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sis of capillary electropherograms
of autologously doped and undoped blood†

Shiladitya Chatterjee,a Sean C. Chapman,a George H. Major,a Denis L. Eggett,a

Barry M. Lunt,a Christopher R. Harrisonb and Matthew R. Linford *a

An ‘Autologous Blood Transfusion’ (ABT) is the reinjection of blood previously taken from an athlete to

increase its oxygen transport capabilities. Despite the World Anti-Doping Agency's ban on such practices,

ABT abuse continues. Autologous blood doping (ABD) is challenging to detect because of the similarities

between an individual's doped and undoped blood. Recently, Harrison et al. reported that high-speed

capillary electrophoresis may identify ABD. In their work, first order derivatives of the electropherograms

were used to identify doping. However, this method suffered from false negatives due to the subjective

nature of the analysis. Here, we provide an informatics analysis of the data from this study, contrasting

the results of traditional statistical methods and less traditional mathematical techniques. First, three well-

known multivariate statistical tools: cluster analysis, principal component analysis (PCA), and partial least

squares (PLS) are applied to develop calibrations and/or group electropherograms of undoped (0%) and

doped (5% and 10%) blood samples. (These doping levels were chosen due to the low physiological effect

of doping below 5%, with 10% corresponding to the approximate ‘gain’ derived from the transfusion of

a single unit of blood into an adult.) Different preprocessing and variable selection methods were

considered. Due to variation in the electropherograms and the limited sample size, these methods were

inadequate. We next considered four less commonly used mathematical/informatics tools: pattern

recognition entropy (PRE), the Euclidean distance between vectors, a peak fitting/integration method, and

the second moment (SM). Each of these techniques showed some ability to differentiate between the 0,

5, and 10% doped samples. We then evaluated the prediction capabilities of inverse least squares (ILS)

models based on these summary statistics. An ILS calibration based on PRE, the Euclidean distance, and

peak fitting/integration proved more successful than the PLS model at predicting levels of blood doping

from the corresponding electropherograms; the ILS model distinguished between doped (5% and 10%)

and undoped (0%) blood. This methodology may be applicable to other challenging informatics problems

like determining risk factors for genetically linked diseases, robust pattern finding in peak-like data such

as ChIP-seq, or other genomic sequencing for understanding the 3D genome.
1. Introduction

Unethical methods for increasing oxygen delivery to skeletal
muscle have been in existence for the last four decades despite
a ban on such activity by the International Olympic Committee
in the mid-1980s.4 Indeed, according to a World Anti-Doping
Agency report,5 introduction of any quantity of autologous,
homologous, or heterologous blood or red blood cells (RBCs)
into the circulatory system constitutes doping. Of these doping
methods, the detection of autologous blood transfusions
(ABTs), i.e., autologous blood doping (ABD), is the most
602, USA. E-mail: mrlinford@chem.byu.

92182-1030, USA

tion (ESI) available. See DOI:

878
challenging.6 In an ABT, transfused RBCs are taken from the
athlete and stored for reinfusion at a later date. Currently, ABD
cannot be directly detected by regular anti-doping tests. Most
anti-doping agencies rely on indirect methods, the most
common of which consists of maintaining an athlete's ‘biolog-
ical passport’.7 ABD alters the characteristic biomarkers associ-
ated with erythropoiesis (red blood cell production). Thus, the
observation of the hematological module and the monitoring of
specic biomarkers allows for the detection of ABD. However,
biological passport based ngerprinting of every athlete's
hematological prole is expensive and time consuming.

Recently, Harrison et al. introduced a fast (ca. 3 min), direct
capillary electrophoresis (CE) based method to detect ABD.1

This approach relies on a decrease in the zeta potential of stored
RBCs, which impacts their mobility. The aging of the blood
results in signicant rheological changes in the RBCs, particu-
larly a decrease in surface area and volume.8,9 Harrison's work
This journal is © The Royal Society of Chemistry 2019
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demonstrated the ability of CE to respond to changes in RBC
distributions, i.e., ABD resulted in changes to the RBC peak
envelope, indicating the presence of aged RBCs. Fig. 1 shows
the raw data from their study, which included undoped (0%)
and simulated (5% and 10%) doped samples from three indi-
viduals/subjects: A, B, and C. Each electropherogram consists of
a sharp peak at earlier time (ca. 1.5 min) followed by a shoulder
at longer times (ca. 1.8–2.7 min), where the length and height of
the shoulder tend to increase with increasing doping levels (see
Fig. 1d). Harrison et al. presented a rst derivative of the data as
a mathematical tool for quantifying this difference. Doping was
identied by the presence of positive slopes. However, this
approach was subjective, where a lack of a clear gure of merit
for this approach resulted in false negatives.

