Engineering Bi2S3-based Nanoreactors for Antimicrobial Applications: Synthetic Strategies, Mechanistic Insights, and Practical Implementations

Abstract

Bacterial infections pose a critical threat to global public health, but the overuse of antibiotics exacerbate antimicrobial resistance, urgently necessitating alternative antibacterial strategies. Nanoreactors, as innovative nanoplatforms capable of generating antibacterial effects through physical or chemical mechanisms independent of traditional antibiotics, offer a viable pathway to circumvent such resistance. This review systematically examines recent advances in Bi2S3-based nanoreactors for antibacterial applications, covering synthesis methods, modification strategies, antibacterial mechanisms, and potential uses. A key challenge lies in enhancing Bi2S3-based nanoreactors’ catalytic activity and biocompatibility under physiological conditions. It highlights that tailoring the morphology and electronic structure (doping, defect engineering or heterojunction construction) can effectively bolster the antibacterial efficacy of Bi2S3. The review further emphasizes the multiple antibacterial mechanisms of Bi2S3-based nanoreactors, including physical damage, chemical action and immunomodulatory effects, which boast advantages such as high efficiency, low toxicity, and multi-functional synergy. This work seeks to comprehensively synthesize the current state of Bi2S3-based nanoreactors in antibacterial applications, while identifying key challenges in optimizing synthesis processes, enhancing stability, and advancing clinical translation. Moreover, it underscores the potential of Bi2S3-based nanoreactors as a next-generation antibacterial agent, offering theoretical frameworks to facilitate its clinical adoption and innovative solutions to address the global antibiotic resistance crisis.

Transparent peer review

To support increased transparency, we offer authors the option to publish the peer review history alongside their article.

View this article’s peer review history

Article information

Article type
Review Article
Submitted
18 Aug 2025
Accepted
20 Oct 2025
First published
05 Nov 2025

Nanoscale Horiz., 2025, Accepted Manuscript

Engineering Bi2S3-based Nanoreactors for Antimicrobial Applications: Synthetic Strategies, Mechanistic Insights, and Practical Implementations

R. Gu, H. Chen, Y. Wang, W. Tao, H. Li, H. Zhang and S. Ye, Nanoscale Horiz., 2025, Accepted Manuscript , DOI: 10.1039/D5NH00592B

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements