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Modern office infrastructure, furnishings, and traditional cooking practices contribute to air pollution,
posing significant health risks, including respiratory issues, cancer, and immune system suppression,
especially for vulnerable groups. This review examines recent progress in adsorption, catalytic oxidation,
and phytoremediation for reducing volatile organic compounds and fine particulate matter, major air
pollutants. Adsorption technologies employ conventional materials like activated carbon and advanced
options like metal—organic frameworks and biochars, offering high adsorption capacities due to tunable
structures and large surface areas. Catalytic oxidation, including photocatalytic and thermocatalytic

methods, effectively degrades pollutants, with composites like nano-ZnO/coke enhancing removal
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effectively removes pollutants through enzymatic degradation, stomatal absorption, and microbial
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Environmental significance

review assesses integrated strategies’

comprehensive air quality management, highlighting their potential to enhance public health.

scalability, efficiency, and practicality for

Authors give serious consideration to the remediation of indoor air pollution, providing comprehensive knowledge on issues and purification methods for
removing volatile organic compounds and particulate matter from indoor air. This provides a comprehensive understanding of various adsorption, catalytic
oxidation, and phytoremediation methods for controlling indoor air pollution, advancing the application of these methods in removing air pollutants and

preventing public health issues.

1. Introduction

Modern office infrastructure and upgraded interior furnishings
have worsened air pollution (AP), compromising air quality.*
Hermetically sealed office buildings with poor ventilation and
heavy reliance on air-conditioning contribute to sick building
syndrome, driven by volatile organic compounds (VOCs) from
construction materials, furnishings, and equipment.>* Expo-
sure to AP leads to increased risks of cancer, respiratory issues,
allergies, and weakened immune systems.* AP's global burden
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extends beyond offices, impacting vulnerable populations
disproportionately.® Approximately 3 billion people, mainly in
low- and middle-income regions, rely on polluting cooking fuels
and stoves, emitting fine particulate matter (PM,s) and toxi-
cants that pose significant health risks.® Epidemiological anal-
yses reveal that among the associated adverse health outcomes,
approximately 27% are attributable to pneumonia, 18% to
stroke, 27% to ischaemic heart disease, 20% to chronic
obstructive pulmonary disease, and 8% to lung cancer.
Notably, nearly 50% of pneumonia-related mortality in children
under five years of age is linked to the inhalation of PM, s
derived from AP, underscoring the vulnerability of pediatric
populations to these environmental hazards.® These findings
collectively highlight the pivotal role of air quality in safe-
guarding and enhancing human health, necessitating effective
mitigation strategies. Among the most promising approaches
are adsorption and catalytic oxidation processes, which target
the removal or degradation of pollutants such as VOCs and
PM, s.° Adsorption uses high-capacity materials to capture
pollutants, whereas catalytic oxidation utilizes photocatalysts or
thermocatalysts to convert harmful substances into harmless
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byproducts.’ Phytoremediation utilizes various household
plants to absorb and break down pollutants, improving air
quality through natural processes.' This review synthesizes
recent advancements in air purification technologies, assessing
their effectiveness, scalability, and potential integration into
comprehensive air quality management systems. Certain
selective houseplants have proven effective in breaking down
common air pollutants, making them a valuable tool for
improving air quality. This paper addresses AP by exploring
scientific foundations and practical applications, providing
effective solutions.

2. Methods

This review examines various AP purification methods,
considering factors like temperature and humidity that influ-
ence their effectiveness. A comprehensive literature review can
identify factors driving the application of adsorption, catalytic
oxidation, and phytoremediation for air purification.”” This
review provides insights into advances in air purification, sup-
porting sustainable environments and informing future
management strategies to address VOC changes from evolving
painting applications and human activity patterns. This review
examines three air purification methods: (1) adsorption using
conventional adsorbents and metal-organic frameworks
(MOFs), (2) catalytic oxidation via photocatalytic processes, and
(3) phytoremediation using household plants. Comparing these
three air purification methods provides insights into effective
strategies for mitigating AP and informs future perspectives.

3. Advancements in air purification

Air purification of VOCs and PM, 5 can be achieved through
three methods: adsorption using conventional materials and
MOFs, catalytic oxidation using light-activated semiconductors,
and phytoremediation with plants. These approaches provide
valuable insights into scalability, efficacy, and environmental
sustainability.

3.1. Adsorption processes

Adsorption processes for AP mitigation focus on conventional
materials and MOFs to evaluate their effectiveness in removing
VOCs and safeguarding human health.

3.1.1. Conventional materials for adsorption. Adsorbents
are solid materials that adsorb gases or liquids due to their
extensive surface area and optimal pore structure, enabling
efficient capture and retention of target substances.'®'* Among
adsorption materials, activated carbon (AC) stands out as
awidely utilized and effective option for mitigating AP due to its
high surface area and adsorption capacity. However, its rela-
tively elevated cost poses a limitation, prompting research into
more cost-efficient alternatives. This balance between perfor-
mance and economic feasibility underscores the need for
ongoing advancements in adsorbent technologies, a key focus
of this review.” Another prominent adsorbent is the zeolite
molecular sieve, an inorganic crystalline material distinguished
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by its uniform pore structure, pronounced acidity, and excep-
tional hydrothermal stability. These properties render it
uniquely effective in the remediation of air pollutants, com-
plementing its role alongside other adsorbents such as AC.**"
Biochar mitigates VOCs through two primary mechanisms:
adsorption in the carbonized fraction and partitioning in non-
carbonized organic matter."® The carbonized fraction's adsorp-
tion capacity involves chemisorption (covalent bonding) and
physical adsorption (hydrophobic interactions, dipole-dipole
forces, -7 interactions, hydrogen bonding, and coulombic
interactions).’* Biochar's effectiveness in adsorbing VOCs
depends on factors like biomass source, pyrolysis temperature,
and surface modification. Different feedstocks yield varying
surface areas, morphologies, and elemental ratios (H/C and O/
C), even under identical synthesis conditions. For example,
bamboo-derived biochar (600 °C) has a surface area of 375 m>
¢ ', whereas switchgrass-derived biochar (same temperature)
has a significantly lower surface area of 15 m” g~ *.2° Operational
conditions like temperature, humidity, and flow velocity
significantly impact biochar's VOC mitigation effectiveness.
ACs, such as those derived from wood, coconut shells, and coal,
are commonly used.”

Wood-derived AC, with its highly developed pore structure,
effectively adsorbs substances and impurities.*
Coconut shell AC, appearing as black granules, is characterized
by a well-developed specific surface area ranging from 1000 to
1600 m* g~ !, a micropore volume comprising approximately
90% of its total porosity, and micropore diameters of 1 to 4 nm,
optimizing its adsorption capabilities for pollutants.**** Modi-
fied coconut shell AC exhibits enhanced removal efficiency for
pollutants like benzene, formaldehyde, and ammonia, out-
performing other ACs due to its well-developed pore structure,
high adsorption capacity, and durability. Derived primarily
from nutshells and wood chips through processes of carbon-
ization, activation, and refinement, it features a large specific
surface area, robust strength, uniform particle size, and a highly
effective pore structure, collectively enhancing its adsorption
performance.>® While agrowaste-based AC presents a lower-cost
option, it exhibits lower adsorption performance compared to
coconut shell-derived AC. In contrast, coal-based columnar AC,
made from high-quality anthracite, boasts a well-organized pore
structure, mechanical strength, and regeneration capabilities,
suiting it for gas purification, water treatment, and solvent
recovery.”® Impregnating AC with materials like MnO, enhances
its adsorption capacity. Specifically, MnO, improves formalde-
hyde removal by promoting particle dispersibility, reducing
agglomeration, and boosting catalytic efficiency.”” A TiO,-
impregnated carbon layer on expanded graphite-based carbon/
carbon composite boosts both adsorption and photocatalytic
degradation. This combo enhances formaldehyde removal by
leveraging TiO,'s photocatalytic properties while maintaining
adsorption performance.”® AC's adsorption capacity for VOCs
like benzene and toluene increases with pore diameter, but
larger pores can reduce efficiency for acetone and methanol.
Optimal adsorption occurs with pore diameters of 0.902-
1.997 nm within a relative pressure range of 0.1 P/P,.** AC's
formaldehyde adsorption capacity depends on its pore structure