The electropherograms in the Harrison study exhibited
a substantial amount of variability and complexity, while still
showing features that were consistent with doping.1 Fore-
xample, the initial sharp peak in the electropherograms of the
samples from subjects A and C elute close together and with
similar standard deviations: 1.47 � 0.02 min and 1.48 � 0.02
min, respectively (see Fig. 1a and c). However, this initial
sharp peak varies in both shape and position in the subject B
samples: 1.49 � 0.09 min (see Fig. 1b). Overall, the electro-
pherograms of the subject C samples are narrower than those
from subjects A and B. The shoulders following the initial
peaks in subject B have lower absolute intensities than the
shoulders on samples A and C. The raw data suggest that it
will be challenging to develop a universal informatics model
that is simultaneously applicable to all three subjects and able
to differentiate between 0, 5, and 10% doped samples.

In this work, we applied three traditional informatics
methods to differentiate between 0, 5, and 10% doping in three
Fig. 1 Capillary electropherograms of undoped (0%) and doped (5 and 1
each doping level are shown in each panel. (d) Three electropherogram

This journal is © The Royal Society of Chemistry 2019
subjects. Doping levels of 5% and 10% were chosen because
below 5% doping, there are no appreciable physiological effects
that increases an athlete's performance.10 A single unit of ABD
blood transfusion into an athlete (assuming 4–5 L of blood for
an adult) results in 10% doping.2 The informatics methods
employed in this work included cluster analysis, principal
component analysis (PCA), and partial least squares (PLS),
which struggled to identify doping due to the limited size of the
data set and the large natural variation in the electrophero-
grams that was noted above. For example, cluster analysis
achieved separation of the undoped samples from the doped
samples at a level of three clusters, but gave meaningless results
at a level of two clusters. PCA scores did not show clear clus-
tering of any of the samples, and the PLS calibration showed
large error bars aer a leave-one-out cross validation of the data.
Accordingly, we considered four less traditional methods:
pattern recognition entropy (PRE), the Euclidean distance,
a peak tting method (Peak Fit-Integration), and the second
moment (SM) to differentiate the electropherograms, all of
which showed some success. Combinations of 2, 3 and 4 of the
summary statistics generated from these analyses were used in
an inverse least squares (ILS) analysis. The resulting ILS cali-
brations showed solid promise in differentiating between
doped and undoped samples and to some extent between
different levels of doping. Thus, this approach appears to be
able to identify ABD in athletes.

2. Experimental
2.1 Sample preparation and data collection

Blood samples analyzed in this study were procured from three
professional male cyclists and one less active control male
0%) blood samples of subjects (a) A, (b) B, and (c) C. Three replicates at
s from subject A at 0, 5, and 10% doping levels.

Anal. Methods, 2019, 11, 1868–1878 | 1869
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subject according to proper ethical practices. Each of the
subjects was provided with a written informed consent
document, which included details on procedures and bio-
logical data handling. Samples (200 mL) were collected by
a ngertip lancing process and stored for 41–42 days at 4 �C
before being infused into freshly-drawn blood samples to
replicate an autologous blood transfusion. Though the
storage of whole blood in the citrate-phosphate-dextrose
(CPD) buffer used in this study is potentially not the method
of choice used by athletes, it is a reasonable approach for
studying autologous blood doping. Indeed, this option was
selected because it would not trigger any of the controls set by
the Athlete's Biological Passport (ABP) testing regimen, the
most common tool used to detect blood doping. Other storage
and transfusion methods, such as cryopreservation of RBCs,
could trigger the ABP alarm, as the inux of RBCs without
compensating for an increase in total blood volume would
push an athlete above the hematocrit limit (% RBCs in total
blood volume). Thus, while the doping approach taken here
may not have been perfect, it was adequate to simulate what
could likely take place. This protocol and study had been
approved and funded by the World Anti-Doping Agency. The
RBCs contained in the transfused samples were then sepa-
rated and prepared for the CE separation. The RBCs were
isolated via centrifugation and vortex mixing with phosphate-
buffered saline (PBS) and 2.5% glutaraldehyde solutions in
PBS (gPBS), aer which they were given adequate time to
stabilize. The RBCs were further isolated and resuspended in
a 45% w/v NaBr solution for the CE separation. A P/ACE™
MDQ capillary electrophoresis system from Beckman Coulter,
Inc. (Fullerton, CA) was employed to carry out the subsequent
CE analysis using fused capillaries of 365 mm outer diameter
and varying internal diameter. Data were acquired every 0.25 s
and monitored at 415 nm to identify the RBCs. All separations
were performed at a controlled temperature of 25 �C for both
the sample compartment and the capillary. Further experi-
mental details associated with the sample preparation and
data collection were previously reported in the original paper
published by Harrison et al.1
2.2 Computations and data analysis

Computer programs used to perform the calculations of pattern
recognition entropy (PRE) and the Euclidean distance (dEu) were
written in the Matlab computing environment (Version R2015b,
Release No. 8.6.0.267246, The Mathworks Inc., 1 Apple Hill
Drive, Natick, MA, USA). CasaXPS (Version 2.3.19PR1.0) was
used for the peak tting/area calculations. The computer used
for this work was an Intel® Core™ i7-4770 CPU@3.40 GHz with
16.0 GB of RAM on a 64-bit Windows 7 Enterprise Edition
operating system. Capillary electropherograms were organized
row-wise to construct a data matrix. PCA and cluster analysis
were performed using the PLS Toolbox, version 7.9.3 from
Eigenvector Research, Inc., Wenatchee, WA, USA in the MAT-
LAB programming environment. Cluster analysis was per-
formed on the preprocessed data (preprocessing described
below) using Ward's minimum variance method.
1870 | Anal. Methods, 2019, 11, 1868–1878
3. Theory

The following is a brief description of the informatics methods
used in this study.

3.1 Cluster analysis11

Cluster analysis relies on the assumption that related spectra/
data vectors will be closer in an n-dimensional space, i.e.,
similar samples will cluster.12–14 It is primarily an exploratory
analysis method. Spectra/data vectors are aggregated according
to the similarity of their features/variables, i.e., a cluster will
dene group memberships at different levels of aggregation. In
particular, the Euclidean distance can be used in a cluster
analysis to determine similarity between spectra. Our calcula-
tion of Euclidean distances between undoped and subsequently
doped blood samples is similar in concept to cluster analysis
and a distance analysis we previously reported.15

3.2 Principal component analysis (PCA)16–18

In PCA, a set of data, e.g., spectra, is expressed in a different
coordinate system, which is dened by the eigenvectors, a.k.a.,
principal components or factors, of the data matrix. The
eigenvalues of these eigenvectors provide a quantitative
measure of the amount of variance captured by each principal
component. PCA can be viewed as plotting spectra as single
points in a hyperspace and then rotating the original coordinate
system of the data in a way that captures the largest amount of
variance possible in the spectra (data points) along new axes as
they are sequentially determined. The projections of the data
points on the new axes (principal components) are the scores,
and the loadings are the contributions of the original axes
(variables) to the new axes.

3.3 Partial least squares (PLS)11,17

The fundamental aim of PLS is to nd factors (latent variables)
that can capture the maximum variation present in a data
matrix, X, for predicting some attribute of the samples, c.19 In
this work, c represents the doping concentration matrix and X
represents the electropherograms arranged in a row-wise
fashion. A ‘leave-one-out’ cross-validation was used to test the
PLS calibration developed herein.

3.4 Pattern recognition entropy (PRE)18

PRE is a recent application of Shannon's Information
Theory20–22 that serves as a summary statistic and shape recog-
nition tool for differentiating between spectra. Shannon's
entropy (H) of a data stream is dened as:

HðxiÞ ¼ �
Xn

i¼1

pðxiÞlog2 pðxiÞ (1)

where the p(xi) are the probabilities associated with each data
point xi. H is a measure of the uncertainty in the system and
serves as a quantication of the total information present in
a data stream. PRE is a modication of Shannon's entropy
where ‘pseudo-probabilities’ in the electropherograms are
This journal is © The Royal Society of Chemistry 2019
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Fig. 2 Analysis of the main, sharp peak (labeled ‘1’ and highlighted in
green) centered at ca. 1.5 min in an electropherogram of a 5% doped
sample from subject A using a Shirley background.
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obtained by normalizing the data with the 1-Norm. Spectra with
more features have higher PRE values (many data points with
higher p(xi) values), and vice versa. PRE has been recently shown
to be helpful in analyzing X-ray photoelectron spectroscopy
(XPS) and time-of-ight secondary ion mass spectrometry (Tof-
SIMS) depth proles.18 The ‘reordered spectrum’ is a visual,
intuitive tool for better understanding the relationship between
normalized spectra and their corresponding PRE values.23 PRE
has been used to select mass chromatograms to prepare high
quality total ion current chromatograms in liquid chromatog-
raphy-mass spectrometry.24,25 Because the CE spectra from
doped and undoped blood differ in shape, PRE can be employed
to differentiate and identify the samples. As illustrated in
Fig. 1d, the electropherograms of undoped blood tend to be
narrower/more ‘spike-like’, i.e., they should have lower PRE
values, with the absence of a wide shoulder arising from an
absence of aged RBCs, while the electropherograms of the
doped samples tend to be wider/contain more evenly matched
values, i.e., they should have higher PRE values.
3.5 Euclidean distance (dEu)

