Ligand-driven facet control of InAs-based quantum dots for enhanced near- and shortwave infrared emission

Abstract

InAs-based quantum dots (QDs) are promising heavy-metal-free semiconductors for infrared emission technologies, offering tunable bandgaps via quantum confinement and excellent charge-carrier transport properties. Building on these advantages, we report the synthesis of QDs tailored for emission in the near-infrared (NIR) and short-wave infrared (SWIR) regions, emphasizing the critical role of capping ligands in controlling surface facet populations and nanocrystal morphology. Specifically, we demonstrate that the choice of ligand plays a critical role in determining the morphology and surface characteristics of InAs QDs. Using dioctylamine as a ligand results in InAs QDs with a spherical or tetrapod morphology, where nonpolar (110) facets are predominantly exposed on the surface. In contrast, oleic acid as a ligand promotes the formation of tetrahedral-shaped QDs with polar (111) crystalline planes being more prominently exposed. Using a one-pot synthesis approach, we successfully synthesized InAs/InZnP/ZnSe/ZnS core-multi-shell structures that effectively minimize interfacial defects. QDs with dioctylamine-capped core exhibit significantly higher photoluminescence quantum yield (PLQY) compared to those with oleic acid-capped cores. We achieved a PLQY of 39% at 1260 nm and 7.3% at 1420 nm with QDs using dioctylamine, representing efficiency values among the best reported in both the NIR and SWIR regions. Transient absorption (TA) spectroscopy reveals that dioctylamine-capped QDs exhibit reduced ground-state bleaching differences across excitation wavelengths compared to oleic acid-capped QDs, indicating significantly reduced interfacial trap states. These findings highlight the importance of ligand-driven facet control in the context of minimizing interfacial defect formation.

Graphical abstract: Ligand-driven facet control of InAs-based quantum dots for enhanced near- and shortwave infrared emission

Supplementary files

Transparent peer review

To support increased transparency, we offer authors the option to publish the peer review history alongside their article.

View this article’s peer review history

Article information

Article type
Research Article
Submitted
16 ghje 2025
Accepted
25 marz 2025
First published
25 marz 2025
This article is Open Access
Creative Commons BY-NC license

Inorg. Chem. Front., 2025, Advance Article

Ligand-driven facet control of InAs-based quantum dots for enhanced near- and shortwave infrared emission

H. Cho, Y. Kim, W. D. Kim, Y. Park, J. Y. Woo, H. Lim and D. C. Lee, Inorg. Chem. Front., 2025, Advance Article , DOI: 10.1039/D5QI00142K

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements