dielectric
constant, and many other thermodynamic variables,17,27,28 all
of which seem impossible to be directly connected to the EBEW
and PEW of phosphors. In addition to the problems of a
paucity of real-world data and the intractability of transfer learn-
ing, the data acquired thus far has a so-called ‘dirty nature’ due
to different experimental setups and to human intervention
during production, which leads to data that is non-identical
and independently distributed (non-IID).29

Adequate selection of the descriptors that refer to the
elemental, structural, physical, and chemical nature of phos-
phor hosts is a key issue for successful ML modeling for Eg,
EBEW, and PEW prediction. The local structure of inorganic
compounds has been expressed using various
descriptors.12–16,30–33 Ong et al. has used systematic math to
succinctly summarize logic-based descriptors,12–15 and Brgoch
et al.16 have proposed 150 descriptors for their ML modeling.
Takemura et al.34 have very recently reported a brilliant metric
for the dissimilarity measure of local structure, which is based
on the Wasserstein distance. In addition, Xie and Grossman32

have recently used graph theory to devise a brilliant descriptor
for the local structures of inorganic materials. The number of

descriptors should be closely associated with the size of the
training dataset. Since our training dataset includes only 91
phosphors, the number of descriptors had to be relative to this
small dataset size. Accordingly, we had to reduce the number
of descriptors and finally pinpointed the 29 descriptors repre-
senting elemental, structural, physical, and chemical infor-
mation. Principal-component analysis (PCA), Pearson-, and
Spearman-correlation analyses were performed for the dataset,
which validated the suggested descriptor selection.11

Nonetheless, 29 descriptors are still too many when consider-
ing the data paucity (91 samples only).

Selection of the ML algorithm should also be relative to the
size of the problem as well as to the size of the dataset. The
number of descriptors (input features) and target variables
(output features) can be used to estimate the size of the
problem. For our relatively small dataset that includes 91 phos-
phors, we had 29 input features and an output feature. Under
these circumstances, regularization techniques should defi-
nitely be introduced. First, we employed regularized linear
regression algorithms such as ridge,35 Lasso,36 elastic net,37

kernel ridge,38 least-angle regression (LARS) Lasso,39 Bayesian
ridge,40 and automatic relevance determination (ARD)41

regressions. We also adopted ensemble algorithms such as
random forest,42 Ada boost,43 gradient boost,44 and XG
boost.45 Furthermore, k-nearest neighbor (KNN),46 support
vector machine (SVM),47 Gaussian process regression (GPR),48

and partial least square (PLS)49 were also employed. In
addition, a typical artificial neural network (ANN)50 along with
an ordinary linear regression were adopted as baseline
methods. Rather than a single or, at best, a few regression
algorithms in a conventional ML approach, almost all possible
regression algorithms were introduced in the present investi-
gation. There have been reported similar approaches using
several ML algorithms simultaneously for a single problem in
some other materials research society, e.g., metallic alloys.51–54

We refer to this sort of approach as an ‘integrated ML plat-
form’, which can be recommended for phosphor researchers
who suffer from real-world data paucity problems.

Experimental (computational details)
ML model selection

We introduced 18 ML algorithms in three categories. The first
category includes regularization-based linear regressions such
as ridge regression, least absolute shrinkage, and selection
operator (Lasso) regression, least-angle regression (LARS),
elastic net regression (ENR), kernel ridge regression (KRR),
Bayesian ridge regression (BRR), and Bayesian automatic rele-
vance determination (ARD). L2 (ridge) and L1 (Lasso) regulariz-
ations were preferably adopted, and other supplementary
methodologies such as LARS, KRR, BRR, and ARD were also
incorporated. The LARS algorithm exploits the special struc-
ture of the Lasso problem, and provides an efficient way to
simultaneously compute the solutions for all values of
weights. Several kernels such as linear, polynomial, radial
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basis function (RBF), sigmoid, and matern kernels were incor-
porated in the KRR (and also in SVR) to account for the non-
linearity. The Bayesian approach was introduced in the BRR
and ARD (and also in GPR) so that the final prediction was dis-
tributive rather than deterministic in these cases. The predic-
tion is made with a certain mean and variance, and the same
was true for the fitted parameters (= weights).

The second category consists of ensemble algorithms,
which create a final model based on a collection of individual
models. The predictability of these individual models was
weak and could have likely led to over-fitting, but combining
many such weak models in an ensemble led to a much
improved prediction. We employed several tree ensemble
methods such as random forest (RF), adaptive (Ada) boost, gra-
dient boost, and extreme gradient (XG) boost regressions. The
results from two more boost algorithms are not presented here
since no conspicuous improvement was detected. There are
two representative model implementations in an ensemble.
The bagging for use in RF treats each model independently,
and the boosting from Ada, gradient, and XG boost algorithms
sequentially treats each model by putting more weight on the
data and on features involving the wrong predictions and high
rates of error. The base estimator (each weak model) from a
boosted ensemble is a decision tree with a certain depth
according to the chosen algorithm (e.g., Ada boost only uses
stumps and not trees).