The Euclidean distance (dEu) of two vectors15,26 in an n-dimen-
sional space is the length of the line segment connecting them.
For two vectors u, v Є ℝn, dEu is dened as:

dEuðu; vÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðu1 � v1Þ2 þ ðu2 � v2Þ2 þ ðu3 � v3Þ2.ðun � vnÞ2

q
(2)

for example, dEu for u (1, 2, 3, 4) and v (2, 3, 4, 5) is,

dEuðu; vÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� 2Þ2 þ ð2� 3Þ2 þ ð3� 4Þ2 þ ð4� 5Þ2

q
¼ 2 (3)

an electropherogram, which is a set of intensity values at
distinct time points, can be considered a vector in an n-
dimensional space, where n is the total number of time points
at which intensity values are recorded. Accordingly, if two
electropherograms are similar, their dEu value will be closer to
zero. On the other hand, dEu values of less similar electrophe-
rograms (or spectra) are expected to be larger.
3.6 Peak t, integration (PFI)

As the degree of autologous blood doping (ABD) increases, the
shoulder to the right of the main signal in the electrophero-
grams generally becomes longer and higher. A commercial peak
tting soware package (CasaXPS – see details above) was used
to calculate the areas of the entire signals (main sharp peaks
and shoulders) and the areas of just the sharp peaks. The
difference between these areas was a measure of the degree of
ABD. The background chosen for this purpose was the Shirley
background with a ve-point average, where an ‘n’ point average
in this background denes a ‘2n + 1’ window on each side of the
region described by the background to establish its starting and
ending points. The Shirley background has been widely used in
XPS peaktting.27 A higher window width for the background is
preferred when the data contains a higher noise level. Fig. 2
shows a representative Shirley background under the sharp
feature of an ABD electropherogram.
This journal is © The Royal Society of Chemistry 2019
3.7 Second moment (SM)

The second moment (SM), of the electropherograms was
calculated using the following formula:

SM ¼
Xn

1

yiti
2 (4)

where, yi are the intensity values from the electropherograms
and the ti are the corresponding time points. Here, the square of
the time values enhances the intensity values at increased
times. It is relatively easy to show that the secondmoment is not
shi invariant. To do so, we consider the second moment of
a ‘spectrum’ composed of two data points: (ti, yi) and (ti+1, yi+1):

yiti
2 + yi+1ti+1

2 (5)

here, it is assumed that the spacing between the times is Dt,
such that

ti+1 ¼ ti + Dt (6)

so that we can write eqn (5) as

yiti
2 + yi+1(ti + Dt)2 (7)

which is equivalent to

yiti
2 + yi+1ti

2 + yi+12tiDt + yi+1Dt
2 (8)

now, it is imagined that this spectrum is shied by n time
increments, i.e., by nDt, which converts eqn (7) into:

yi(ti + nDt)2 + yi+1(ti + (n + 1)Dt)2 (9)

expanding and simplifying this equation gives:

yiti
2 + yi+1(ti + Dt)2 + yi[ti2nDt + n2Dt2]

+ yi+1[ti2nDt + 2nDt2 + n2Dt2] (10)

if the second moment enjoyed shi invariance, eqn (7) and (10)
would be the same. However, it is clear that if n is an integer
Anal. Methods, 2019, 11, 1868–1878 | 1871

https://doi.org/10.1039/c9ay00192a


Analytical Methods Paper

Pu
bl

is
he

d 
on

 2
8 

fe
rr

ag
hj

u 
20

19
. D

ow
nl

oa
de

d 
by

 F
ai

l O
pe

n 
on

 0
7/

05
/2

02
5 

9:
18

:5
8.

 
View Article Online
greater than 0, Dt > 0, yi s 0, and xi s 0, the third and fourth
terms in eqn (10) are not zero. Accordingly, we calculated the
secondmoment of our data set starting from the rst data point
in the series, and also starting just before the sharp peaks that
contain useful information.

3.8 Inverse least squares (ILS)

The governing and most simple equation for classical least
squares (CLS) is A ¼ KC, where A, K, and C are matrices con-
taining absorbance spectra, pure component spectra, and
concentrations, respectively. As written here, K organizes the
pure component spectra column-wise. CLS models spectra as
linear combinations of pure component spectra. Inverse least
squares (ILS) is based on a similar equation: C ¼ PA. That is,
ILS directly relates measured spectra to concentrations
through a matrix P. To develop an ILS calibration, i.e., to solve
for P when C and A are known, one must rst right-multiply
both sides of C ¼ PA by AT. The resulting matrix (AAT) will only
have an inverse, i.e., not be rank decient, if it has at least as
many columns as it does rows. That is, ILS requires that there
be at least as many samples as there are data points in A. Many
spectra, e.g., electropherograms, contain hundreds or thou-
sands of values, and it is not generally feasible to work with
hundreds or thousands of specimens (spectra). Hence, a vari-
able reduction technique is oen necessary for ILS to function.
In this work, we reduced the electropherograms to four
numbers: the PRE, dEu, PFI, and SM values, to develop an ILS
model for predicting doping levels.