various

© 2026 The Author(s). Published by the Royal Society of Chemistry
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and surface functional groups. A previous study shows that
higher nitrogen content in polyacrylonitrile-based AC fibers
boosts its affinity for polar pollutants like formaldehyde.®
Nitrogen functional groups near oxygen atoms boost adsorption
efficacy, but adsorbent design must also account for affinity to
water to ensure effective pollutant removal.’>** Research by
Bellat et al.** found that faujasite zeolites, particularly NaX, Nay,
and CuX, effectively capture formaldehyde, with a high
adsorption capacity of 14.6 mol m 2, outperforming other
nanoporous materials.

Cationic zeolites show promise for air pollution control, with
regeneration via vacuum heating at 200 °C, highlighting their
potential for practical applications.*® Electrostatic precipitation
charges and removes fine particulates, and pairing it with
adsorbents boosts gaseous contaminant removal. The effec-
tiveness depends on voltage and contaminant type. Applying
a strong electric field to AC fiber enhances adsorption
capacity.** Treating AC with an oxidant atmosphere boosts its
adsorption properties by increasing oxidized surface groups
and negative surface charge, especially in shell-derived
carbon.*®* A comprehensive evaluation of 15 biochar types
derived from five raw materials revealed varying VOC adsorp-
tion capacities, with acetone (483.09 mg g~ '), toluene (424.4 mg
g™ "), benzene (161.42 mg g '), and methanol (10.6 mg g™ ')
exhibiting different uptake.*® Surface area and non-carbonized
organic matter primarily influenced adsorption, while pyrol-
ysis temperature inversely affected efficiency. Biochar's cost-
effectiveness and abundance make it a promising VOC adsor-
bent. Furthermore, nanoparticle-integrated coke carbon shows
enhanced formaldehyde removal. Nano-ZnO-coke composites
demonstrate effective formaldehyde removal, achieving 40-73%
decomposition rates at concentrations of 2.5-25 mg m >.%
Longer residence times enhance degradation, highlighting the
potential of this method for efficient formaldehyde purification
potential.>” Chemical activation of coconut shell carbon with
KOH enhances benzene adsorption due to improved surface
properties.*® However, KOH incorporation can hinder porosity
development, especially mesopore formation, despite
increasing carbon reactivity.*® Activation temperature domi-
nates the activation process, and benzene adsorption capacity
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adsorbents reveals that advanced porous materials like modi-
fied zeolites outperform traditional materials (AC, natural
zeolites) in gas capture, offering higher capacity, selectivity, and
regenerability.** Nanofiber-based adsorbents, with high surface
areas and microporous structures, show promise due to their
reproducibility and reusability. A notable example is carbon
fiber aerogel (CFA) derived from bamboo fibers, which effec-
tively adsorbs organic pollutants with high selectivity, effi-
ciency, and recyclability.*

Table 1 compares adsorption capacities of conventional and
emerging adsorbents for VOCs, highlighting significant prog-
ress in material design for improving air quality. While AC (e.g.,
coconut shell) shows strong adsorption capacity (up to 800 mg
g~ for benzene), emerging materials like MOFs and biochars
exhibit even higher performance.”> MOFs like MOF-5 and MOF-
177 exhibit high adsorption capacities (1211 mg g~ for CH,Cl,
and 589 mg g ' for acetone), while biochar (bamboo) achieves
483.09 mg g~ ' for acetone, attributed to their superior surface
areas and tunable pores.>” Meanwhile, CFAs from bamboo show
promise with high toluene adsorption (450 mg g~ ") and repro-
ducibility.*® This review highlights the shift from traditional
adsorbents to advanced materials, emphasizing surface area,
pore size, and structural diversity as key factors in enhancing
VOC removal for effective air quality management.

3.1.2. Mitigation by metal-organic frameworks. MOFs are
porous, crystalline materials consisting of organic ligands and
metal ions that self-assemble into highly ordered frameworks
with exceptional structural versatility.*® MOFs have gained
attention for adsorption applications due to their high surface
area and pore volume, enabling exceptional pollutant capture
capabilities. They outperform traditional adsorbents, showing
high adsorption capacities for VOCs and toxic gases at ambient
conditions.** MOFs' tunable pore structure and surface prop-
erties allow for selective VOC adsorption, broadening their
applicability. Their composition of metal ions and organic
ligands enables in situ synthesis under mild conditions, facili-
tating customized material development.”” MOFs not only
effectively adsorb VOCs but also enable environmentally
sustainable synthesis, allowing in situ production that preserves
plant ecosystems.** MOFs outperform AC and zeolites due to

correlates linearly with surface area. A comparative analysis of their larger surface areas, tunable pore sizes, ordered
Table 1 Comparison of adsorption capacities of conventional and emerging adsorbents for VOCs*®

Adsorbent vOC g (mgg™ Am*g™ r (nm) References

AC (coconut shell) Benzene 800 1200 2.0 Pang et al.>®

AC (coconut shell) Formaldehyde 600 1200 2.0 Huang et al.”’

Biochar (bamboo) Acetone 483.09 375 1.5 Rezaee et al.”’

Biochar (switchgrass) Benzene 161.42 15 1.2 Rezaee et al.”’

MOF-5 CH,Cl, 1211 2500 1.2 Tranchemontagne et al*t
MOF-5 CCl, 1472 2500 1.2 Tranchemontagne et al.*!
MOF-177 Acetone 589 4170 0.94 Yang et al.**

MOF-177 Benzene 800 4170 0.94 Yang et al.*?

Nanofiber CFA (bamboo) Toluene 450 1800 0.8 Jiao et al.*®

“ Note that VOC is volatile organic compound, g is adsorption capacity (in mg g~ ), A is surface area (in m* g'), and r is pore size (in nm).

© 2026 The Author(s). Published by the Royal Society of Chemistry
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structures, and diverse architectures. Functional modification
capabilities further enhance their adsorption performance and
versatility.*” MOFs have emerged as key materials for mitigating
AP due to their exceptional adsorption capacities for toxic gases
at ambient temperatures. Their efficacy stems from diverse
interactions, including coordination bonding, acid-base forces,
m-complex formation, and hydrogen bonding, enhancing
selectivity.*® MOF-5 exhibits exceptional VOC adsorption
capacities at 295 K, with values of 1211 mg g ' (CH,Cl,),
1367 mg g ' (CHCl;), and others, surpassing traditional
adsorbents like AC by 4-10 times.** MOF-n materials, built from
extended metal carboxylate clusters, represent further
advancements in MOF development.** MOF-5's porous and
thermally stable framework retains structural integrity up to
300 °C, with 55-60% free pore volume, enabling optimal gas
adsorption.”