We also incorporated some other well-known regression
algorithms such as support vector machine regression (SVR),
k-nearest neighbors (KNN), partial least square (PLS), and
Gaussian process regression (GPR). More interestingly, the
ANN was also employed for the PEW prediction despite the
extreme paucity of data, which led to an extreme amount of
over-fitting. SVR had been widely used and tuned for versatility
to sort out many problems before deep learning was used. The
use of kernels is essential in SVR and an RBF kernel was
selected from the hyper-parameter optimization process in the
present SVR implementation. KNN is the simplest ML algor-
ithm on earth, but the ad hoc determination of appropriate k
values is essential. PLS is a traditional regression method that
is even applicable for a problem with fewer data points than
the number of input features, which is a situation very similar
to ours. Our problem was ameliorated, however, by a number
of data points (91) that was higher than the number of input
features (29). GPR, so-called kriging, has recently gained popu-
larity and is often used as a surrogate function for Bayesian
optimization.55 In particular, it is worthwhile to note KNN and
GPR since these are parameter-free ML algorithms that differ
from most ML algorithms that are concerned with a search for
optimal parameters constituting a mathematical model such
as a linear model and ANN. Fig. 1 succinctly describes the
entire ML platform. All the above-described regression algor-
ithms are available in the Scikit-learn module56 with well-
established default hyper-parameters, none of which were
incorporated here, however. We performed an additional
hyper-parameter optimization process, which will be discussed
in the following subsection.

Training, validation, and test dataset splitting

As mentioned repeatedly, the substantial problem we faced
had to do with the paucity of data, which is why we dealt with
all the regularization-involved ML algorithms. Under such a
situation of insufficient data, special care should be taken
when splitting the data into training, validation, and test data-
sets. Because of the small dataset size, only a simple split into
training and test datasets was not viable. We adopted three
training schemes. First, we adopted a 9-fold cross-
validation57–59 scheme without preparing a holdout test
dataset, and the results of validation were used for the hyper-
parameter determination. Second, we set aside the holdout
test dataset that included 11 phosphors, and an 8-fold cross-
validation was implemented for the rest of the data, which
included 80 phosphors, and we tested the fully trained model
using the holdout test dataset. We used the optimal hyper-
parameters obtained from the preceding 9-fold cross-vali-
dation process for the ensuing 8-fold cross-validation and test
processes. Additionally, a leave-one-out cross-validation57–59

was also incorporated for the 91-phosphor dataset with no
holdout test dataset.

We had a similar goodness of fit for the validation irrespec-
tive of the data splitting option, viz., the mean square error
(MSE) and coefficient of determination (R2) for the 9- and
8-fold cross validation and the leave-one-out cross validation,
although the validations MSE and R2 were slightly worse than
those for the training for all the data-splitting schemes. Since
the holdout dataset test results were similar to the 9- and
8-fold cross-validation results, the holdout dataset test results
along with the 8-fold cross-validation results were accepted as
the baseline in the present investigation.

Hyper-parameter optimization has been of particular
concern in recent ML approaches, and the most promising
strategy is known to be the use of Bayesian optimization.55

Unlike typical deep-learning cases, however, the present pro-
blems of a small model size and a small dataset did not
require such an additional optimization algorithm. We
designed an allowable hyper-parameter mesh (search space)
for an algorithm. Each mesh involved, at best, around
100 hyper-parameter sets (the maximum number of hyper-
parameter sets was 144 for a gradient boost algorithm). We
screened all the hyper-parameter sets in terms of the MSE and
R2 from the 9-fold cross-validation, and eventually pinpointed
the best hyper-parameter set. All the hyper-parameter sets we
tried are given in Table S1,† and the finally selected hyper-
parameter set for each algorithm is highlighted in Table S1.†
Details of the validation MSE and R2 values for all the hyper-
parameter sets are also listed in Table S2.†

Results and discussion
Data acquisition and descriptor extraction

Although a much greater number of Eu2+-activated phosphors
have been reported thus far, we incorporated 91 Eu2+-activated
phosphors, the chemical formulae of which are listed up in
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Table S3.† In addition, all the reference papers, from which
the 91 entries came from, are listed up in the ESI.† The peak
emission wavelength (PEW) that was selected as one of output
features is highly dependent on many extrinsic factors such as
inhomogeneous peak broadening, activator concentration,
and site occupancy. The excitation band edge wavelength
(EBEW) is also influenced by these external factors, although
it is not as severe as the PEW. Therefore, our approach was
restricted to Eu2+ activated phosphors that have only a single
Wyckoff site for the Eu2+ activator to minimize the extrinsic
influence. In addition, although the conditions for a single
Wyckoff site were met, we excluded all the binary host com-
pounds since every commercially available LED phosphor has
multi-element hosts (ternary or higher), and thereby the
descriptor extraction was devised more favorably for a multi-
element host. More importantly, the data acquisition was
restricted to examples wherein so-called concentration-
quenching data were available. It should be noted that the
most influential extrinsic variable affecting the PEW is the
Eu2+ activator concentration. The PEW at the critical Eu2+ acti-

vator concentration is the only variable that could consistently
be predicted using the material descriptors that we employed.
Here, the critical Eu2+ activator concentration (xc) corresponds
to a concentration that exhibits the highest PL intensity. At an
arbitrary Eu2+ activator concentration, the PEW would be a
meaningless random variable.

The PEW data is lacking because it was extracted from a
limited number of reports that provided us with clear concen-
tration-quenching data when the single Wyckoff site con-
ditions were met. Although EBEW seems less affected by the
Eu2+ activator concentration, it is recommended that the
EBEW be collected at the critical Eu2+ activator concentration.
As a consequence, we were able to secure only 91 Eu2+-acti-
vated phosphors that met the above-described requirement. A
scientifically reasonable PEW would be the so-called zero
phonon line (ZPL) that could be measured at a cryogenic temp-
erature for an extremely dilute Eu2+ activator concentration.
The ZPL indicates the unification between EBEW and PEW.
Using the ZPL data would seem to make the present ML
approach much more robust, but this would make no sense

Fig. 1 The schematic representation of all procedures for the synthetic XRD data preparation. The prohibition mark implies that neither ANN nor
BNN worked out for our phosphor dataset.
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from a practical point of view since no such data are available
in the field of real-world phosphor research.