3.9 Preprocessing

Preprocessing plays an important role in many chemometrics
analyses. For example, mean centering consists of taking the
average of the values of the electropherograms at a given time
and then subtracting that average from each individual value
at that time. In other words, the average electropherogram is
subtracted from each electropherogram in the data set and
the center of the data point cluster (individual electrophero-
grams) is moved to the origin. This is advantageous because
otherwise the rst principal component (PC 1) in PCA points
towards the center of the cloud of data points, i.e., it repre-
sents the average spectrum, where this direction may or
may not correlate with any chemical trend in the data and
PC 1 may have to be discarded. However, with mean
centering, the spectral regions (points in time in the elec-
tropherograms here) that correspond to greater excursions
(spreads) in the data are more heavily weighted in the anal-
ysis. Autoscaling overcomes this problem. Autoscaling
consists of mean centering the data and then dividing by the
corresponding standard deviations, putting the regions of
the electropherograms/spectra on equal footing in the
analysis. Autoscaling is generally inappropriate for data sets
that contain both noisy and signal-containing regions
because it gives them equal importance in the analysis. This
approach is appropriate for our range-selected data (see
below) because the data do not contain regions of signicant
noise.
1872 | Anal. Methods, 2019, 11, 1868–1878
4. Results and discussion

The purpose of our work is to nd statistical/mathematical tools
that differentiate between the electropherograms from doped
and undoped blood in the ABD data set in Fig. 1. Believing it
would be important to start with well-accepted tools before
considering or introducing others, we rst applied three well-
known chemometrics methods to the data set: cluster analysis,
PCA, and PLS. These traditional methods were inadequate
because of the large natural variation in the electropherograms
and the limited number of samples (spectra), which made
variance analysis difficult. Accordingly, we pursued other
possible approaches/algorithms. These included pattern
recognition entropy (PRE), which we have recently used
multiple times,18,23,24,28 the Euclidean distance, peak t-inte-
gration (PFI), and the second moment (SM). These results were
then combined to develop inverse least squares (ILS)
calibrations.
4.1 Traditional analyses: cluster analysis, PCA, and PLS

Three different preprocessing methods were applied to the data
in the cluster analysis. In the rst, a process referred to as ‘range
selection’, the data were selected over the range in which they
appear to containmeaningful signal(s) (from about 1.3–2.7min,
see Fig. 1). Range selection is a form of scaling in which the data
are multiplied by a weighting factor of 0 or 1. The range selected
data points were then normalized with the 1-Norm, where this
operation consists of division of each data point in an electro-
pherogram by the sum of the data points in that electrophero-
gram, or in the case under current study, each point in the
range-selected electropherogram was divided by the sum of the
data points in the range-selected electropherogram. Finally, the
data were autoscaled. Replicate runs of each sample introduce
correlation into the analysis. However, given the limited sample
size and the signicant natural variation between the runs,
smoothing over this variation by averaging the runs would
result in the loss of information. Fig. 3 shows the dendrogram
produced from the cluster analysis of the preprocessed data.
The results are mixed. Of the three main clusters in Fig. 3,
which are delineated by the black, vertical, dashed line, the
bottom cluster contains seven mostly ‘Clean’ (0%) electrophe-
rograms with only two that are not (one 5% and one 10%
sample). The middle cluster consists of an even mix of 5% and
10% samples (six of each) and one ‘Clean’ sample, and the top
cluster also contains an even mix of 5% and 10% samples (two
of each) plus one ‘Clean’ sample. These results suggest that
cluster analysis can fairly reasonably separate doped (5% and
10%) from undoped (0% ‘Clean’) samples, but that it cannot
distinguish between the two levels of doping considered in this
study. However, there is an inconsistency in the clustering here
that is revealed in the two-cluster model in the dendrogram (see
the light blue vertical dashed line). That is, a priori, one would
expect that of the three clusters suggested by the dendrogram,
the two that should be most similar, and that should cluster,
would contain mostly 5% and 10% samples, i.e., the upper two
clusters in the three-cluster model. However, this is not the
This journal is © The Royal Society of Chemistry 2019
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Fig. 3 Dendrogram from a cluster analysis of the 0, 5, and 10% electropherograms under consideration in this study. The data were pre-
processed using range selection followed by normalization (1-Norm) and autoscaling. The dashed, vertical, light blue line indicates a two-cluster
model, and the dashed, vertical, black line indicates a three-cluster model. ‘Clean’, ‘D5%’, and ‘D10%’ represent the 0, 5, and 10% samples, and ‘A’,
‘B’, and ‘C’ represent the three subjects. Replica runs are represented by the number following the ‘A’, ‘B’, or ‘C’.
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case. The cluster with the larger number of 5% and 10%
samples combines with the bottom ‘Clean’ cluster in the two-
cluster model. While this may suggest that the ve samples in
the top cluster are outliers, it is probably inappropriate to
eliminate 5 of our 27 samples in this way.

