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Intramolecular Csp*—~H/C—C bond amination of
alkyl azides for the selective synthesis of cyclic
imines and tertiary aminesy
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The intramolecular Csp®~H and/or C-C bond amination is very important in modern organic synthesis due
to its efficiency in the construction of diversified N-heterocycles. Herein, we report a novel intramolecular
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cyclization of alkyl azides for the synthesis of cyclic imines and tertiary amines through selective Csp>~H

and/or C-C bond cleavage. Two C—N single bonds or a C=N double bond are efficiently constructed in
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Introduction

N-Heterocycles are undoubtedly important chemicals in organic
synthesis, and have been considered as key functionality regu-
lators in pharmaceuticals.* The intramolecular nitrogen inser-
tion into Csp®-H and/or C-C bonds provides an efficient
approach to N-heterocycles.> The pioneering groups of Aubé*
and Pearson® developed the intramolecular Schmidt reactions?
and made significant achievements for various N-heterocycle
synthesis.®* The earliest intramolecular aliphatic C-N bond
formation named the Hofmann-Loffler-Freytag reaction®
always started from unstable halogenated amines to construct
N-heterocycles. Over the past two decades, the aliphatic C-H
amination has achieved great progress via the C-H activation
strategy.® However, most of these reactions required electron
withdrawing directing groups and delivered amide products
(Scheme 1a). Beginning with Breslow's pioneering work,’
a metal-nitrene strategy was successfully applied in intra-
molecular Csp>-H bond N insertion, providing elegant
approaches to amides bearing N-H bonds (Scheme 1a).? Thus,
the development of direct aliphatic C-H/C-C amination is still
highly desirable.

Organic azides are synthetically useful in drug discovery,
bioconjugation and materials science.” Although the intra-
molecular Csp>~H bond amination/amidation of aryl azides®
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these transformations. The carbocation mechanism differs from the reported metal nitrene intermediates
and therefore enables metal-free and new transformation.

and sulfonyl azides' has achieved great progress, the corre-
sponding transformation of alkyl azides' was rarely developed
until recent results.” In 2013, Betley and coworkers demon-
strated the pioneering intramolecular aliphatic C-H amination
of alkyl azides catalyzed by an iron catalyst (Scheme 1b).*** The
groups of van der Vlugt," Lin,”*** de Bruin,”* and Chi*
independently developed the same elegant intramolecular
cyclization of alkyl azides by iron, palladium or cobalt catalysis
to deliver N-Boc heterocycles (Scheme 1b), in which the involved
nitrene type intermediates required an equivalent of Boc,O
reagent to liberate the active catalyst to complete the catalytic
cycle (Scheme 1b). Despite the advances of the above strategies
(Scheme 1a and b), these intramolecular aliphatic amination/
amidation processes always delivered N-carbonyl or sulfonyl
heterocycles with the formation of one C-N single bond.
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Scheme 1 Intramolecular N-insertion of the Csp*~H bond.
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Inspired by these results, we speculated that the oxidative
generation of carbocation A may trigger the formation of cyclic
intermediate B (Scheme 1c), which may undergo other trans-
formations in the absence of transition-metal catalysts and
provide opportunities for new products. Herein, we described
a novel intramolecular nitrogen insertion into a Csp®~H and/or
C-C bond of alkyl azides to deliver cyclic imines and tertiary
amines (Scheme 1c). The aliphatic C-H or C-C bond was
selectively cleaved with the efficient formation of two C-N single
bonds or a C=N double bond.