The Eg data were collected through two routes; we collected
Eg values for 40 entries that are available in the materials
project database,17 and we DFT-calculated the other 51 entries
in the present investigation using the same calculation con-
ditions that are used for the materials project database. It
should be noted that all the calculated Eg data were based on a
PBE-GGA exchange correlation functional, so that they are
underestimated below the true band gap. However, it would be
no problem to use these GGA-calculated Eg values since it is
well-known that there is a linear relationship between GGA-cal-
culated and real Eg values.

60–62

In order to systematically extract descriptors (input fea-
tures), the Eu2+-activated phosphors take the form prescribed
in the ANX formula AaBbCcXx:Eu

2+. In the ANX formula, A, B,
and C denote cation sites and X denotes an anion site, each of
which has an independent Wyckoff site. The small letters (a, b,
c, and x), the suffixes of the cations and the anion in the ANX
formula, denote the respective stoichiometries. Activator ions
tend to occupy the A site, which normally consists of alkali-
earth-elements. The B site normally is occupied by alkali-
earth-elements or lanthanides and is a non-activator site,
while the C site is a networking element that is the most
important in determining the entire structure network of a
host compound. The C site consists of light elements such as
B, Al, Si, or P, which constitutes borates, aluminates, silicates
or phosphates, and sometimes Li, Sc, or Mg are also present at
the C site. The C site forms either a tetrahedron or an octa-
hedron with neighboring anions via bridging or triple points
and creates a two- or three-dimensional network to provide the
overall structural framework of the host compound. It should
be noted that the stoichiometry (a, b, c, and x) of the host com-
pound are not considered descriptors since they are implicitly
involved in other structural descriptors.

The structural descriptors define the simplified local poly-
hedral information around the activator sites. At these sites
the activator-anion ligand polyhedron and the activator-cation
polyhedron are parameterized as descriptors. That means that
on the top of the A–X polyhedron, the activator-cation polyhe-
dron is taken as descriptors such as A–A, A–B, and A–C polyhe-
dra consisting of the nearest-neighboring cations around the A
site. The coordination number and the average distance of
every polyhedron around the activator site are defined as
descriptors such as NA–X, NA–A, NA–B, and NA–C for the coordi-
nation number, and dA–X, dA–A, dA–B, and dA–C for the average
distance. Further, in the ML process, in order to reasonably
account for those phosphors that have no B site in the struc-
ture, a reciprocal value of the distance was used such that 1/
dA–B becomes zero for a nonexistent B site. The local structures
around the activator site that are used for the descriptor extrac-
tion could be considered an alternative interpretation of the
entire structure.

The local structure around the Eu2+activator involves the
nearest neighbors such as X, A, B, and C and are represented
as A–X, A–A, A–B, and A–C for the 91 different phosphor hosts,

as shown in Fig. 2. The criteria adopted for deciding the
nearest neighbor was based on the first substantial rise in the
magnitude of interatomic distance. However, in certain cases,

Fig. 2 Schematics for A–X, A–A, A–B, and A–C local structures for 91
Eu2+-activated phosphors. Atoms are represented by different colors, as
shown below. Also, the relative distance obeys the actual length scale.
The number represents corresponding phosphors listed in Table S3 in
the ESI.†
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where the interatomic distance continuously increases rather
than showing a step-rising trend, the nearest neighbors were
consistently decided at a distance change of 10%, although
Pan et al. have reported a smart coordination decision proto-
col.63 Local structures with A–A and A–B coordination some-
times do not constitute a polyhedron but simply result in 1-or
2-dimensional shapes. This type of coordination is equally
important in deciding the optical properties since it serves as
the routes for inter-activator energy transfer. In traditional
approaches to studying luminescence properties by focusing
on either isolated or extremely dilute activator systems, the
activator-anion local structure based on the framework of the
crystal field strength and the nephelauxetic effect is a major
concern, while the cation–cation local structure around the
activator site is out of concern. It is noteworthy, however, that
the cation neighbors around an activator also have a signifi-
cant impact on luminescence properties (PEW in particular)
when real-world phosphors with a practical-activator concen-
tration are a concern. The energy-transfer mechanism matters
in real-world phosphors, wherein the A–A, A–B, and A–C vari-
ables play a more influential role than the A–X variable for pre-
dicting the PEW.

In addition to the above-described structural descriptors
(NA–X, NA–A, NA–B, NA–C, dA–X, dA–A, dA–B, and dA–C) that desig-
nate the local structure around the activator site, we also
defined another 12 descriptors that indicate other elemental
information of the constituent elements occupying the A, B, C,
and X sites. These descriptors are the atomic number (ZA, ZB,
ZC, and ZX), the electronegativity (EA, EB, EC, and EX) on the
Pauling scale,64 and the Shannon radius (RA, RB, RC, and RX) of
every constituent element in the respective local environments
and in the respective valence states.65 Special consideration
was given to cases where the A, B, C, and X sites were occupied
by more than one element. In this case, weighted average
values were obtained according to the elemental fraction in
order to evaluate the elemental characteristic parameters. In
addition, lattice parameter anisotropy, lattice angles, lattice
volume, and theoretical density were also adopted as descrip-
tors (a/c, b/c, β, γ, V and ρ). Here, the lattice parameter was set
in such a way that c ≥ b ≥ a. Angle α was omitted from the
descriptors because our dataset contained no triclinic struc-
ture. Finally, basic symmetry descriptors such as the space
group number (SG), the activator site symmetry number (SS),
and the activator site multiplicity (AM) were adopted.
Table S3† shows the chosen 29 descriptors and their evalu-
ation results for 91 different Eu2+-activated, single-A-site
phosphors.