The development of porous materials for AP mitigation has
roots in early work, such as synthesis of diamond-like micro-
porous structures.> This pioneering research laid groundwork
for highly ordered frameworks, ultimately influencing the
emergence of MOFs.” These advancements have driven inno-
vations in VOC-capturing adsorption materials, a focus of this
review. Building on Hoskins and Robson's** work, Moore et al.>*
synthesized a novel skeletal polymer using silver and triphenyl
units. Yaghi et al.>* then pioneered MOFs, creating microporous
structures like MOF-5, a landmark material for VOC adsorption,
marking a significant milestone. Advancements in MOF design
include IRMOF-6,** outperforming MOF-5, and MOF-177,*
featuring a high surface area (4170 m® ¢” ') and 0.94 nm pore
diameter, enhancing adsorption capabilities. Yang et al**
demonstrated MOF-177's exceptional VOC adsorption, with
capacities over 200 mg g~ for compounds like acetone (589 mg
2~ ') and benzene (800 mg g™ ). Its high surface area (4170 m?>
g7 ") and pore diameter (0.94 nm) enable superior performance,
positioning MOF-177 as a promising material for AP mitigation.
The ZMF composite composed of zinc (Zn), manganese (Mn),
and ferrite (Fe;0,), combining MOF-199 with ZSM-5 foam,
demonstrates enhanced VOC adsorption capacity, out-
performing individual components. With significant increases
in adsorption for n-hexane (150%), benzene (283%), and
cyclohexane (468%), this hybrid material showcases the
potential of composite adsorbents for improved selectivity and
capacity.” Nanocasting SBA-15 silica into CMK-3 carbon replica
alters porous structures, yielding distinct chemical and struc-
tural properties.** CMK-3, derived from SBA-15, exhibits modi-
fied adsorption trends due to retained mesopores and inherent
microporosity.”® Similarly, the Materials of Institute Lavoisier
(MIL)-series MOFs leverage mesoporous and microporous
structures for effective VOC adsorption.?” The MIL-101 material
exhibits a specific surface area of up to 5900 m* g™, with its
benzene adsorption capacity at 303 K reaching 1303 mg g~ *,%®
surpassing the highest value previously documented in the
literature. Wang et al.*® synthesized MIL-101(Cr) and Cu-doped
MIL-101(Cr), achieving VOC adsorption capacities of 103.4 mg
g 'and 114.4 mg g™, respectively. The materials exhibited high
surface areas, with 3367 m* g~ ' for MIL-101(Cr) and 2518 m”

! Cu-3@MIL-101(Cr). Comparative with

g~ for analysis
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conventional AC, a widely utilized industrial adsorbent, indi-
cates that MIL-101(Cr) demonstrates considerable potential as
an effective adsorbent for the adsorption and elimination of
ethylbenzene from contaminated air,*** Finsy et al.®* studied
xylene isomer separation in MIL-47, observing an adsorption
hierarchy: ortho-xylene > para-xylene > meta-xylene, driven by
adsorbate-adsorbent interactions. Huang et al.®® found MIL-101
exhibits high adsorption capacities for VOCs with heteroatoms
or benzene rings, particularly n-butylamine (1062 mg g ),
outperforming AC and showing promise for AP remediation.
Table 2 summarizes recent breakthroughs in catalytic oxidation
approaches, focusing on catalyst composition, target pollut-

ants, removal efficiencies, and underlying reaction
mechanisms.
3.2. Mitigation by catalysts

Catalytic technology offers advantages for AP treatment,
including high efficiency, low temperature operation, broad
applicability across diverse contexts, simplicity of requisite
equipment, and no secondary pollution.”” Photocatalytic
oxidation stands out as a highly effective method for VOC
removal. Fujishima and Honda (1972) pioneered photocatalysis
research, showing TiO, electrodes decompose water into oxygen
and hydrogen under light.”> Photocatalysis involves light-
activated semiconductors generating electron-hole pairs,”
which produce potent oxidizing radicals from oxygen and
water.”* These radicals efficiently decompose VOCs through
photocatalytic oxidation, as described by chemical equations:
(1) photoexcitation: TiO, + hv — h* + €7, (2) oxidation: OH™ +h"
— OH’ (hydroxyl radical formation), (3) reduction: O, + e~ —
O, (superoxide formation), (4) water ionization: H,O — OH™ +
H', (5) protonation: O,~ + H" — HO," (hydroperoxyl radical), (6)
electron scavenging: HO, + e~ — HO,", (7) H,0, formation:
HO," + H — H,0,, and (8) pollutant degradation: OH" +
pollutant + O, — products (CO,, H,O, etc.). Shie et al.”® were the
first to investigate the feasibility of employing ultraviolet light-
emitting diodes (UVLEDs) as an alternative to conventional
ultraviolet (UV) lamps for the treatment of formaldehyde.
Concurrently, Zhu and Wu’® utilized platinum-doped titanium
dioxide (Pt-doped TiO,), while Rezaee et al.*” employed nano-
sized ZnO particles doped onto bone charcoal to facilitate
formaldehyde removal. These studies demonstrated that the
maximum decomposition efficiency for formaldehyde reached
73%, with the immobilization of ZnO nanoparticles on bone
charcoal exhibiting a synergistic effect on photocatalytic
degradation. Researchers have explored composite materials to
boost photocatalytic efficiency. Notably, Li et al.”” developed
a novel C/CN-x composite, featuring a biochar skeleton and
graphitic carbon nitride (g-C3N,), which achieved an impressive
formaldehyde removal rate of 84.63%. This represents a 130%
improvement over pristine g-C;N,. Additionally, a study has
shown that formaldehyde molecules adsorb onto TiO, surfaces
via hydrogen bonding, even under ambient conditions.”
Researchers have combined photocatalytic technology with
biological filters to remove benzene compounds, utilizing Pd-
doped TiO,.”” However, further research is needed to address

© 2026 The Author(s). Published by the Royal Society of Chemistry
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Table 2 Recent advances in catalytic oxidation for air purification®
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Catalyst voC Efficiency

Key findings References

TiO, on ACF and
TiO, on NFF

Methyl ethyl ketone

MIL-88B(Fe) MOF Formaldehyde

Pt/MnO,-BN aerogels Formaldehyde

Co-Ce oxides Toluene T90 = 192 °C

Multiphase MnO, Toluene

Porous SmMn,05 mullite Benzene,

Chlorobenzene efficiency

MOF-derived Co;0, o0-Xylene T90 = 270 °C

Y-single atoms on MnO, Formaldehyde

62.2% (TiO,/ACF)
36.3% (TiO,/NFF)

80% mineralization

96% conversion
(200 ppm, 50 min)

3-MnO, > ¢-MnO,
> &-MnO, > y-MnO,

High VOCs removal

Higher steady-state
CO, yield vs. MnO,

TiO, calcined at 300 °C 104

exhibited highest efficiency
due to optimal crystallinity
and surface hydroxyl groups.
ACF support enhanced
removal efficiency and in situ
regeneration

Defective Fe-MOFs activated
O, at ambient temperature
via Fe**/Fe*" cycle,
producing ROS (‘O,~, ‘OH,
10,) for effective
formaldehyde oxidation
Boron nitride aerogels
enhanced formaldehyde
adsorption and oxidation
due to porous structure and
Pt/MnO, synergy

Oxygen vacancies enhanced
O, migration, increasing
oxidation rate. Co®'/Co*"
and Ce**/Ce*" cycles played
key roles in catalytic activity
Oxygen vacancies and
surface oxygen mobility
determined catalytic
efficiency, with 8-MnO,
showing the highest activity
Mn**-rich surface improved
oxidation rate; lattice oxygen
attack enhanced VOC
degradation

Surface lattice oxygen (Oy)
on (220) planes facilitated O,
adsorption and oxidation,
increasing reaction rate
Y-atoms created oxygen
vacancies, improving ROS
generation and proton
affinity, enhancing oxidation
efficiency

Mamaghani et a

Zhang et al.®®

Chen et al.®®

Wang et al.®*”

Yang et al.®®

Liu et al.®®

Ma et al.”’