The second preprocessing approach taken for our cluster
analysis was to repeat the range selection as was done previ-
ously and then apply the 1-Norm to the data. These results are
shown in ESI Fig. 1.† Two main clusters were observed. The top
cluster contained 12 samples: 2, 6, and 4 of the 0, 5, and 10%
samples, respectively, while the bottom cluster contained 15
samples: 7, 3, and 5 of the 0, 5, and 10% samples, respectively. It
is difficult to see any distinct separation of the samples in this
analysis. Finally, in a third attempt at cluster analysis, the data
were range selected and autoscaled. This approach again
produced two distinct clusters (see ESI Fig. 2†). The top cluster
contained 13 samples: 0, 6, and 7 of the 0, 5, and 10% samples,
respectively, while the bottom cluster contained 14 samples: 9,
3, and 2 of the 0, 5, and 10% samples, respectively. That is, with
this preprocessing approach, the top cluster only contained
doped samples (nearly equal amounts of the 5% and 10%
samples), while the bottom cluster contained almost twice as
many undoped samples as it did doped samples. While this
preprocessing approach is arguably the best of the three
This journal is © The Royal Society of Chemistry 2019
methods considered herein, its ability to separate the samples
into classes is still arguably weak.

PCA is one of the most commonly used multivariate analysis
tools. It is an unsupervised pattern recognition technique,
meaning that it requires no prior knowledge of the classes to
which objects may belong. PCA has been applied to many
different data types from many different types of samples. For
example, in our laboratory it has be used to analyze data ob-
tained from the analysis/characterization of alkyl monolayers
on silicon,29 coal samples,30 mouse livers,31 nanodiamonds,32

and chemically treated display glass surfaces.33 One of the key
limitations of PCA is the large sample size required for analysis
of variance and determination of correlation structure. Never-
theless, there are numerous reports containing examples of the
successful application of PCA to relatively small data sets.34 We
performed PCA of our range-selected, normalized, and auto-
scaled data. To determine the number of PCs to keep, we
examined the root mean square error of cross-validation
(RMSECV) and root mean square error of calibration (RMSEC)
gures of merit against the number of principal components
(PCs) (see ESI Fig. 3†). The RMSECV here was based on a leave-
one-out cross validation. As expected, the RMSEC value
decreased monotonically as the number of PCs increased, i.e.,
an increased number of PCs successively captured more of the
variance in the data. The RMSECV value decreased by only
Anal. Methods, 2019, 11, 1868–1878 | 1873
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a small amount from 1 to 9 components (from 7.513 to 7.251)
with only a limited increase in the variance captured. Thus, a one-
PCmodel would appear to be appropriate. However, the resulting
scores plot from this one-PC model did not show any reasonable
groupings of the samples that corresponded to their degrees of
doping (see ESI Fig. 4†). A nine-PCmodel was then considered. It
also failed to show any reasonable groupings of the data on any of
the nine PCs (see ESI Fig. 5–13†). Hotelling T2 vs. Q residuals plots
were then generated for the one- and nine-PC models (see ESI
Fig. 14 and 15†). These plots revealed the distribution of the data
both within (Hotelling T2) and outside of the models (Q resid-
uals). In both cases, most of the data points lie within 95%
condence limits. However, in the one-PC model three data
points fell far outside these limits, whereas in the nine-PCmodel,
two data points fell slightly outside the limits. Accordingly, a nal
attempt was made to analyze the data by PCA in which the three
outliers in the one-PC model were removed and the model was
recreated. Based on the eigenvalues associated with each PC,
a three-PC model appeared appropriate for the remaining data.
Unfortunately, none of the PCs in this model showed any
reasonable groupings of the data in their scores plots. In
summary, multiple attempts with PCA failed to reveal or nd any
of the expected trends in the electropherograms.

Despite the overall lack of success with PCA, we attempted to
use PLS to create a calibration of our data set. For the x-block in
this attempt, i.e., the electropherograms, the data were pre-
processed by range selection, the 1-Norm, and autoscaling. For
the y-block, i.e., the degree of doping, the values were mean
centered. Employing leave-one-out cross validation results for
this modeling (see ESI Fig. 16†), one-, seven-, or eight-compo-
nents seemed appropriate (these models showed the lowest
RMSEC values). Accordingly, we examined the predictions of
the one- and seven-component models. (The eight-component
model was not considered because its RMSECV value was
essentially identical to that from the seven-component model.)
The predictions of the seven-component model were of low
quality (see Fig. 4). This model appeared to be able to differ-
entiate between the 0% and 10% doping, but the 5% samples
Fig. 4 Seven-component, PLS predictions of doping levels from
replicate runs for undoped and doped (5 and 10%) blood samples.
Here, a separate seven-component PLS model was created for each
data set with one of its samples left out, and that sample was then
predicted by the corresponding model.