The most interesting target variables, viz., the EBEW and
PEW, were adopted in units of eV at the critical Eu2+ activator
concentration (xc). In particular, the PEW should never be
regarded as a material’s intrinsic property because it is known
to vary dramatically with the concentration of the Eu2+ activa-
tor. It is, therefore, important to have concentration-quenching
data such as the emission spectra monitored as a function of
the Eu2+ activator concentration for a given phosphor. The con-
centration-quenching data, however, were available for only 77

out of 91 phosphors. In the absence of concentration-quench-
ing data, we contacted the authors of the literature presenting
no concentration-quenching data to verify that the emission
spectrum came from xc.

From a strict theoretical point of view, an energy value
corresponding to ZPL collected for extremely diluted model
phosphors at cryogenic temperatures would be the best target
variable to be predicted from the descriptors introduced
above. It is, however, impossible to obtain a ZPL value for each
phosphor. Further, if the ZPL data were available, the data-
driven ML approach might not be that important in the field,
because a theoretical approach would have been sufficient to a
large extent. The ZPL data could be more attractive when con-
sidering the theoretical modeling, but those data are extremely
scarce, and the conventional excitation and emission data
measured at room temperature for a conventional activator
concentration range is of more practical interest in the field.
In addition, a clear interpretation of these data based on the
theoretical approach alone would be difficult, since there are
many extrinsic issues such as site occupation complicacy
(involving inhomogeneous broadening), inter-ionic energy
transfer, lattice phonon interaction, powder characteristics,
etc. Therefore, a data-driven approach would be more suitable
for predicting the emission energy of conventional real-world
phosphors compared with using a theoretical approach.

Regression results

Since the most important issue in the present investigation is
the PEW prediction from a practical point of view, we priori-
tized it and relegated the EBEW and Eg predictions to the level
of auxiliary tasks that support the PEW prediction. The same
training procedures and hold-out test dataset were applied to
the PEW, EBEW, and Eg prediction models, and the results
from the EBEW and Eg prediction models are summarized in
the ESI (Table S4a and S4b†), while the PEW prediction results
appear in Table 1. It is worth noting that the EBEW and Eg pre-
dictions exhibited a better regression fitting quality by provid-
ing a better goodness of fit by comparison with the PEW pre-
diction. In particular, the EBEW prediction model conspicu-
ously outperformed the others. This finding implies that the
adopted input feature (descriptor) setting as well as the ML
algorithm selection was validated by multiple output features
such as EBEW and Eg, and the adopted descriptors still proved
to be suitable for the PEW prediction.

The Eg prediction models were not of great concern in the
present investigation since Eg is not a key factor affecting
EBEW and PEW as far as it guarantees an insulating level that
is greater than the 4f–5d level of energy. It is, however, interest-
ing to see a good fitting quality for several Eg prediction
models. The Eg prediction results could be regarded as just a
successful ML example that reconfirms the validity of adopted
descriptors and ML algorithms. It should be noted that the
PEW prediction results presented in the main text are the base-
line that exhibits the worst predictability by comparison with
the EBEW and Eg prediction results, although the overall
fitting quality for the PEW prediction was still acceptable in
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view of recent field standards. Averages for the MSE, R2, and
overfitting index for 16 ML algorithms for the hold-out test
dataset and also for the validation dataset were ranked such
that EBEW > Eg > FEW (the symbol ‘>’ designates ‘is better
than’). On these grounds, the number of ML algorithms with
an R2 > 0.6, MSE < 0.02, and test_R2/training_R2 > 0.77 for the
hold-out test dataset followed the same rank, i.e., seven for
EBEW, six for Eg, and four for FEW. Better results for the
EBEW and Eg predictions appear in the ESI, as shown in
Table S4 and Fig. S1.† The ML algorithms nominated for R2 >
0.6, MSE < 0.02, and test_R2/training_R2 > 0.77 and the corres-
ponding PEW, EBEW, and Eg prediction results are marked by
red boxes in Fig. 4.

Table 1 shows the MSE and R2 for PEW prediction models,
which was evaluated for the training, validation, and holdout
dataset test for the 9- and 8-fold cross-validations along with
the holdout dataset test. Fig. 3a and b graphically shows the
same results. The goodness of fit remained almost identical
for both the 9- and 8-fold cross-validations as shown in Table 1
and Fig. 3a and b, and the leave-one-out cross-validation
results were also similar, which is available in the ESI
(Table S5 and Fig. S3†). Despite the superior fitting quality for
training (i.e., lower MSE and higher R2 for training), we placed
greater emphasis on the validation MSE and R2, and eventually
much more on the holdout dataset test. While the overall MSE
level was approximately 10−3–10−2 for training, the validation
MSE increased slightly and the holdout dataset test MSE
results were similar to the validation results. The overall R2

level for the training was 0.7–1, and the R2 level for both the
validation and the holdout dataset test was approximately 0.6.
If R2 for the validation (or the holdout dataset test) exceeds
0.5, then the regression results are generally acceptable by the

statistics research society,66 although the conventional stan-
dard for the R2 level has not been clearly defined yet. It should
be noted that training the MSE and R2 for well-known para-
meter-free regression algorithms such as KNN and GPR
reached the perfect level, i.e., 0 and 1, respectively. This was
due to the inherent non-parametric trait of the KNN and GPR
algorithms. The basic linear, KNN, and PLS algorithms led to
unacceptable validation and test results, while the others
exhibited almost similar levels of validation and test results for
MSE and R2. As evidenced by the EBEW and Eg prediction
results shown in Table S4 and Fig. S1,† the overall fitting
quality for the EBEW and Eg prediction is better than that for
the PEW prediction, namely, the overall levels of MSE (and R2)
were lower (and higher) than those for the PEW prediction.