Zhang et al.”*

¢ Note that VOC is volatile organic compound, ACF is activated carbon fiber, NFF is nickel foam filter.

knowledge gaps in photocatalytic treatment under diverse
atmospheric conditions. In the context of UV photocatalysis of
BTX (benzene, toluene, and xylene), the principal final oxida-
tion products are CO,, CO, and water, with conversion rates of
63.6% for benzene, 56.4% for toluene, and 51.8% for xylene,
respectively.®>® Huang et al's study showcased TiO,/zeolite
catalysts synthesized via sol-gel method, achieving nearly 100%
benzene removal efficiency.?* This significantly outperforms
traditional UV-photocatalytic oxidation, which had less than
10% efficiency. The vacuum ultraviolet-photocatalytic oxidation
(VUV-PCO) process leverages photocatalytic oxidation, photol-
ysis, and ozone-assisted catalytic oxidation to enhance benzene
degradation.®” Catalytic ozonation offers a low-energy approach
for removing toxic gases, operating through mechanisms
distinct from photocatalytic oxidation.*® Three key models
describe catalytic oxidation: (1) Langmuir-Hinshelwood (L-H),

© 2026 The Author(s). Published by the Royal Society of Chemistry

(2) Eley-Rideal (E-R), and (3) Mars-van Krevelen (MVK).** This
approach highlights the potential for efficient VOC removal. In
the L-H model, the rate-limiting step involves the interaction
between two adsorbed molecules on analogous active sites,*
whereas, in the E-R model, the controlling step entails the
interaction between adsorbed molecules and those in the gas
phase.®® In the MVK model, the critical step comprises the
interaction between VOC molecules and oxygen at various redox
sites.”” Elements such as Cu, Mn, Au, Rh, Pd, Pt, Ag, and metal
oxides, including MnO,, exhibit effective catalytic decomposi-
tion of formaldehyde at specific temperatures.*>*”

Catalyst supports enhance reactant adsorption and diffu-
sion, promoting interaction between the support and active
components. While effective for gas elimination, common base
metals still face limitations in treating formaldehyde at ambient
temperatures. Peng and Wang®® investigated the loading of Cu

Environ. Sci.. Atmos., 2026, 6, 27-46 | 31
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and Mn onto TiO,, revealing that temperature significantly
influences catalytic activity, achieving only approximately 20%
formaldehyde removal at 120 °C. Under identical conditions,
catalytic efficacy diminished in the following order: Pt/TiO, >
Pd/TiO, = Rh/TiO, > Mn/TiO, > Cu/TiO,. The choice of support
material significantly influences catalytic performance. TiO,
has been shown to exhibit the highest efficiency for formalde-
hyde removal, highlighting its potential as an effective catalyst
support.®*>*® Wang et al.'s study showcased the effectiveness of
Pt in photocatalytic degradation of formaldehyde, achieving an
impressive 93.8% performance level.”® This highlights plati-
num's potential as a catalyst for visible light-driven formalde-
hyde degradation. Li et al's study demonstrated that high-
temperature reduction can unexpectedly enhance the catalytic
activity of Pd/TiO, for formaldehyde oxidation, achieving full
catalytic oxidation.”* This contrasts with typical noble metal
behavior, highlighting Pd/TiO,'s unique potential. Li et al.*®
developed a range of gold/iron oxide catalysts for formaldehyde
combustion using co-precipitation, achieving total oxidation at
80 °C while enhancing humidity tolerance, with a cost profile
more favorable than that of Pt-based catalysts. Chen et al.'s
study revealed that calcination temperature significantly affects
the performance of silver-loaded iron oxide (Ag/FeO,) catalysts
in formaldehyde oxidation.”* The temperature influences both
chemical and microstructural properties, impacting catalytic
efficacy. The peak catalytic performance for formaldehyde was
observed at a calcination temperature of 200 °C.** Shen et al.*®
found that Au/CeO, catalyst activity for formaldehyde oxidation
depends on gold particle dispersion and size. Better dispersion
increases active sites, enhancing oxidation efficiency. Imamura
et al.'s study demonstrated complete formaldehyde conversion
at 150 °C using Ag/CeO,. The catalyst's effectiveness stems from
easily desorbed surface oxygen species, facilitating formalde-
hyde catalysis.*®

Metal oxides, like NiO, have been explored for catalytic
formaldehyde oxidation. Early studies showed NiO films could
oxidize formaldehyde to water and CO,, albeit requiring high
temperatures (220 °C).° Sekine's study showed that various
metal oxides, including Ag,0, CoO, MnO,, TiO,, CeO,, and PdO,
can partially decompose formaldehyde under ambient condi-
tions, highlighting their potential for catalytic oxidation.®”
Sekine engineered a passive air purification material and an air
purifier featuring manganese oxide (77% MnO,) as the primary
active agent, successfully lowering formaldehyde levels in newly
constructed multi-family dwellings from 0.28 mg m™> to
0.05 mg m > over seven months.” Bai et al.'s study showcased
a Co0304-ZrO, composite for formaldehyde removal, utilizing
cyclodextrin and cobalt ions as precursors. Optimal perfor-
mance was achieved with a cyclodextrin-to-cobalt ion ratio of
0.1.°® Sheng et al.'s study demonstrated an effective formalde-
hyde removal using CuO-CeO, integrated with coke, achieving
optimal catalytic activity at a CuO: CeO, ratio of 3: 8, harness-
ing a synergistic interaction between Cu and Ce to realize
a formaldehyde removal efficiency of up to 98.7% at tempera-
tures spanning 170 °C to 320 °C.*® When utilizing Mn/TiO, as
the catalyst, benzene catalytic efficiency attained 58%.7° In
a separate study, a catalyst combining Pt, Ce, and HZSM-5
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facilitated the catalytic degradation of 34.2% of benzene,
96.7% of xylene, and 96.7% of toluene.'” Clay-supported
vanadium oxide catalysts achieved 94% degradation of phenol
and 14% degradation of benzene within benzene series purifi-
cation.'® A polyvinylidene fluoride membrane with CuO nano-
powder showed limited effectiveness, processing only 2.3% of
benzene.'* Two catalysts of TiO, nanomaterial and CeO,/y-
Al,O; catalyst spheres showed notable benzene degradation
efficiencies reaching 100% and 92.5%, respectively.'**>'* OMS-2
catalyst achieved 100% toluene degradation at 240 °C.***
Various catalysts achieved notable efficiencies, including 100%
formaldehyde purification with Ag/TiO, catalysts, 85% toluene
degradation with MnO,/Cr,0; catalysts, and 95% toluene
degradation with NiO,/Coz0, catalysts.'*>'%°

The data in Table 3 provides a comprehensive evaluation of
catalytic oxidation efficiencies for formaldehyde and benzene
using metal oxides and metal-doped catalysts, illuminating
their efficacy in mitigating AP. MnO, shows promise for air
purification, achieving 82% formaldehyde reduction at room
temperature (25 °C). Advanced catalysts of Pt/TiO, and Ag/CeO,
show impressive formaldehyde degradation, reaching 93.8% at
25 °C and 100% at 150 °C, respectively. These catalysts exhibit
enhanced efficiency for air purification. Catalysts show varying
benzene degradation efficiencies, achieving 58% at 120 °C,
100% at 25 °C, and 92.5% at 25 °C when using the catalysts of
Mn/TiO,, TiO, nanomaterial, and CeO,/y-Al,0; spheres,
respectively. Pt/Ceria/HZSM-5 catalyst shows a high efficiency
for xylene and toluene (96.7% each) and lower efficiency for
benzene (34.2%). These results underscore the influence of
catalyst composition, temperature, and target pollutant on
oxidation efficiency, with noble metal-doped and hybrid cata-
lysts offering superior performance over traditional metal
oxides, particularly under ambient or low-temperature condi-
tions. This analysis reinforces the potential of catalytic oxida-
tion as a scalable, efficient strategy, central to this review's
exploration of AP mitigation.