1874 | Anal. Methods, 2019, 11, 1868–1878
showed strong overlap with both the 0% and 10% samples. The
predictions from the one-component model were of a lower
quality and were, therefore, useless. We conclude that PLS is
fairly unsuccessful in creating the desired calibration between
the doping levels and the corresponding electropherograms.
4.2 Analysis by less traditional tools: PRE, the Euclidean
distance, peak t-integration and the second moment

Because of the inability of the traditional multivariate
approaches (cluster analysis, PCA, and PLS) to model the
doping levels of the blood samples, we turned to less traditional
mathematical/statistical analyses. These were pattern recogni-
tion entropy (PRE), the Euclidean distance, peak t-integration,
and the second moment.

First, PRE was performed on the electropherograms under
consideration in this study. Fig. 5a shows the average PRE
values with standard deviations of the three replicate electro-
pherograms from each subject at each level of doping (see ESI†
Fig. 17 for the corresponding raw data). The PRE value, which is
a summary statistic, is reective of the shape of the electro-
pherogram, where the presence of additional peaks/shoulders
in the electropherogram, which takes place for the 5% and 10%
doped samples, results in higher PRE values. As a result, the
PRE values gradually increase with doping – PRE is rather
effective at responding to the doping levels of all the samples
considered in this study.

The reordered spectrum is a visual, intuitive tool for under-
standing PRE analysis;23 the absolute magnitude of PRE values
are abstract and a graphical way of understanding it can be
helpful. A reordered spectrum sorts the values of a spectrum
from high to low. For example, three reordered spectra (elec-
tropherograms) of undoped, 5% doped, and 10% doped blood
from subject A are shown in Fig. 5b. The reordered electro-
pherogram corresponding to the undoped sample has the
sharpest peak, which is consistent with its lower PRE value,
while the reordered electropherogram from the 5% and 10%
doped samples have higher numbers of data points with larger
values, which is consistent with their higher PRE values.

Second, Fig. 5c shows the Euclidean distances (dEu) between
the electropherograms of the clean and 5% or 10% doped
samples, i.e., the distance between the 0% and 5% and also the
0% and 10% samples was calculated for each replicate run.
These distances between the electropherograms are expected to
progressively increase with increasing doping levels. This is
another way of saying that the vectors corresponding to the
doped and undoped electropherograms are expected to be
different, and also increase as the degree of doping increases. It
is clear from the results in Fig. 5c that dEu always shows
a difference between the undoped and doped samples.
Furthermore, while, on average, the dEu values for the 10%
doped samples are greater than those for the 5% samples, there
is enough overlap between these results that it would be diffi-
cult to differentiate between these two states with this method.

Third, Fig. 5d shows the ‘Peak Fit-Integration’ (PFI) results
obtained by measuring the areas of the shoulders in the elec-
tropherograms to the right of the main peaks of the doped and
This journal is © The Royal Society of Chemistry 2019
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Fig. 5 Results of the less traditional mathematical/informatics methods used to analyze the doping data. (a) (top left) The average PRE values
(heights of bars) with standard deviations (error bars) of the electropherograms of subjects A, B and C for 0, 5, and 10% doping levels. (b) (top right)
The reordered electropherograms from replicate run 1 of subject A at 0, 5, and 10% doping levels. (c) (middle left) The Euclidean distances
between electrophoretic separations of clean and doped (5% and 10%) samples of subjects A, B and C with three replicate runs for each. (d)
(middle right) The absolute areas of the broad features (shoulders) to the right of themain peaks from electrophoretic separations of subjects A, B
and C for 0, 5, and 10% doping levels. (e) The second moments of the range-selected electropherograms.
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undoped samples. Two things are clear here. First, there is some
scatter in the results. Second, the area of the shoulder consis-
tently increases with doping level. The average and standard
deviation for each set of measurements are 0.05 � 0.01, 0.07 �
0.02, and 0.11 � 0.04 for the undoped, 5% doped, and 10%
doped samples, respectively.