Rather than the absolute value level for MSE and R2, the
over-fitting (high variance) problem would be much more
important in judging the regression fitting quality in the case
of an extremely small dataset, as with the present case. The
ratio between the training and validation MSE (and R2) is
indicative of the level of over-fitting, which is referred to as the
‘over-fitting index’. Fig. 3c and Table S6a† shows the over-
fitting index for the PEW prediction in the range of 0–1, which
is defined as training_MSE/validation_MSE and validation_R2/
training_R2. A higher over-fitting index indicates a better fit,
i.e., 1 is reached in an ideal case. Fig. 3d also shows the over-
fitting index for the PEW prediction, defined as training_MSE/
test_MSE and test_R2/training_R2, which are similar to the
training_MSE/validation_MSE and validation_R2/training_R2.
It is evident that the basic linear regression gave rise to an
atrocious over-fitting. In addition, both the KNN and GPR also
exhibited extremely low over-fitting index values, viz. zero for
both the training_MSE/validation_MSE and training_MSE/

Table 1 The training, validation and hold-out dataset test results for PEW prediction model in terms of MSE and R2 for two data-splitting schemes:
9-cross-validation and 8-fold cross-validation with a holdout test dataset

PEW

9-Fold cross validation 8-Fold cross validation with hold-out dataset test

ML
algorithm

MSE
(training)

R2

(training)
MSE
(validation)

R2

(validation)
MSE
(training)

R2

(training)
MSE
(validation)

R2

(validation)
MSE
(test)

R2

(test)

Basic linear 0.011 0.80 0.026 0.48 0.011 0.80 0.028 0.41 0.033 0.38
Ridge 0.013 0.76 0.021 0.62 0.014 0.75 0.023 0.59 0.021 0.61
Lasso 0.013 0.76 0.022 0.60 0.013 0.76 0.024 0.57 0.019 0.62
LARS 0.015 0.73 0.021 0.62 0.015 0.74 0.022 0.57 0.021 0.61
Elastic net 0.013 0.77 0.022 0.61 0.013 0.77 0.025 0.51 0.018 0.66
KRR 0.016 0.71 0.021 0.62 0.017 0.70 0.022 0.59 0.019 0.64
BRR 0.013 0.77 0.022 0.61 0.014 0.76 0.023 0.58 0.021 0.61
ARD 0.014 0.75 0.021 0.61 0.014 0.75 0.025 0.55 0.020 0.62
Random
forest

0.004 0.93 0.025 0.58 0.004 0.93 0.026 0.53 0.024 0.54

Ada boost 0.012 0.79 0.023 0.56 0.012 0.78 0.029 0.43 0.020 0.62
Gradient
boost

0.005 0.92 0.023 0.59 0.004 0.93 0.027 0.48 0.028 0.47

XG boost 0.001 0.98 0.027 0.53 0.001 0.99 0.025 0.51 0.029 0.45
SVR 0.013 0.77 0.020 0.63 0.013 0.76 0.024 0.57 0.018 0.67
KNN 0.000 1.00 0.027 0.48 0.000 1.00 0.030 0.45 0.036 0.32
PLS 0.026 0.54 0.031 0.40 0.026 0.53 0.032 0.42 0.032 0.39
GPR 0.000 1.00 0.023 0.62 0.000 1.00 0.021 0.61 0.025 0.52
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test_MSE. The KNN and GPR gave rise to a serious over-fitting
problem, as in the case of the basic linear regression, because
the KNN and GPR algorithms produced a perfect fit for a train-
ing dataset due to their intrinsic non-parametric traits, as
already discussed above. Thus, it would be irrational to equate
these low overfitting index values to those of the heavily over-
fitted basic linear regression, particularly in the case of GPR
that gave acceptable validation/test MSE and R2 values.
Accordingly, we regarded GPR as an acceptable ML algorithm
regardless of the over-fitting index value. The ensemble algor-
ithms such as RF, Ada boost, gradient boost, and XG boost
also raised over-fitting issues. On the other hand, it is evident
that a certain degree of regularization took place for the other
regularization-involved linear regression algorithms. The over-
fitting problem was also considerably improved in the EBEW
and Eg prediction, as shown in Fig. S1(c), S1(d), S1(g), and
S1(h) and Table S6b and S6c in the ESI.†

It should be noted that regularization-involved ML algor-
ithms were introduced since there was a severe training data
shortage problem in the present investigation. The regulariz-
ation-involved linear regression algorithms outperformed the
ensemble algorithms, and the SVR also gave an acceptable
over-fitting index, as shown in Fig. 3 and Table S6a.† When
comparing the basic linear regression and the other regulariz-
ation-involved linear regression algorithms, it is apparent that
the validation (and test) MSE and R2 were improved at the
expense of the training MSE and R2 for the regularization-
involved linear regression algorithms. Fig. 4a and S2a† shows
plots of the predicted vs. experimental emission energy, and
the training dataset led to a relatively good fit for the basic
linear regression (upper-leftmost corner), but the validation
and test datasets gave slightly worse fits by comparison with
those of the other regularization-involved linear regression
algorithms.

