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Inelastic effects in tube inflation:
non-axisymmetric bulge instability and
propagation in polyethylene tubes

Fatemeh Rouhani,a Abinava Ganesh Sankara Raman,b Jack Wurster Pazina and
Sachin S. Velankar *ab

When an elastic tube such as a rubber hose is inflated, it may sometimes show a bulge instability

wherein a portion of the tube inflates much more than the rest. We show that low density polyethylene

tubes show an entirely different bulge instability: first an axisymmetric bulge grows gradually, followed by

rapid non-axisymmetric bulge growth into a hemispherical ‘‘bubble’’ prior to rupture. The pressure reaches

a maximum just before the axisymmetric bulge starts growing and then decreases steeply but continuously

once the bulge grows non-axisymmetrically. These behaviors are distinct from rubber tubes in which

bulges are always axisymmetric, and the pressure reduces discontinuously when the bulge initiates. An

approximate thin-shell model is constructed to explain bulge initiation in terms of the two chief

phenomena at play: geometric effects (inflation increases the tube diameter and reduces the wall

thickness), and constitutive behavior (tube wall yields at some pressure). The growth of the hemispherical

bubble is attributed to the strong strain hardening of polyethylene at high strain. Finally, we show that

limiting the growth of the non-axisymmetric bulge using an external constraint forces it to propagate

axially—the first reported example of a non-axisymmetric propagation instability in tube inflation.

1. Introduction

Pressurized tubes made of polymeric materials are encountered
in a wide variety of situations. At sufficiently high pressure, the
tubes may deform to a large extent. In applications such as
pipes, arteries, or rubber tires, large deformations are undesir-
able and lead to failure. In situations such as soft robotic
actuators, large deformations are essential to the desired func-
tion. This article is concerned with the large-deformation
inflation of polymer tubes of circular cross section. Our specific
focus is on the bulge instability wherein a portion of the tube
inflates to a much larger extent than the rest.

The behavior of long rubber tubes or hoses is relatively well-
understood.1–4 Three behaviors are possible depending on the
material properties and the ratio of the inner to outer radius.
One possibility is that the tube inflates homogeneously, remain-
ing cylindrical as it is inflated. The second is that at some stage
during inflation, a bulge appears and expands locally until the
tube ruptures. The third possibility is that a bulge appears but
stops growing after it reaches some limiting diameter and starts

propagating axially as inflation is continued (leftmost image of
Fig. 1(a)5). This last situation is also encountered when inflating
long toy balloons of the type used to make balloon animals.
When the volume of the tube is increased steadily, the pressure
first rises, then reduces discontinuously as the bulge initiates,
followed by a plateau as the bulge propagates axially in a stable
manner (yellow curve in Fig. 1(b)). These three behaviors:
homogeneous inflation, bulge initiation, bulge propagation,
and their pressure–volume characteristics, can all be captured
by models that assume that the tubes are hyperelastic.1,2,6–11

As compared to the extensive literature on elastic tubes and
shells, the large-deformation inflation behavior of tubes with
non-elastic constitutive behaviors is sparse. Such non-elastic
behaviors include viscoelasticity,5,12,13 rate-dependence of
material behavior,5,13,14 or strain-induced changes in mechan-
ical behavior.14 In a previous paper on non-elastic effects,5 we
showed that the inflation of tubes made of polyurethane
elastomer is distinctly different from that described above for
rubber tubes. Polyurethane tubes were found to inflate with
multiple axisymmetric bulges (middle image of Fig. 1(a)), and
the pressure–volume behavior showed a maximum followed by
a gradual, rather than abrupt, unloading (green curve in
Fig. 1(b)). The tube shape was found to become more homo-
geneous at high inflation rates, but the pressure–volume curve
was hardly affected suggesting that the pressure maximum is
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not due to bulge initiation, but due to constitutive behavior of
the material. Numerical simulations were conducted using the
constitutive behavior of a viscoelastic solid whose modulus
reduced exponentially with time from an initial high value to a
final lower value. Despite the relative simplicity of the viscoe-
lastic model, the simulations could reproduce most of the
observations qualitatively.5