Results and discussion

According to our previous element incorporation reactions
through the carbocation intermediates generated in situ with
the DDQ oxidant,* we chose azide 1a as the model substrate to
investigate our speculation. As expected, dihydropyrrole 2a was
obtained in 75% yield in the presence of DDQ and TFA at 60 °C
(Table 1, entry 1). Two C-H bonds were cleaved and a C=N
double bond was constructed along with the release of N, in this
case. TEMPO or CAN as the oxidant gave inferior yields (entries
2-3), while PIDA or NHPI could not execute the conversion of 1a
to 2a (entries 4-5). The chlorinated solvent afforded better
yields than that of other solvents such as DMSO, toluene, or
MeCN (entries 6-9), and the reaction delivered the highest yield
in TCE (entry 9). The pK, of acids influenced the reaction
strongly (entries 10-12). 2a was obtained in only 10% yield in

Table 1 Optimization of the reaction conditions®

Acid (0.2 mL) N
/©/\/VN3 Oxidant (1.2 equiv) /@/Q

Me “ Solvent, 60 °C, 12 h Me "
Entry Oxidant Acid Solvent Yield of 2a”
1 DDQ TFA DCE 75%
2 CAN TFA DCE 18%
3 TEMPO TFA DCE 8%
4 NHPI TFA DCE 0
5 PIDA TFA DCE 0
6 DDQ TFA DMSO 0
7 DDQ TFA PhMe 64%
8 DDQ TFA MeCN 46%
9 DDQ TFA TCE 77%
10 DDQ AcOH TCE 10%
11 DDQ MsOH TCE 0
12 DDQ TfOH TCE 0
13° DDQ TFA TCE 84% (73%)
14° DDQ TFA TCE 76%

“ Reaction conditions: 1a (0.3 mmol), oxidant (0.36 mmol) and acid (0.2
mL) in a solvent (0.5 mL) at 60 °C for 12 h. ” Yield determined by 'H
NMR spectroscopy with dibromomethane as an internal standard.
¢ performed with TFA (0.4 mL). ¢ Isolated yields. ¢ Performed at room
temperature. DDQ = 2,3-dichloro-5,6-dicyano-1,4-benzoquinone, CAN
= cerium ammonium nitrate, TEMPO = (2,2,6,6-tetramethylpiperidin-
1-ylJoxyl, NHPI = N-hydroxyphthalimide, PIDA = phenyliodine
diacetate, TFA = trifluoroacetic acid, MsOH = methanesulfonic acid,
TfOH = trifluoromethanesulfonic acid, and TCE = 1,1,2,2-
tetrachloroethane.
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the presence of acetic acid (entry 10), while MsOH or TfOH
failed to facilitate this transformation (entries 11-12). The
treatment of 1a with 0.4 mL of TFA afforded 2a in a satisfactory
73% isolated yield (entry 13). Lowering the temperature
hampered the reactivity (entry 14).

We explored the generality of this intramolecular Csp*-H
nitrogen insertion for d-aryl alkyl azides under standard reac-
tion conditions (Table 2). Substrates bearing electron-donating
substituents (MeO, ¢Bu, PhO) at the aryl ring worked smoothly
to afford the corresponding cyclic imines 2c-e in good yields.
The electron-withdrawing substituents (F, Cl) caused low reac-
tivity, resulting in pyrrolines 2f-g in diminished yields (26-
31%). Substituents at the meta or ortho position of the arene
rings 1h-j slightly affected the efficiency. Besides arenes, the
heteroaryl azide 2-(4-azidobutyl)thiophene 1k was transformed
to 2k in 32% yield. The substituents on the alkyl chain influ-
enced this reaction slightly (21-0). The cyclic imines 2 were
easily converted to diversified heterocycles.” Compared to the
well-established approaches to cyclic imines, the present
intramolecular N-insertion protocol features mild conditions
and high atom economy.

In order to synthesize a six-membered cyclic imine, we
conducted the reaction of alkyl azide 3a under standard
conditions. However, the target imine product 4a was not
detected (eqn (1)). We conducted the capture experiment by the
addition of benzoyl chloride to the reaction of 3a (eqn (2)).
Aldehyde 5a and amide 6 were obtained in 77% and 66% yields,
respectively (eqn (2)), which indicated that the azide 3a was
converted to amine via an imine cation intermediate and
a hydrolysis process (for the detailed mechanism, see Scheme 2
and 3).