The same trend was observed for EBEW and Eg prediction
models (Table S6b and S6c,† Fig. 4b, c, and Fig. S1, S2b, S2c†),
although the overall level of overfitting index was higher than
that for the PEW prediction model.

In addition, the ANN (or DNN) results were omitted from
Table 1, since the regression results (over-fitting in particular)
were even worse than any of the other algorithms listed in
Table 1. A paucity of data never allows for an ANN model since
even architecture with a single hidden layer involves too many
parameters by comparison with the training dataset size, and
the Bayesian neural network67 was not viable for the same
reason. Accordingly, the basic linear regression was taken as
our baseline result. With the noted exceptions of ANN, basic
linear, KNN, and PLS, all the other algorithms involve a
certain degree of regularization functions. Consequently, the
ANN regression gave rise to the poorest regression results, and
thereafter the basic linear regression followed. The regulariz-
ation-involved linear regression algorithms such as ridge,
LASSO, elastic net, KRR, and BRR mitigated the problem of
over-fitting to a certain extent, and the absolute MSE and R2

levels were also acceptable, as shown in Table 1. The ARD and
LARS results were slightly deteriorated, but KNN and PLS gave

Fig. 3 The training, validation and hold-out dataset test results for PEW
prediction in terms of (a) MSE and (b) R2 for 9 cross validation and 8-fold
cross validation with a holdout dataset test, (c) the over-fitting index
defined as training_MSE/validation_MSE and validation_R2/training_R2,
and (d) the over-fitting index defined as training_MSE/test_MSE and
test_R2/training_R2. Each over-fitting index value is listed up in
Table S6.†
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an unacceptable regression quality. Consequently, we nomi-
nated four promising ML algorithms; LASSO, elastic net, KRR,
and SVR for the PEW prediction. These ML algorithms met the
condition R2 > 0.6, MSE < 0.02, and overfitting index (test_R2/
training_R2) > 0.77 for the hold-out dataset test. It is noted,
however, that all the regularization-involved linear regression
algorithms gave a fitting quality that was as good as those
nominated for R2 > 0.6, MSE < 0.02, and test_R2/training_R2 >
0.77. The same trend was also observed for the EBEW and Eg
predictions. Consequently, it was revealed that only the regu-
larization-involved linear regression algorithms are suitable for
the present ML approach when there is a dearth of data.

As shown in Fig. 4 and S2,† the BRR, ARD and GPR
regression results exhibited conspicuous and distinctive
fitting. These three algorithms are all based on the Bayesian
approach. Bayesian approach-involved algorithms give a range
of confidence around the predicted mean rather than a deter-
ministic prediction. The amber and green dots for the BRR,
ARD and GPR results designate the standard deviation range,
as shown in Fig. 4 and S2.† These sorts of Bayesian approaches
would be more desirable than the other customary regulariz-
ation strategies due to the fact that uncertainty in the predic-
tion can also be formulated.

The main focus of the present investigation was to obtain a
plausible regression result for real-world dirty datasets that are
far smaller than what the conventional ANN approach
requires. In fact, the over-fitting problem was unavoidable, but
we were able to mitigate it to a certain extent by introducing
regularization-involved algorithms and thereby we secured
generally acceptable regression results, albeit below the level
of conventional deep learning. Although it is practically

impossible to collect a sufficient level of clean data from either
industry or academia, the ML approach merits an application
to phosphor research. The so-called integrated ML platform
that we proposed in the present investigation could be a tenta-
tive solution for both the problems of the data paucity and the
dirty data. Of course, the use of an ML approach based on a
sufficient amount of the synthetic data that is available in well-
known DFT-driven databases17,68–70 would definitely return
quite an excellent regression result. On the other hand, we
only focused on real-world data of a dirty nature in the present
investigation, and the worst problem was that the paucity of
data led to serious over-fitting (high valiance) that could not
be completely sorted out.

The meaning of the term ‘dirty’ is two-fold. The first aspect
concerns the experimental inaccuracies (or inconsistency) orig-
inating from many different material syntheses and character-
ization platforms. Experimentally evaluated lattice parameters
that greatly affect the descriptors were acquired from various
research groups, so that they inherently involved a certain
degree of errors. The same complication applies to the PEW
and, EBEW measurement. The second aspect of the term
‘dirty’ is a data distribution-related problem. When the col-
lected data are not identically and independently distributed
(IID) random data, the distribution for some descriptors is dis-
crete and biased. The input-feature (descriptor) distribution
does not necessarily have to be an IID-Gaussian distribution as
far as the output loss (the difference between real and model-
predicted outputs) is approximated to a Gaussian. However,
such a highly biased non-IID data distribution would not be
beneficial to ML-based regression. Fig. 5a shows 1-D data dis-
tribution for every input/output feature in the histogram

Fig. 4 Plots of predicted vs. experimental plots of predicted vs. experimental (a) PEW, (b) EBEW, and (c) Eg for training, validation, and hold-out test
datasets for 8-fold cross validation.
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format, and Fig. 5b exhibits a more convenient representation
of data distribution, that is, the pair-wise 2-D plots along with
Pearson-correlation coefficient matrix. In addition, the
Spearman correlation coefficient matrix is also given in Fig. 5c.
The Spearman correlation coefficient is the Pearson correlation
coefficient for ranks, which can take care of a non-linear

relationship and also rule out the outlier effect.71 Accordingly,
the pair-wise 2-D plots in Fig. 5c are a data rank distribution
rather than a raw data distribution. There is no notable differ-
ence between Pearson and Spearman correlation coefficient
matrices and both these forms of correlation data equally
exhibit a highly biased non-IID data nature.