In this second paper on non-elastic effects in tube inflation,
we turn to polyethylene tubes whose behavior strongly differs
from both the rubber hoses as well as the polyurethane tubes.
The rightmost image in Fig. 1(a) shows that during inflation, the
tube develops a bulge that – unlike the rubber hose or the
polyurethane tube – is not axisymmetric. The pressure–volume
curve (red data in Fig. 1(b)) shows a maximum, followed by an
initially-gradual decrease in pressure, followed by a steeper, but
continuous, decrease in pressure. Unlike the other two tubes, the
pressure does not approach a plateau. Instead, the bulge first
grows to a nearly-hemispherical shape and eventually the tube
bursts, with a fracture propagating along the circumferential
direction (Fig. 1(c)). To our knowledge, there are no publications
quantifying such behavior or even reporting it qualitatively.

The extensive experimental, theoretical, and computational
research1,2,15,16 on the bulging behavior of elastic tubes all
deals with axisymmetric bulges. Indeed, some of the early
theoretical literature17,18 in this area argued that prismatic
bulging (i.e. a non-axisymmetric cross-section with no axial
variation) is not possible for the constitutive behavior typical
for rubbery materials. Lindgreen et al. showed computationally
that inflating a cylinder with the elastic-viscoplastic constitutive

behavior of a polymer may lead to non-axisymmetric
instabilities.19,20 Merodio21,22 showed that tubes with a non-
uniform residual stress develop non-axisymmetric bulges, even
if the material is elastic. If the ends of the tube are constrained,
inflation can induce compressive stress, inducing the tubes to
buckle in a non-axisymmetric fashion.8,23 There are multiple
computational and analytical studies on non-axisymmetric defor-
mation of cylindrical and spherical structures under internal
pressure.24–30 Experimental studies, however, are sparse. Non-
axisymmetric bulging of polymeric tubes has been noted during
burst testing of plastic pipes, typically made of high-density
polyethylene or polyvinyl chloride.26,31–35 The pressurized pipe
may develop a non-axisymmetric bulge that is elongated along
the axial direction before bursting, and Fig. S1a–d reproduces
some examples from past literature.26,36–39 We are unaware of any
experimental quantification of such bulge formation prior to
burst. There do not appear to be published examples where a
non-axisymmetric bulge proceeds to an almost hemispherical
shape prior to failure as seen in the red tube in Fig. 1(a).

Incidentally inflation behavior of metal tubes beyond their
elastic limit has been studied for many decades.23,40–47 Metal
tubes generally burst at relatively small degrees of inflation,
with the rupture occurring due to the appearance of an axially-
oriented crack – this is readily apparent when pipes burst due
to freezing in cold weather. But bursting can sometimes be
preceded by non-axisymmetric deformation36,44 which even-
tually leads to a crack, see right image in Fig. S1e.36 In fact,
plastic deformation prior to failure can also be exploited, e.g. in
the process of auto-frettage, to increase the burst pressure.48,49

Fig. 1 (a) Behavior of various polymer tubes while being inflated at constant flow rate. All three tubes have an outer diameter of 6.35 mm. The inner
diameters are 3.175 mm for the rubber tube (left), 3.97 mm for the polyurethane tube (middle), and 4.37 mm for the polyethylene tube (right). (b) Pressure
vs. non-dimensional volume for each of the tubes from a. Here DV is the increase in volume due to inflation, and Vo0 is the uninflated volume calculated
based on the outer radius. The green curve and yellow curve are taken from Fig. 8 in Rouhani et al.5 The pressure of the rubber tube has been multiplied
by 10 for clarity. (c) Image of the red tube after burst with a circumferentially-oriented crack.
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Yet, all these phenomena appear at relatively low degrees of
inflation (or equivalently low circumferential strain), far smal-
ler than the strains in this paper. In contrast, biological tissues
can readily undergo large deformations without failure. Such
large deformations can be accompanied by gradual failure or
remodeling and growth of the tissues. In a formal sense, these
changes are also non-elastic in nature and various approaches
have been proposed to model such changes.50–54