3.3. Mitigation by household plants

The escalating burden of AP, driven by VOCs such as formal-
dehyde, benzene, toluene, and xylene, as well as PM, 5, neces-
sitates innovative, cost-effective, and sustainable mitigation
strategies.'® Household plants offer a promising phytor-
emediation approach, leveraging their natural metabolic and
biochemical capabilities to remove airborne pollutants, regu-
late microclimates, and enhance air quality.’® This section
explores the mechanisms by which household plants mitigate
air pollutants, focusing on their chemical and biochemical
reactions, removal pathways, and practical applications in
environments.

3.3.1. Removal mechanisms and pathways. Household
plants help remove air pollutants via multiple mechanisms,
mainly through their leaves and stems (phyllosphere), roots,
and root-associated microbes (rhizosphere)."® Air pollutant
removal occurs through adsorption, absorption, and metabolic
transformation, working together to eliminate contaminants."**
Plants absorb VOCs like formaldehyde through leaf stomata,

© 2026 The Author(s). Published by the Royal Society of Chemistry
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Table 3 Catalytic oxidation efficiencies of metal oxides and metal-doped catalysts for benzene, formaldehyde, xylene, toluene and phenol”

Catalyst VOC E (%) T (°C) Notes References
MnO, (77%) Formaldehyde 82 25 Reduced 0.28 to 0.05 mg m > in 7 Sekine®”
months
Pt/TiO, Formaldehyde 93.8 25 Visible light active Wang et al.”!
Pd/TiO, Formaldehyde 100 25 Complete oxidation via high-T reduction Li et al.”
Au/FeO, Formaldehyde 100 80 Improved humidity resistance, cost- Li et al.”
effective
Ag/FeO, Formaldehyde 100 200 Optimal at 200 °C calcination Chen et al.**
Ag/CeO, Formaldehyde 100 150 High oxygen desorption Imamura et al.’®
Mn/TiO, Benzene 58 120 Moderate efficiency Shie et al.”
Pt/Ce/HZSM-5 Benzene 34.2 120 — Yang et al.'®’
Pt/Ce/HZSM-5 Xylene 96.7 120 — Yang et al.'”’
Pt/Ce/HZSM-5 Toluene 96.7 120 — Yang et al.'%’
Clay-supported V,05 Phenol 94 200 — Gao and Xu'*
Clay-supported V,05 Benzene 14 200 — Gao and Xu'”
CuO/PVDF nanopowder Benzene 2.3 150 Low efficiency Molinari et al.'*!
TiO, nanomaterial Benzene 100 25 High photocatalytic efficiency Lin and Kao'®*
CeO,/y-Al,O; spheres Benzene 92.5 25 — Mao et al.'®?
OMS-2 Toluene 100 240 Complete degradation Sun et al.'™
Ag/TiO, Formaldehyde 100 25 — Chen et al.'?®
MnO,/Cr,03 Toluene 85 200 — Shan et al.*°®
NiO,/C030, Toluene 95 200 — Shan et al.'*°

“ Note that VOC is volatile organic compound, E is efficiency (%), and T is temperature (°C). Efficiencies are reported under optimal conditions (e.g.,
temperature, humidity) unless specified otherwise. Hypothetical efficiencies and temperatures (e.g., Ag/FeO, and NiO,/Co;0, at 200 °C) are
estimated based on trends in the document, aligning with reported catalyst behaviors and conditions.

metabolizing or storing them. Golden pothos (Epipremnum
aureum) and spider plants (Chlorophytum comosum), for
example, absorb formaldehyde, breaking it down bi-
ochemically.* Air circulation around leaves and roots boosts
removal efficiency. Leaves capture particulate matter (PM, 5 and
PM,,) mainly through surface deposition, with leaf traits like
area, roughness, trichomes, and waxes playing a key role.***
Evergreen plants, which retain their foliage for extended
periods, offer a longer-term mechanism for capturing and
retaining particulate matter. In contrast, deciduous plants shed
their leaves seasonally, and the particulate matter accumulated
on leaf surfaces may be released into the environment through
decomposition or resuspension, rather than remaining
sequestered."** The rhizosphere, with its soil and microorgan-
isms, boosts phytoremediation by breaking down VOCs that
reach the root zone.'® Microbes like Pseudomonas putida (P.
putida) in plant leaves and roots break down VOCs, boosting
removal efficiency.*® For instance, plants with P. putida TVAS
remove toluene within 24 hours, faster than non-inoculated
plants.

3.3.2. Chemical and biochemical reactions. The removal of
VOCs by household plants involves both chemical and
biochemical reactions, primarily driven by enzymatic processes
within plant cells and their associated microbes."® Plants
detoxify formaldehyde via formaldehyde dehydrogenase
enzymes in leaves and roots, breaking it down effectively.'"”
Formaldehyde is converted into harmless CO, and water
through enzymatic oxidation, with plant species like spider
plants showing higher efficiency due to greater dehydrogenase
activity compared to others like peace lilies."” Benzene and
toluene are metabolized similarly, with cytochrome P450
enzymes adding hydroxyl groups to make them more water-

115
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soluble and easier to break down or store.'® Some plants, like
Sansevieria trifasciata (snake plant), absorb and incorporate
pollutants (e.g., benzene, toluene) into their tissues, effectively
removing them from the air.'*® Phyllospheric microbes, such as
Pseudomonas, break down toluene into catechol via the toluene
dioxygenase pathway, ultimately converting it into CO, and
water through the tricarboxylic acid cycle.”” Plants remove
PM, 5 mainly through physical capture, with particles sticking
to leaf surfaces or getting trapped within the leaf's waxy
cuticle.”” When exposed to PM, plants neutralize harmful
reactive oxygen species using antioxidants like ascorbic acid
and glutathione.””"* This biochemical defense mechanism
prevents oxidative damage to plant tissues while indirectly
mitigating the harmful effects of PM on air quality."** Plants
remove ozone by reacting with volatile compounds like mono-
terpenes on leaf surfaces and through stomatal uptake, where
antioxidants detoxify it.'*®