Fig. 5 (a) 1-D data distribution for each of the 29-input and 1-output features, (b) the Pearson correlation coefficient matrix for 29-input features;
the upper off-diagonal components are the Pearson correlation coefficients, and the lower off-diagonal components are pair-wise 2-D data distri-
bution plots. (c) Spearman correlation coefficient matrix for 29-input features. The lower off-diagonal components are a pair-wise 2-D distribution
of the data rank.
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If data were collected from a uniform data production plat-
form and the amount was significantly larger, then the MSE
and R2 levels for the validation (or test) would reach that of
typical synthetic data from deep learning. The goal of the
present investigation, however, was to run ML algorithms for
dirty real-world data and even for a dearth of data, which we
are faced with in the phosphor research society. We deal with
neither IID data nor so-called big data (a large-scale dataset).
Big IID data for ML approaches to materials science is tangible
in only synthetic forms. A uniform high throughput experi-
mental data production platform, e.g., data collected from a
single lab using the same apparatuses, would rule out the
dirty nature of data and thus give rise to far better regression
results. The data used here, however, were collected from a
variety of literature sources, which could never constitute a IID
random dataset originating from a certain expert intervention
during a data-production procedure.

Our dataset involved many outliers due to inconsistent
experiments. Nonetheless, the proposed ‘integrated ML plat-
form’ deserves application to such a dirty engineering dataset,
and we determined the best way to treat such data.

D ¼ εc þ εcfs
F

� εsðfreeÞ

Theoretical interpretation for PEW and EBEW through its
surrogate ML model

Ignoring all the extrinsic effects on the excitation and emission
energy (EBEW and PEW), a theoretical (or semi-empirical)
interpretation of the excitation and emission energy is poss-
ible, as reported by Dorenbos.72–75 Fig. 6 shows the energy
diagram for the 5d energy levels of Ce3+ and Eu2+ activators in
a certain host. The excitation and emission energy can be
inferred from the free-ion state of energy by inferring a cen-
troid shift (εc), a total shift (D), crystal field splitting (εcfs), and

a Stokes shift (ΔS). εs(free) is the energy difference between
centroid position and the lowest 5d level of the free Eu2+ ion,
which can be ignored since it is very small by comparison with
D and εcfs.

The theoretical (or semi-empirical) model72–75 describes εc
and εcfs in terms of several basic measurable variables such
as activator-anion ligand distance (Ri), coordination number
(N), anion polarizability (αsp), ionic size difference (ΔR), and
the ratios of crystal field splitting (F). This theoretical
model72–75 originally describes Ce3+ but it also holds for Eu2+

since it is well-known that the total shift, the Stokes shift,
the centroid shift and the total crystal field splitting of the
5d levels of Eu2+ and Ce3+ all are linearly related to one
another.75

Regardless of whether the ligand polarization model76,77 or
the covalency model77,78 was adopted, the centroid shift (εc)
and the crystal field splitting (εcfs) have been interpreted in
terms of the activator-ligand local structure that is traditionally
parameterized as the activator-anion ligand distance and
coordination number. Namely, εc and εcfs can be interpreted
using the A–X local environment. Once the total shift (D) was
evaluated from the local structure-based theoretical (or semi-
empirical) models for εc and εcfs, prediction, the EBEW can be
exactly estimated since the EBEW is the difference between the
free ion energy and the total shift (D), as shown by the energy
diagram in Fig. 6.

Since the emission energy should be greatly affected by
the total shift and the crystal splitting, the emission energy
could be also a function of the above-described variables that
designate the activator-anion ligand (A–X) local structure and
the trait of the constituent elements for the A–X polyhedron.
In contrast to the A–X local environment-related εc and εcfs,
the emission energy is greatly affected by the Stokes shift.
The Stokes shift significantly differs from one host to
another. According to the Franck–Condon theory,79 the
Stokes shift seems to be closely related to the host lattice
stiffness and to multi-phonon behaviors when the configur-
ation coordinate model is accounted for. The Stokes shift is
not simply interpreted by the above-mentioned A–X local
environment variables only. Although the EBEW can be
directly evaluated from the theoretical model for the total
shift prediction, no theoretical model for the emission
energy prediction was available due the Stokes shift compli-
cation. The Stokes shift can be ignored if the zero phonon
energy is available for an extremely dilute system at a cryo-
genic temperature, but it is impractical in real-world phos-
phor research.

The theoretical model for the prediction of the total shift
(i.e., EBEW) deserved to be tested using the collected data. A
direct application of the theoretical model, however, was prac-
tically impossible since we could scarcely collect correct crystal
field-splitting data. The exact evaluation of the crystal field-
splitting from the conventional PLE spectrum is limited. Both
αsp and F were unobtainable as well. Nonetheless, we indirectly
tested the theoretical model using a surrogate ML model. For
this undertaking, we extracted 9 relevant descriptors out of a