This paper is a comprehensive experimental study of the non-
axisymmetric bulge localization of the polyethylene tube shown in
Fig. 1. At the outset of this research, it was not clear whether the
bulge initiates at the pressure maximum or earlier/later, whether
non-axisymmetry appears at initiation or later, whether viscoelas-
ticity of the material plays a role, and at what stage the deformation
becomes irreversible. The experiments in this paper were designed
to address these issues. Section 2 explains the materials, equip-
ment, and experimental methods. Section 3 first describes material
properties of the tube wall and then quantifies the inflation
behavior. Section 4 discusses the inflation behavior relying on a
simple thin-shell model to guide the discussion. An additional
experiment on non-axisymmetric bulge propagation is documented
in Section 5. Section 6 concludes the paper with a brief summary.

2. Experimental methods

Low density polyethylene (LDPE) tubes, with an outer diameter of
1/4 inch (6.35 mm) and an inner diameter of 11/64 inch (4.37 mm),
were purchased from McMaster-Carr Supply Co. Thus, the tube
dimensions are Ro0 = 3.175 mm; Ri0 = 2.185 mm; and wall
thickness h0 = 0.99 mm. Note that the subscript o and i refer to
outer and inner dimensions, and the subscript 0 refers to the
undeformed state. All tubes were cut to a length of 160 mm, and
accounting for the length at each end that is inserted into the
fittings, the section of the undeformed tube that could inflate
freely was 130 mm long, corresponding to an undeformed aspect
ratio L/Ro0 of 41, and an initial outer volume, Vo0, of 4.11 mL.

Tubes were inflated using a constant-flow rate piston pump
(Isco Reaxys LS), and the pressure during inflation was recorded.
The experiment was video-recorded with a digital camera. Prior to
the experiment, the tubes were smeared with a thin layer of oil and
flakes of black ‘‘glitter’’ were stuck on the tube. These served as
markers for motion-tracking to quantify deformations.

One limitation is that the pump has an internal damper to
smooth the piston displacement. At early stages of inflation
when the pressure rises rapidly, the compliance of this damper,
as well as the compressibility of any small bubbles trapped in
the lines, may cause discrepancies between the volume dis-
placed by the pump vs. the volume that is actually pumped into
the tube. Therefore, instead of relying on the volume displaced
by the pump, we used a ‘‘dilatometer’’ apparatus to measure
the volume actually pumped into the polyethylene tube. The
apparatus (Fig. 2) comprises a water-filled glass cylinder with a
tight rubber seal with a center hole. A steel tubing, which fits
the hole tightly, connects to the pump on the upper end and the
polyethylene tube specimen on the lower end. The rubber seal

is pierced with a needle, to which is connected a transparent
plastic ‘‘riser tube’’ of inner diameter 2.36 mm. As the pump
inflates the polyethylene tube, the water rises into the trans-
parent tubing (inset to Fig. 2(b)) and the meniscus height can
be followed by video. The height change multiplied by the
known cross section of the riser tube then gives the actual
volume change of the polyethylene tube, denoted DV.

The polyethylene tubes are supplied in a spool, and they
have an intrinsic curvature. Inflation experiments were con-
ducted with ink marks on the inner and outer curvature to test
whether the intrinsic curvature affected the location of bulge
initiation. We found that in most cases, bulges initiated on the
‘‘sides’’ i.e. neither on the inner nor outer curvature. To prevent
this natural curvature from interfering with the quantification
of the videos, a small deadload of 1.5 N was suspended from
the bottom of the tube, to approximately straighten the tube.
Accordingly, the axial strain can be followed readily. This axial
deadload is sufficiently small that it does not affect the infla-
tion behavior as compared to tubes without a deadload. Inci-
dentally, from the tube modulus measured in Section S2, we
estimate that this deadload induces a strain of only 0.05%.