The second moment of the electropherograms was calcu-
lated in two different ways. In the rst case, complete electro-
pherograms were used for SM calculations. This method failed
at providing any meaningful difference in the doping levels. In
the second, range-selected data were used (Fig. 5e), and the data
were preprocessed by normalization (1-Norm), followed by
autoscaling. As was the case with some of the other less tradi-
tional methods we employed, this approach showed promise in
separating the undoped (0%) and doped (5 and 10%) samples,
but not in differentiating between different levels of doping.
This journal is © The Royal Society of Chemistry 2019
4.3 Inverse least squares

Inverse least squares (ILS) is an important method for gener-
ating calibrations. In general, ILS uses a relatively small number
of variables to create calibrations. For example, an ILS regres-
sion can be based on principal component regression (PCR),
which uses the PCA of a data set to reduce the number of
variables in the data set.17 Here, we chose to construct ILS
calibrations using the PRE, dEu, PFI, and SM summary statistics
from the electropherograms. Each of these had demonstrated
some ability to differentiate between the samples based on their
doping levels. Accordingly, a combination of these metrics
would lead to a calibration with greater predictive ability. The
coefficient of determination (R2) was used as the gure of merit.
R2 is dened as the square of the correlation coefficient r (eqn
(11)) and is a measure of the percentage variation in one vari-
able as explained by another variable.35 (We include the formula
Anal. Methods, 2019, 11, 1868–1878 | 1875
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Fig. 6 Leave-one-out predictions from ILS models based on (a) PRE, dEu, and PFI, (b) PRE, dEu, and SM, (c) PRE, PFI, and SM, and (d) PRE, dEu, PFI,
and SM summary statistics from replicate runs of A, B and C for undoped (0%) and doped (5% and 10%) blood samples. The R2 values and data
were compared against straight lines y ¼ x (red lines).
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for ‘R’ here because its denition varies in the scientic
literature.)

R ¼
n
�X

xy
�
�
�X

x
��X

y
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffih
n
X

x2 �
�X

x
�2ih

n
X

y2 � ðyÞ2
ir (11)

ILS models were built based on all possible combinations
of the four summary statistics. All of the ILS models based on
any two of our summary statistics showed very strong overlap
in the predictions of all the three doping levels (0, 5 and 10%),
i.e., these models were useless. Accordingly, we considered
ILS models based on all possible combinations of three
summary statistics (see Fig. 6). First, Fig. 6a shows the leave-
one-out predictions using the PRE, dEu and PFI summary
statistics. It can easily differentiate between undoped (0%)
and doped (5% or 10%) electropherograms, but not between
the two levels of doping. This three summary statistic ILS
model was the most successful of the four we considered (R2

value of 0.994). It seems reasonable that it is based on PRE
and dEu because these summary statistics appeared to be the
most successful in differentiating between the doping levels
1876 | Anal. Methods, 2019, 11, 1868–1878
(see Fig. 5). Fig. 6b shows the ILS predictions using PRE, dEu
and SM. It was less successful as a model (R2 value of 0.938),
which may be explained by SMs greater struggle to differen-
tiate between the samples (see Fig. 5e). The ILS model based
on PRE, PFI and SM in Fig. 6c was quite poor (R2 value of
0.574), and the ILS model created using dEu, PFI and SM,
which is not shown, was even worse (R2 value of 0.328). It is
evident from these results that PRE and dEu made the largest
contributions to the prediction capabilities of the ILS models.
As a nal attempt, an ILS model based on all four summary
statistics was created (see Fig. 6d). It gave the highest R2 value
(0.997), and like the PRE, dEu, and PFI-based ILS model, it can
clearly differentiate between 0% (undoped) and 5% or 10%
levels of doping. Doping below 5% has little physiological
effect.2 Accordingly, the ILS model shows high accuracy in its
ability to differentiate between undoped and ‘meaningfully’
doped blood (see Fig. 6a and d).
5. Conclusions

The detection of autologous blood doping is critical for banning
unscrupulous practices used by athletes to gain an unfair
This journal is © The Royal Society of Chemistry 2019
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advantage in competition. In this work, we have demonstrated
several mathematical techniques that distinguished between
doped and undoped blood samples. Capillary electrophoresis
was previously used to separate fresh and stored RBCs, serving
as a viable alternative to the widely used and more expensive
method of monitoring an athlete's biological passport. In Har-
rison's original work on this topic, a rst derivative analysis of
slopes was used to detect the presence of doping. However, this
method suffered from false negatives, lacking a strong ability to
precisely identify doping. In our work, conventional informatics
techniques (cluster analysis, PCA, and PLS) had very limited
success in distinguishing between electropherograms of
samples with different levels of doping. Several preprocessing
methods were considered in these analyses. Variance analysis
(PCA and PLS) was challenging due to the large natural variation
in electropherograms from replicate runs. Four less commonly
used summary statistics (PRE, the Euclidean Distance, Peak Fit/
Integration, and the Second Moment) were applied to the data.
An ILS calibration based on these inputs allowed easy differ-
entiation between undoped and doped samples, and to some
degree between the different levels of doping (5 and 10%). We
understand that natural variation can exist in the RBCs of
athletes due to biological sex, ethnicity, muscle/fat percentage,
diet, age, etc. In our (Harrison's) broader studies in this area, he
only sees minor differences in absolute migration times of RBCs
– he has yet to see any signicant differences between individ-
uals. Thus, the changes induced by transfused cells appears to
be a signicant, measurably change to the cell population.
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