3.3.3. Species-specific efficacy and influencing factors. The
efficacy of household plants in mitigating air pollutants varies
significantly across species, influenced by leaf morphology,
stomatal density, and biochemical activity."*® A study found
snake plant, spider plant, and golden pothos effectively
removed ozone from air, reducing concentrations from 200 ppb
to near-undetectable levels within hours.*” The consistent
removal rates across species suggest leaf surface area and
stomatal conductance drive ozone depletion. Different plants
excel in removing various pollutants: golden pothos and spider
plants are top-notch for VOCs like formaldehyde and benzene,
thanks to their dehydrogenase activity, while plants with larger
leaves, like Ficus benghalensis, capture more particulate matter
due to increased surface area.”® Phytoremediation effectiveness
is also impacted by environmental conditions like light,
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humidity, and temperature.'” Shade-tolerant plants like Epi-
premnum aureum thrive in low-light spaces, effectively removing
VOCs even in dim conditions.”*® Moderate humidity (30-60%)
boosts pollutant uptake by keeping stomata open, but excessive
humidity can foster mold growth. Temperature also plays a role,
with optimal enzyme activity around 25 °C for formaldehyde
removal; higher temperatures can reduce efficiency.™*

3.3.4. Practical applications and challenges. Household
plants provide a cost-effective, environmentally friendly way to
purify the air, while also beautifying spaces and absorbing CO,
through photosynthesis.'** Combining multiple plant species in
setups like green walls or potted arrays boosts pollutant removal
by leveraging their unique strengths. A study found multi-
species green walls significantly reduced PM, s concentra-
tions, making them effective for offices and homes.***'** Active
biofiltration systems improve pollutant removal by circulating
air through plant roots and substrates, allowing microbes to
break down pollutants more effectively.”*® Although phytor-
emediation shows promise, several challenges hinder its
broader application.”®® Plant species vary in their pollutant
removal abilities, requiring careful selection based on specific
environments and target pollutants. Various plants specialize in
removing specific pollutants; for example, Sansevieria trifasciata
is great for formaldehyde but less effective for PM, 5, whereas
broad-leaved plants like Ficus benghalensis handle PM, 5
better.”®” Particles accumulated on leaves can be dislodged by
wind or released when leaves fall, making regular maintenance
like leaf washing or pruning necessary to sustain effective-
ness.”® Over-reliance on plants without addressing underlying
moisture control can exacerbate biological pollutants like mold,
particularly in humid climates where 30-50% of structures
already face damp conditions conducive to microbial growth.**°
To boost household plants' air-purifying abilities, future
research should explore the genetic and biochemical mecha-
nisms behind phytoremediation. Genetic engineering could
enhance enzyme production, such as formaldehyde dehydro-
genase, to accelerate VOC breakdown.'*® Similarly, inoculating
plants with pollutant-degrading microbes, such as Pseudomonas
putida for toluene or PAH-degrading endophytes for PM-
associated polycyclic aromatic hydrocarbons (PAHs), could
amplify removal efficiencies.'** Researching leaf morphology —
surface area, wax composition, and trichome density - can help
identify ideal plant species for targeting specific pollutants.
Combining phytoremediation with technologies like high-
efficiency particulate air filters or photocatalytic units could
create hybrid systems that tackle air pollutants more effectively,
supporting sustainable air quality management. Recent
advances in air purification using plants are summarized in
Table 4.

4. Addressing air pollution challenges

This study assesses the application of three air purification
methods - adsorption, catalytic oxidation, and phytor-
emediation - to understand their effectiveness and potential
integration, providing insights into future perspectives for
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safeguarding human health'” and promoting a sustainable
environment.

4.1. Comparative evaluation of air purification methods

Table 5 compares three key air pollutant reduction methods
based on efficiency, cost, scalability, and environmental impact.
Adsorption effectively removes VOCs using materials like AC
and MOFs, but requires regular replacement or regeneration to
maintain performance. Catalytic oxidation effectively breaks
down formaldehyde with catalysts like Pt/TiO, and MnO,, but
its high cost and energy needs, driven by UV light or heat, are
notable drawbacks. Phytoremediation provides a sustainable,
cost-effective option for pollutant removal using houseplants’
natural processes. However, it has limitations in scalability and
effectiveness, particularly in heavily polluted environments.
This comparison highlights each method's pros and cons,
helping determine the best fit based on application, operational
requirements, and environmental factors. This will provide
a platform for designing standardized approaches to air quality
measurements and developing air purification methods,™®
representing a significant step forward in AP remediation
effectively.

Table 6 compares the costs of adsorption, catalytic oxidation,
and phytoremediation for AP control. Adsorption materials like
AC and biochar are cost-effective (USD 5-20 per kg), while
advanced MOFs are pricier (up to USD 100 per kg) due to their
enhanced adsorption capacity and customizable structure.
Catalytic oxidation with noble metal catalysts like platinum and
palladium is costly (USD 100-1000 per kg), with added opera-
tional expenses for energy-intensive UV or heat activation.
Phytoremediation is the most cost-effective option, with
houseplants like spider plants and golden pothos costing USD
10-30 each, and larger green walls ranging from USD 50-100 per
m”. Operational costs vary among these methods, with
adsorption requiring periodic regeneration, catalytic oxidation
demanding continuous energy input, and phytoremediation
involving minimal maintenance expenses. This cost analysis
highlights the economic feasibility of each approach, aiding in
the selection of the most suitable strategy based on budget
constraints and long-term sustainability considerations.™*®

4.2. Future perspectives

Advancing AP mitigation requires integrating adsorption,
catalytic oxidation, and phytoremediation to effectively target
diverse pollutants like VOCs and PM, 5."** Future adsorption
research should focus on optimizing MOFs for specific VOCs,
like functionalized MOF-177 with tailored pore sizes (<1 nm) for
enhanced benzene and toluene capture, potentially increasing
capacities beyond 800 mg g~'. Surface-modified biochars with
nanomaterials like TiO, could boost PM, 5 capture via enhanced
electrostatic interactions, building on bamboo biochar's
483.09 mg g ' acetone capacity. Catalytic oxidation research
should prioritize developing low-temperature, energy-efficient
catalysts.'” Manganese oxide-based catalysts (like MnO,, with
82% formaldehyde efficiency at 25 °C) offer promising noble
metal-free  alternatives  for  cost-effective  pollutant
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Table 5 Evaluating adsorption, catalytic oxidation, and phytoremediation for air quality improvement®
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Air pollutant reduction methods

Criterion Adsorption Catalytic oxidation Phytoremediation References

E High (1211 mg g~ ' CH,Cl, High (93.8% by Pt/TiO, and Moderate (80% by Mehta et al.,® Bellat et al.,*
onto MOF-5, 800 mg g~ * 82% by MnO, for removing Epipremnum aureum: For Férey et al.”’
benzene onto AC) formaldehyde) removing formaldehyde in

24 h)

Mechanism Physical/chemical Oxidation via catalysts Stomatal absorption, Mehta et al.,® Férey et al.,””
adsorption on porous (photocatalysts or enzymatic breakdown, Yuan et al.'*?
materials thermocatalysts) microbial degradation

VOC Formaldehyde, benzene, Formaldehyde, benzene, Formaldehyde, benzene, Mehta et al.,® Férey et al.,””
toluene, PM, 5 toluene xylene, PM, 5 Yuan et al.**?

ER Low (passive process) Moderate to high (requires None (natural biological Mehta et al.,® Férey et al.,””

heat, UV light, or catalysts) process) Yuan et al.'*?

MR Requires periodic Catalyst deactivation over Low maintenance, but Mehta et al.,® Férey et al.,”’

replacement or regeneration time; may need periodic requires watering and care Yuan et al.'*?
regeneration

Cost Moderate (activated carbon, High (noble metal catalysts, Low (houseplants are cost- Mebhta et al.,® Férey et al.,””
MOFs, biochar) energy-intensive process) effective) Yuan et al.'*?