Table 2 Nitrogenation of alkyl azides to imines®

R DDQ (1.2 equiv) NJ’\
ANy —/—/—/—————
Ar DCE/TFA, 60 °C,12 h Ar/l\/\R
1 2
N N N
Me’ MeO tBu
2a, 73% 2b, 46%" 2c, 66%° 2d, 70%
N N N
Me
PhO F cl
2e, 69%° 2f, 26%" 2g, 31%"° 2h, 62%
N N F
I | lj N
N i
\ s
Me OMe MeO
2i, 38% 2j, 41% 2k, 32%° 21, 63%°
MeO MeO MeO
N_ Me N N__R
2N e 4
Me
2m, 71%° 2n, 73%° R= NN

20, 49%°

¢ Reaction conditions: 1 (0.3 mmol), DDQ (0.36 mmol) and TFA (0.4 mL)
in TCE (0.5 mL) at 60 °C for 12 h. Isolated yields. ? Performed at 80 °C.
¢ Performed with TFA (0.2 mL) at room temperature.
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On the basis of this result, we investigated the one-pot
reaction of alkyl azide 3 with DDQ and TFA followed by in situ
reduction. We were delighted to find that the corresponding
cyclic tertiary amine 7a was obtained in 55% yield (Table 3). The
substituent on the arene slightly influenced the yield and

AGpee 208k | TFA ©
keal mol! 0=

0.0
Ph’H: Ny DDQ-2H

1 H(CF4CO,),
DDQ-TFA

jm -
H D AN
159.5° | {
-34.1°C @?V  Ph

 4-H
842\ 11067

Ph/*,\D

E3

| rate-determining step chemoselectivity-determining step i

Scheme 3 Energy profile for the DDQ-mediated amination of alkyl
azides 1 and 3.
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a series of N-Bn pyrrolidines were synthesized in moderate
yields. The azide substrates bearing alkyl substituents also
smoothly delivered benzyl-substituted 7h or pyrrolidine 7i in
moderate yield. In addition, naphthalene, thiophene, dibenzo-
furan and dibenzothiophene were all well tolerated to afford
cyclic tertiary amines 7j-m in 33-81% yields. It is noteworthy
that the transformation of 3 to 7 with the release of nitrogen as
the only by-product, is thus highly atom-economic. Moreover,
the present strategy cleaves the Csp®-Csp® bond' without
strained rings or assisted functional groups. Besides pyrroli-
dine, piperidine derivative 7n also could be synthesized by the
intramolecular N-insertion of alkyl azide 3n. Unfortunately, the
present strategy could not be applied in the construction of
seven- or eight-membered N-heterocycles.

Based on the above experiments, we proposed the possible
mechanism of the reaction (Scheme 2). The oxidation of alkyl
azides 1 and 3 at the benzylic position by DDQ with TFA
provides benzylic cation intermediate A, which is attacked by
the azide group to generate cyclic intermediate B. In the most
stable conformation of B, the aryl group should stand on the
equatorial bond, which makes a small torsion angle with the
azide moiety. As a result, the following Schmidt rearrangement
of B with the concerted release of N, and the aryl shift is
unfavorable through periplanar migration, while the hydrogen
or alkyl shift is potentially feasible through antiperiplanar
migration. The five-membered ring species C undergoes
deprotonation with the release of N, to afford cyclic imine 2,

Table 3 Nitrogenation of alkyl azides to tertiary amines®

TFA (0.2 mL)
DDQ (12 equiv) A SN~XR

TCE (0.5mL), 1it, 12h

Ar%\?Ng

n

3 then NaBH(OAc)3 7(n=10r2)
oY oY oo
eO PhO’ Me’
7a, 55% 7b, 72% 7c, 38%"
N
oo OO oo
Bu Me
e
7d, 78%° Te, 47%" 7f, 35%"
Me
o) N
SORe 0 ol
O MeO
eO

79, 49% 7h, 39% 7i, 54%

Q Q
i s '
U OO
MeO
(¢}
7, 33%° 7k, 43% 71,81%

L eaclNeag’

7m, 80% n, 31% 0% (n=1o0r2)

¢ Reaction conditions: 3 (0.3 mmol), DDQ (0.36 mmol) and TFA (0.2 mL)
1n TCE (0.5 mL) at room temperature for 12 h. Isolated yields.
b performed with TFA (0.4 mL) at 60 °C. © Performed at 60 °C.

This journal is © The Royal Society of Chemistry 2020
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while the six-membered ring intermediate D undergoes 1,2-
alkyl migration to generate the imine cation E, which is
sequentially reduced to deliver tertiary amine 7.

To further understand the mechanism, we performed
preliminary DFT calculations on the model reaction of alkyl
azides 1 and 3 with DDQ and TFA (Scheme 3)."” We first studied
the oxidation of 1 at the benzylic position by DDQ with TFA
through O-attack hydride transfer pathway, which is the most
thermodynamically favorable pathway in some similar cases.™
The hydride transfer from 1 to the complex of DDQ and TFA
through TS1 requires a Gibbs free energy barrier of 28.0 kcal
mol ' to form the benzylic carbocation intermediate A1 and
DDQH-TFA™ anion, which could be stabilized by another TFA
molecule to afford DDQ-2H and H(CF;CO,),  species. Subse-
quently, the azide moiety would attack the formed carbocation
in A1 to generate five-membered ring C, which is exothermic by
19.2 kcal mol™'. In the most stable conformation of C, the
phenyl group on the equatorial bond has a small torsion angle
(—24.4°) with the azide moiety, while the benzylic hydrogen and
alkyl group have big dihedral angles (95.4° and —150.0°,
respectively) with the azide moiety. Therefore, the following
Schmidt rearrangement” of C with the concerted release of N,
and the hydrogen or alkyl shift is potentially feasible through
antiperiplanar migration. The Schmidt rearrangement with the
1,2-H shift through the antiperiplanar transition state TS2 with
a free energy barrier of 16.8 kcal mol ™" gives 2-H. The barrier of
the 1,2-alkyl shift to imine cation E1 through TS3 (AG* = 21.7
kcal mol ") is much higher than that of the 1,2-H shift pathway.

Alternatively, the hydride transfer from 3 to the complex of
DDQ and TFA through TS4 requires a Gibbs free energy barrier
of 26.6 keal mol™" to form the benzylic carbocation A3. The
azide moiety is favorable to attack the intramolecular carboca-
tion to generate six-membered ring D, which is exothermic by
16.6 kcal mol™'. In the most stable conformation of D, the
dihedral angle of the azide moiety with the alkyl group increases
to —159.5°, while the one with hydrogen decreases to 84.2°. This
is likely to provide an advantage for the 1,2-alkyl shift. The
following Schmidt rearrangement of D including the 1,2-H shift
through TS5 requires a free energy barrier of 15.3 kcal mol ™" to
give 4-H. In contrast with C, D undergoes a 1,2-alkyl shift
through TS6 with a free energy barrier of 14.4 kcal mol ", which
is favorable compared to the 1,2-H shift pathway, indicating
that the 1,2-alkyl shift pathway becomes predominant.
Reviewing the whole energy profile, it is revealed that the
oxidation with hydride transfer is the rate-determining step,
while the chemoselectivity in the nitrogenation of alkyl azides is
essentially controlled by the conformation of the cyclic inter-
mediate and the ring-side in the Schmidt rearrangement
process. The experimentally observed electronic effects on the
Ar group are consistent with the first oxidation step with
hydride transfer as the rate-determining step (see the ESI{ for
details).

Conclusions

In summary, we have demonstrated a novel metal-free intra-
molecular Csp®-H/C-C amination of alkyl azides for the

This journal is © The Royal Society of Chemistry 2020
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synthesis of cyclic imines and tertiary amines. Two C-N single
bonds or a C=N double bond are efficiently constructed in
these transformations through the highly selective benzyl Csp®-
H or C-C bond cleavage. The mechanistic studies and DFT
calculation indicate a carbocation pathway for this novel
protocol. The present chemistry not only provides a new
approach to N-heterocycles, but also expands the trans-
formation and application of C-H/C-C amination in organic
synthesis.
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