Uniaxial tests were conducted using an Instront 5565 screw-
driven mechanical testing machine equipped with a 50 lb (225
N) model 31 Sensotect transducer load cell. Details of these
tests are given in Section S2.

3. Results
3.1. Mechanical properties

Mechanical properties of the tubes were measured by tensile
testing, combined with quantitative video analysis to obtain

Fig. 2 Experimental setup. (a) Schematic (not-to-scale), and (b) photo of
experiment where the tube has a bulge that has already burst. Black dots
on the surface of the tube are marker particles. Right image is a zoomed
view of the dashed rectangle where the blue arrow indicates the meniscus
in the transparent ‘‘riser’’ tube.
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true stress vs. true strain relationships. Details are given in the
Section S2; here we only summarize the main points. First,
when tested along the axial direction, the engineering stress vs.
engineering strain (Fig. 3(a), orange points) shows a monotonic
increase. Plotting the true stress vs. true strain (Fig. 3(b)) gives a
small-strain modulus of 160 MPa. Significant deviations from
linearity appear at a stress of roughly 6.5 MPa, above which the
slope of the stress–strain curve decreases significantly. There-
fore, in most of the Discussion (Section 4), we adopt 6.5 MPa as
the yield stress, and hence the yield strain is 0.041. A some-
what different value may be chosen for the yield stress, but it
does not affect the Discussion significantly. Beyond this
stress, the tubes show significant irreversible deformation.
Such behaviors are typical for polyethylene. At large strain,
the slope of the stress–strain curve in Fig. 3(b) increases again
indicating strain hardening behavior. Second, circumferen-
tial direction tensile tests were also conducted (Fig. S2c),
although as described in the Section S2, these experiments
did not start from the stress-free state. In these experiments,
the engineering stress vs. engineering strain curves (Fig. 3(a),
blue points) showed a maximum, followed by a plateau. The
videos show that at the maximum force, the specimen devel-
oped a locally-narrow neck. The new material was then drawn
into the neck as stretching continued. Necking and drawing is
typical for many semicrystalline polymers.55–57 The true stress
vs. true strain behavior along the circumferential direction
also showed strong strain hardening, but at higher strain
than for axial stretching. Such anisotropy is likely attributable
to the flow-alignment of polymer chains during extrusion,
the process used to manufacture the tubes. Tensile tests at
rates spanning two orders of magnitude showed similar
behavior.58

3.2. Inflation tests

We first qualitatively describe a typical experiment in which the
entire length of the tube is imaged (Fig. 4). To guarantee that a

bulge would initiate within the field of view of the camera, we
gently sanded a specific spot on the tube that was within the
field of view. However, similar experiments without sanding
provided identical results.59

Fig. 4(a) shows the pressure vs. volume curve during infla-
tion. Here the x-axis is the volume increase DV (measured via
the water height in transparent tube in Fig. 2) made non-
dimensional by Vo0, which is the volume of the tube based on
its undeformed outer diameter. At the inflation rate of 0.6 mL
min�1 used in this experiment, the entire inflation processes
up to bursting took approximately 300 s. Fig. 4(d) and (e) show
the corresponding images taken from two cameras, one directly
facing the sanded region, and the other mounted orthogonally.
The volumes corresponding to these images are indicated by
the vertical black dashed lines. The video corresponding to
Fig. 4(d) is also available as SI. Fig. 4(b) shows the circumfer-
ential expansion estimated from the change in diameter far
away from the bulge. Further, particle tracking analysis of the
black markers allows quantifying the axial stretch far from the
bulged region (Fig. 4(c)).