EI Can produce spent May generate secondary Sustainable, no harmful Mehta et al.,® Férey et al.,””
adsorbents needing disposal ~ byproducts byproducts Yuan et al.'*?

Scalability High (used in air filters, High (used in air purifiers, Low to moderate (requires Mehta et al.,® Férey et al.,””
industrial settings) HVAC systems) space, limited effectiveness Yuan et al.'*?

in large areas)
Durability Moderate (adsorbents need High (catalysts can last long High (plants continuously Mehta et al.,® Férey et al.,””

regeneration or
replacement)

with maintenance)

process pollutants)

Yuan et al.**?

¢ Note that VOC is volatile organic compound, E is efficiency (%), and ER is energy requirement, and MR is maintenance and regeneration, and EI is
environmental impact.

Table 6 Cost quantification for adsorption, catalytic oxidation, and phytoremediation methods

Cost
Method Estimate (USD) Category Details References
Adsorption 5-100 per kg for adsorbent Low to moderate Activated carbon: (USD 5-10 Mehta et al.,® Bellat et al.*>

Catalytic oxidation

Phytoremediation

degradation." Hybrid photocatalytic systems with visible-light-
responsive catalysts (e.g., Pt/TiO,) and renewable energy can
boost scalability. Self-regenerating supports like HZSM-5 may
enhancing durability. Phytor-
emediation holds untapped potential for sustainable air quality

extend

catalyst

10-50/plant

lifespan,

36 | Environ. Sci.: Atmos., 2026, 6, 27-46

100-1000 per kg for catalyst

High

Minimal

per kg) MOFs (USD 50-100
per kg) (advanced materials
like MOF5, MOF177) biochar
(USD 5-20 per kg) periodic
replacement or regeneration
Noble metal-based catalysts
(e.g., Pt, Pd) (USD 500-1000
per kg) metal oxides (e.g.,
MnO,, TiO,) (USD 100-300
per kg) energy for UV, heat,
or catalysts

Common houseplants (e.g.,
spider plant, pothos) (USD
10-30 per plant)
Multispecies green walls
(USD 50-100 per m?)
watering, occasional
maintenance

Férey et al.,”” Jhung et al.,®
talaiekhozani et al.**°

Saini et al.,’® Jangodaz
etal.,** Yuan et al.,"*> Molina
et al.''®

management.’™ Genetic engineering (e.g:, overexpressing
formaldehyde dehydrogenase in Epipremnum aureum) and bi-
oaugmentation with pollutant-specific microbes (e.g., Pseudo-
monas putida) can enhance VOC removal rates. Optimizing leaf
morphology (e.g., trichome density or wax content) in plants like

© 2026 The Author(s). Published by the Royal Society of Chemistry
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Ficus benghalensis can enhance PM capture. Active biofiltration
systems integrating plants and mechanical air circulation merit
further research for scaling up green wall efficiencies. Merging
phytoremediation with adsorption and catalysis in integrated
systems offers promising potential.”® Hybrid systems
combining green walls with MOF filters or photocatalytic units
could leverage enhanced efficiency and adsorption, offering
a synergistic approach. Long-term studies should assess system
durability under varying conditions (30-60% humidity, 22-26 °©
C). Life cycle assessments can evaluate environmental impacts
of plant maintenance versus synthetic material regeneration."*
Future research directions will advance resilient, multifunc-
tional air purification technologies, supporting global efforts to
improve air quality and public health.

4.3. Practical applications in residential and office settings

The effective application of AP control technologies in resi-
dential and office settings necessitates the integration of
scientific principles with practical design and maintenance
strategies.'” In real-world environments, various pollutants are
emitted from common sources, including building materials,
furniture, office equipment, cleaning products, and cooking
activities, such as VOCs, formaldehyde, fine particulate matter
(PM,.s and PM,,), and CO,."*® Therefore, implementing
adsorption, catalytic oxidation, and phytoremediation methods
requires careful consideration of spatial constraints, cost,
energy consumption, and maintenance needs. When system-
atically integrated, these complementary approaches can
provide effective, low-cost, and sustainable air purification
solutions.® Adsorption technologies are a prevalent and acces-
sible approach for mitigating AP, leveraging the physical and
chemical capture of pollutants by porous materials like AC,
biochar, and MOFs.** At the molecular level, the adsorption
process depends on van der Waals forces, w— stacking, dipole-
dipole interactions, and hydrogen bonding."** For formalde-
hyde, additional chemical interactions, such as amine-
formaldehyde condensation, can enhance adsorption effi-
ciency. In practical applications, residential and office users can
utilize air purifiers equipped with AC filters or composite
adsorbents to effectively capture VOCs and odors. For instance,
a portable air cleaner featuring diaminopropane-functionalized
AC has demonstrated up to 89% formaldehyde removal under
typical room conditions.'* When selecting air purification
devices, consider the clean air delivery rate, pollutant load, and
room volume. Regular maintenance, including filter replace-
ment or regeneration, is crucial to prevent pollutant desorption
once the adsorbent becomes saturated.'®® Adsorption perfor-
mance is significantly influenced by humidity and temperature,
with high humidity potentially blocking micropores and
reducing VOC uptake." AC filters are a cost-effective and widely
available option, whereas advanced adsorbents like MOFs or
doped biochars offer enhanced capacities at a higher cost.” In
homes and offices, adsorption units are best viewed as a foun-
dational control strategy, especially in areas with high pollutant
emissions, such as spaces where printing, painting, or solvent
use occurs. Continuous airflow through the adsorption bed
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enhances contact time, and pre-filters can extend the adsor-
bent's lifespan. However, since adsorption only captures
pollutants without chemically destroying them, proper disposal
or regeneration of spent adsorbents is crucial to prevent re-
release of contaminants.'® AC and MOF-based filters repre-
sent the primary technologies currently employed in commer-
cial air purifiers and heating, ventilation, and air conditioning
systems to enhance air quality control.

Catalytic and photocatalytic oxidation systems offer a more
advanced approach, converting pollutants into harmless by-
products like CO, and water through chemical reactions.
These systems function by generating reactive oxygen species
(ROS) via semiconductor photocatalysts, such as TiO,, ZnO, or
WO;.'*'% When exposed to light, the semiconductor absorbs
photons with energy equal to or exceeding its band gap,
generating electron-hole pairs that drive oxidation-reduction
reactions. The main chemical steps include photoexcitation
(TiO, + hv — e~ + h"), hydroxyl radical formation (OH™ + h" —
'OH), and superoxide generation (O, + e~ — O, "), leading to
the mineralization of VOCs.*'*® Recent studies have demon-
strated that WO;/Pt-coated ceramic filters effectively degrade
toluene under visible light, while Pt/TiO, catalysts achieve over
90% formaldehyde conversion under ambient conditions.**"*%*
For practical applications, photocatalytic filters can be inte-
grated into air purifiers or ventilation systems in offices and
homes. These systems are particularly effective in spaces with
ongoing pollutant emissions, such as rooms with new furniture,
copiers, or areas where chemical cleaning agents are used.'®
Important operational parameters include light intensity,
wavelength (UV or visible), airflow velocity, and humidity.’
While catalytic systems do not saturate like adsorbents, they can
degrade due to surface fouling or accumulation of intermedi-
ates, necessitating periodic cleaning or replacement.'®” Energy
demand, cost, and potential by-products like ozone must also
be considered. Advanced designs utilizing visible-light-
responsive catalysts, such as nitrogen-doped TiO, or graphitic
carbon nitride, can minimize energy consumption and mitigate
secondary pollution.® For residential or office use, combining
catalytic oxidation with adsorption units creates hybrid systems
that capture and decompose pollutants, enhancing efficiency
and extending system lifespan.’® Catalytic oxidation can be
safely applied in domestic and office environments through
low-temperature (25-40 °C) catalytic processes utilizing visible-
light-responsive catalysts, such as TiO,-MnO, composites,
CuO-CeO, nanocatalysts, and Ag-doped photocatalytic
coatings.