Fig. 6 The schematics for 5d energy level and theoretical models eluci-
dating the total shift (all the variables and parameters appearing in the
model are accounted for in the manuscript).
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total of 29. The reduced number of descriptors was either
directly or implicitly related to the variables and parameters
(Ri, N, αsp, F, and ΔR) appearing in the theoretical model,
which affected the centroid shift and crystal field splitting and
led to a total shift, i.e., to EBEW and finally to PEW. The
extracted descriptors, which were compatible with the vari-
ables and parameters (Ri, N, αsp, F, and ΔR), were the A–X dis-
tance (dA–X), the activator site symmetry (SS), the Shannon
ionic radius for A and X (RA and RX), the atomic number for A
and X (ZA and ZX), the electronegativity for A and X (EA and
EX), and the coordination number for A–X polyhedron (NA–X).
These 9 descriptors were used for the surrogate ML model.
The regression results are listed for all 9-descriptor surrogate
ML models in Table S7.† Fig. S4† shows the predicted PEW,
EBEW, and Eg versus the real values for all 9-descriptor surro-
gate ML models. The fitting quality was deteriorated by com-
parison with the 29 descriptor regression results shown in
Fig. 4 and S2.† When the number of descriptors was reduced
dramatically from 29 to 9, the fitting quality deterioration for
PEW prediction was more conspicuous than for the EBEW pre-
diction, as evidenced in Fig. 4 and S4.† This means that the
surrogate model associated with only the A–X local structure
would never be viable for the prediction of EBEW and PEW,
which indicates that these 9 descriptors were insufficient and
a greater number of descriptors would be required to account
for the excitation and emission energy. It appears more reason-
able to use the sixth power of the A–X bond length (d6A–X)
since the theoretical model is described as a function of
R6eff.

76,77 However, the dataset including d6A–X never yielded
better regression results for all the 9-input-feature surrogate
ML models.

It is clear that the surrogate ML model based on a reduced
number of descriptors, which was compatible with the theore-
tical model, never gave acceptable test results in contrast to
the 29-input-feature ML models. This finding implies that only
the A–X environments are insufficient to account for the exci-
tation and emission energy (EBEW and PEW). The first reason
for the inapplicability of the surrogate model, i.e., the theore-
tical model is that the theoretical model would in principle
hold only for an ideal case of very dilute activator concen-
tration that would prevent any type of inter-activator inter-
action such as an energy transfer. Since the excitation and
emission energy (EBEW and PEW) evaluated at a practical level
of activator concentration was of concern in the present inves-
tigation, neither the theoretical model nor its equivalent surro-
gate ML model (9-input-feature ML model) was viable. As
already discussed above, an incapable predictability for Stokes
shift would be one of the major reasons for the unacceptable
predictability of the 9-input-feature surrogate ML modeling for
PEW prediction. The 29-input-feature system might have
implicitly incorporated the Stokes shift and thereby an accep-
table predictability was achieved, although we are unaware of
how this functions in the ML process. In addition, PEW (or
EBEW) could be shifted by inhomogeneous broadening due to
the local structure fluctuation in real-world phosphors, and
this is one of the reasons for the unacceptable predictability of

the 9-input feature surrogate ML model that simulates a
theoretical model.

We never denied the validity of the theoretical model but
instead we are quite sure of its scientific validity. It should be
noted, however, that the real-world data that we used here are
not suitable for a theoretical model, since these data include
various extrinsic traits. The application of a theoretical model
is limited to an ideal case that exhibits a very homogeneous
local structure, a very dilute system that guarantees no inter-
ionic interactions, and a sustained lattice vibrational system at
low temperatures. This sort of ideal phosphor would never be
easily found in the real world. Strictly speaking, this is not an
ideal phosphor from a practical point of view and is ideal for
only a theoretical model application. Although the ML model
that we suggest lags far behind the theoretical approach in
terms of understandable logics and scientific merit, we believe
that the ML approach could outperform the theoretical model
when practical problems are a real concern.

Conclusions

An integrated ML model platform involving 18 algorithms was
developed to predict the peak emission wavelength (PEW),
excitation band edge wavelength (EBEW), and band gap (Eg)
from structural, elemental, chemical, and physical descriptors.
The 91 Eu2+-activated phosphors that provided the Eu2+-activa-
tor with a single Wyckoff site were extracted from the litera-
ture. The PEW and EBEW data for a critical Eu2+ activator con-
centration were collected from the literature where the concen-
tration quenching data were available.

Regularization-involved ML algorithms outperformed both
the basic linear regression and ANN models. Well-known
ANNs (or DNNs) were never viable due to the problem of a
paucity of data. The suggested ML model platform could be a
tentative ML solution to tackle the real-world problems of a
dearth of data that are commonly confronted in the physical
science research society. Statistically, regularization-involved
linear regression algorithms seem to be the best, but it would
be extremely risky to choose a single ML algorithm based only
on goodness of fit and overfitting index. Due to the ad hoc
heuristic nature of data-driven approaches, it would be inap-
propriate to introduce only a single ML algorithm despite it
exhibited the best goodness of fit and overfitting index, but a
group of ML algorithms, just like the integrated ML platform,
could be a better option for a single particular problem with a
single dataset. In this way we can get a reliable PEW prediction
result by averaging the prediction results from four acceptable
ML algorithms that meet the condition R2 > 0.6, MSE < 0.02,
and overfitting index (test_R2/training_R2) > 0.77, such as
LASSO, elastic net, KRR, and SVR. Similarly, we pinpointed
seven and six ML algorithms for EBEW and Eg predictions,
respectively.

A well-known theoretical model wherein both centroid shift
and crystal field splitting that implicitly led to EBEW and PEW
predictions could be predicted from the A–X local environ-
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mental information, was simulated by employing a surrogate
ML model and adopting a set of appropriate descriptors that
could be transformed from those appearing in the theoretical
model. A surrogate ML model that was supposedly equivalent
to the theoretical model did not work, by contrast to the
29-descriptor-based ML model platform that worked in a
proper manner. While the theoretical model could work for
certain ideal cases (e.g., a very dilute activator concentration
eliminating any types of interionic interactions and a very low
temperature banishing the Stokes shift), the ML model plat-
form can perform practical EBEW and PEW prediction tasks
for ordinary phosphors confronted in the field of engineering.
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