Four distinct stages can be identified in Fig. 4, as separated
by the vertical black dashed lines. Between the initial unde-
formed state and point 1, pressure increases monotonically
with only a slight change in diameter, and axial elongation of
only 1%. From point 1 to 2, the pressure reduces gradually, and
a slight local bulge becomes evident. During this gradual
pressure decrease, the tube length reduces, and by point 2,
the tube is shorter than its original length. We may compare
the circumferential expansion far from the bulge with that
expected from volume conservation assuming that the tube
walls are incompressible:

lyo2lz ¼ 1þ DV
Vo0

� �
(1)

where lyo is the circumferential stretch of the outer surface of
the tube, lz is the axial stretch, DV is volume increase, and Vo0 is
the volume of the tube based on its undeformed outer

Fig. 3 (a) Engineering stress vs. engineering strain curves for an axially-stretched sample in orange and a circumferentially-stretched sample in blue. (b)
Same data as a, but plotted with true values of stress and strain. The circumferential data at small strains are unreliable because the samples do not start
from a stress-free state, see text and Section S2.
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diameter. Since the axial elongation is small (Fig. 4(c)), we set lz

to 1 to obtain

lyo ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ DV

Vo0

s
(2)

Eqn (2) corresponds to the solid line in Fig. 4(b), i.e. the
unbulged section closely follows the expected expansion until
the bulge starts growing non-axisymmetrically.

Beyond point 2 the bulge grows rapidly (in less than 10 s) in
a non-axisymmetric fashion and takes on the form of a nearly
hemispherical ‘‘bubble’’. This bulging is accompanied by a
rapid drop in pressure and slight axial lengthening (Fig. 4(b)).

In addition, due to the drop in pressure, the unbulged region
slightly shrinks in diameter, Fig. 4(b). The images at point 4 were
taken just prior to failure. Beyond this point, the tube bursts by a
circumferentially-oriented crack as mentioned in the Introduc-
tion. Multiple experiments showed modest variation in the time
corresponding to the steep pressure drop, and in the steepness of
the decrease in pressure. In some experiments (e.g. Fig. 5 below),
the pressure appears to level off for a brief period before bursting.
These variations may be due to minor defects in the tube that
trigger inflation instability. Experiments at inflation rates in the
range of 0.2 to 20 mL min�1 show similar behavior,58 i.e. in
contrast to the polyurethane tubes of our previous research,5 the
inflation behavior is qualitatively insensitive to rate.

Fig. 4 Inflation experiment at 0.6 mL min�1 inflation rate. (a) Evolution of pressure with non-dimensional volume change. These are the same as the red
points in Fig. 1(b). Straight line in a is fit to eqn (3) with circumferential modulus of 160 MPa as a fitting parameter. (b) Evolution of circumferential stretch.
Line is the prediction of eqn (2) with no fitting parameters. (c) Evolution of axial stretch. (d) Images of the tube at the volumes corresponding to the four
vertical dashed lines in a–c. (e) Images of the tube at the exact same volumes as in d, but taken from an orthogonal direction, see text for details.
Rightmost image in e is after bursting; note the circumferentially-oriented crack.
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Before proceeding, we note that metal tubes typically fail
with an axially-oriented crack (e.g. Fig. S1e). This may be readily
rationalized based on the fact that at small deformations, the
hoop stress is larger than the axial stress (in fact, twice as large
for a thin-walled tube). Polymeric tubes however show more
variability, and Fig. S1a–d shows examples of cracks that may
be axially- or circumferentially-oriented. We are unaware of
literature explaining the reasons for these differences and will
not discuss fracture further in this paper.