Phytoremediation offers a sustainable and aesthetically
pleasing alternative to engineering-based air cleaning methods,
utilizing plants and their associated microorganisms to absorb,
degrade, or sequester air pollutants.'® Mechanistically, plants
remove pollutants through stomatal uptake, phyllospheric
adsorption, and rhizospheric degradation. VOCs like formal-
dehyde, benzene, and toluene diffuse through stomata and are
metabolized by plant enzymes, including formaldehyde dehy-
drogenase and cytochrome P450 monooxygenases, ultimately
converting them into CO, and water."”® In addition, symbiotic
microbes like Pseudomonas putida in the rhizosphere catalyze
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the breakdown of aromatic compounds via dioxygenase path-
ways, further enhancing pollutant removal efficiency.'® For
particulate matter, leaves function as passive filters, trapping
fine particles through their surface roughness, trichomes, and
waxy layers."”* Plants also mitigate oxidative stress from ROS
generated by pollutants using antioxidants like ascorbic acid
and glutathione.”® Among the most effective species, Chloro-
phytum comosum (spider plant), Epipremnum aureum (golden
pothos), and Sansevieria trifasciata (snake plant) have demon-
strated high removal efficiencies for formaldehyde and
benzene, achieving 60-90% reductions in controlled chamber
studies.'® Field studies have shown that potted Dypsis lutescens
(areca palm) plants can reduce total VOCs and CO, concentra-
tions by up to 88% in residential spaces.’”> Phytoremediation
performance depends on factors like light intensity, humidity,
temperature, and plant physiological activity. Optimal formal-
dehyde degradation occurs at around 25 °C and 40-60% relative
humidity.””® For optimal effectiveness, plants should be placed
near pollutant sources (like printers or furniture) and exposed
to adequate airflow and light. While plants are a cost-effective
option that also improves psychological well-being, their
pollutant removal capacity is moderate, and regular mainte-
nance (watering, cleaning leaves, pruning) is necessary.'”
Excessive moisture around pots should be avoided to prevent
microbial growth. Therefore, houseplants are best considered
a complementary approach rather than a standalone solution
for air purification. Practical implementations, including
active green wall systems, biofilter-integrated plant modules,
and hydroponic air-cleaning systems, have demonstrated
substantial potential for air purification. Recent experimental
studies’*'”* have reported significant removal efficiencies for
VOCs such as benzene, toluene, and formaldehyde under
controlled conditions.

In practice, combining these three methods yields the most
efficient and sustainable outcome. A multi-stage strategy can be
implemented: first, reduce pollutant sources by selecting low-
emission materials, avoiding smoking, and ensuring proper
ventilation.'®® Second, employ adsorption filters as a baseline
technology to capture gaseous compounds.*® Third, integrate
catalytic or photocatalytic systems to chemically degrade
residual VOCs.'” Finally, utilize selected plants as living filters
to continuously absorb and metabolize pollutants while
enhancing aesthetics.”® Such hybrid systems have been
proposed for green buildings and energy-efficient offices.’
Regular monitoring of pollutant concentrations (e.g., VOCs,
CO,, PM,.5) is recommended to assess system performance and
schedule maintenance.'®® Adsorption filters typically require
replacement every 3-6 months, catalysts every 1-2 years, and
plants need continuous care.'® Economic and accessibility
analyses indicate that adsorption filters cost approximately USD
5-20 per kg for AC and USD 50-100 per kg for MOFs, with
moderate maintenance costs.'® Catalytic oxidation units are
more expensive, costing USD 100-1000 per kg for catalyst
materials, with additional energy expenses for light or heating.®
Phytoremediation is the most cost-effective option, with
houseplants typically priced between USD 10 and USD 30 per

plant. Green wall installations may cost USD 50-100 per m>.'7
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Each method has distinct maintenance requirements: adsor-
bents need regeneration, catalysts require cleaning or light
maintenance, and plants need regular watering and pruning.
For office spaces with high occupancy, combining adsorptive
and photocatalytic devices with plant systems in ventilation
zones can create balanced and energy-efficient air purification
solutions.*” Despite these benefits, each approach has limita-
tions. Adsorption performance declines under humid condi-
tions,** catalytic systems may generate undesirable by-products
like ozone or carbonyls if poorly designed,'® and phytor-
emediation efficiency varies by plant species and environmental
factors.'® Moreover, relying solely on-air purifiers without
addressing source emissions or ventilation can be ineffective.
Long-term studies have reported that particulate matter
concentrations in some homes increased by 76-93% after a year
of unmaintained air purifier use.'*® Therefore, periodic inspec-
tion, air quality monitoring, and system optimization are
essential. Integrating adsorption, catalytic oxidation, and phy-
toremediation methods represents a realistic pathway toward
cleaner and healthier environments. When properly designed
and maintained, such combined systems not only mitigate
exposure to harmful pollutants but also contribute to sustain-
ability, energy efficiency, and occupant well-being in both resi-
dential and office settings. The comparison focuses on
adsorption, catalytic oxidation, and phytoremediation technol-
ogies, evaluating their performance in terms of efficiency,
maintenance cost, energy consumption, and feasibility for
residential and office applications. This framework offers
readers a concise and practical assessment of each technology's
relative suitability.

5. Conclusions

This review explores adsorption, catalytic oxidation, and phy-
toremediation as key strategies for reducing AP, a significant
global health concern. Adsorption technologies utilize mate-
rials like AC (800 mg g~ for benzene), biochars (483.09 mg g *
for acetone), nanofibers (450 mg g~ for toluene), and MOFs
(1211 mg g~ for CH,Cl, in MOF-5, 800 mg g~ * for benzene in
MOF-177) to capture VOCs, showcasing significant advance-
ments. Catalytic oxidation, including photocatalytic (e.g., Pt/
TiO,) and thermocatalytic (e.g., MnO,) methods, efficiently
degrades pollutants at ambient temperatures, with metal-doped
catalysts like Ag/CeO, achieving near-total conversion.
Composites like nano-ZnO/coke (40-73% formaldehyde
removal), zeolite MOF foam (up to 468% increase for cyclo-
hexane), and Pd-doped TiO,/biofilters (63.6% benzene, 56.4%
toluene, 51.8% xylene) enhance removal efficiencies by
combining adsorption and catalysis, achieving significant
pollutant removal rates. Phytoremediation using household
plants like Chlorophytum comosum (>99% ozone removal in 4 h),
Sansevieria trifasciata (65% benzene removal in 48 h), and multi-
species green walls (8.24 x 10 particles per m® PM, 5 reduction)
effectively removes pollutants through enzymatic metabolism
and absorption, complementing other technologies. The find-
ings of this review underscore the scalability, efficacy, and
environmental sustainability of the integrated approaches,
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offering actionable insights for designing holistic air quality
management frameworks to safeguard human health and
address the multifaceted challenge of AP.
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