The pressure–volume curve at the early stages of inflation
can be compared with that expected from linear elasticity. Since
the axial strain is negligible, plane strain conditions are
approximated. Thus, the following equation relates the pres-
sure, P, to the increase in volume, DV, for an incompressible
linearly-elastic thick-walled tube60

P ¼ DV
Vo0

E

3

Ro0
2

Ri0
2
� 1

� �
(3)

Fig. 5 (a) Image of the tube showing three pairs of markers used for quantifying the axial and circumferential stretches. Purple and green squares are
used to quantify the bulged region, whereas red squares to quantify the unbulged region. (b) Pressure vs. time data during inflation. (c) Magnified view of
the bulge at the time corresponding to the vertical dashed blue lines in (b). (d) Axial and circumferential stretches obtained from the pairs of markers on
the bulge and unbulged region. Marker colors correspond to the colors of the squares in a. Note that images in a and c have been tilted for convenience
even though the tubes were vertical during the experiment.
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where Ri0 and Ro0 are the undeformed inner and outer radius, E
is the elastic modulus, DV is volume increase, and Vo0 is the
volume of the tube based on its undeformed outer diameter.
Using the modulus of 160 MPa from Section 3.1, eqn (3) is in
good agreement with the data (green line of Fig. 4(a)). Thus,
although the tubes have significant anisotropy at large strain,
the small-strain modulus is approximately equal in the axial
and circumferential directions.

The experiment of Fig. 4, which shows the behavior of the
entire tube length, lacks the resolution to quantify deformation
of the bulge itself. For strain quantification, further experi-
ments were conducted at higher magnification with the camera
mounted normal to the sanded region. For ease of visualiza-
tion, this experiment was not conducted in the water-container.
Fig. 5 shows that we can capture the bulge, and a portion of the
tube outside the bulge, at a resolution of roughly 0.2 mm.
Despite the higher resolution, it is not possible to precisely
quantify the entire strain field since we only have 2D images
from a single direction of this complex 3D deformation. Never-
theless, stretches can be estimated approximately by selecting
pairs of markers (indicated by the small green, purple, and red
colored squares in the image), and comparing their displace-
ments. These markers are selected to be close to the surface
directly facing the camera to reduce the effect of tube curvature.
Fig. 5(d) shows the circumferential and axial stretches from
three pairs of markers: two pairs selected to be in the bulged
region (purple and green), and one pair selected to be in the
non-bulged region (red).

During the initial rise in pressure when the deformations
are small, the different locations have almost equal stretches
confirming that the deformation is homogeneous. During the
gradual decrease in pressure, the stretches corresponding to
the purple and green pairs of markers (on the bulge) diverge
from the red pair of makers (outside the bulge). However, for
both the purple and green pairs, the circumferential stretches
increase before the axial stretches, i.e. during the gradual
pressure decrease, bulge growth is primarily circumferential.
During the steep pressure drop however, the axial stretch in the
bulge region increases sharply and eventually becomes compar-
able to the circumferential stretch. This is consistent with the
hemispherical appearance of the bulge. Moreover, the fact that
the two stretches are comparable may explain why the eventual
rupture is not necessarily oriented axially (as for example, the
metal tube in Fig. S1e) but may be oriented circumferentially.
Simultaneously, the stretches corresponding to the red pair of
markers reduce, indicating that the tube outside the bulge
shows elastic recoil as the pressure decreases. Finally note that
the area expansion estimated from the product of the two
stretches well exceeds 15, i.e. prior to bursting, the non-
axisymmetric bulge reaches a high level of biaxial stretch.

3.3. Irreversible deformation

The bulged region clearly undergoes large permanent deforma-
tion; this is evident from the image after the tube bursts (right-
most image in Fig. 4(e)). The experiments in this section address
the question: at what point during inflation does irreversible

deformation become important? Does it only become important
after the bulge starts growing, or much earlier? Should the
maximum in pressure be associated with irreversible deforma-
tion? In fact, Section 4 shows that as per the Tresca yield
criterion, the tube wall is expected to yield at a pressure of
2.22 MPa – a value that is well below the maximum pressure during
inflation. A more careful estimate (Section S4) suggests that the
inner wall should yield at an even lower pressure of 1.71 MPa. Thus,
yielding and irreversible deformation are expected even before the
pressure maximum is reached. Accordingly, this section aims to
quantify the onset of irreversible deformation.

One simple way to judge yielding and irreversible deforma-
tion of any system is to compare the shape before and after
loading. In our case, if the tube had been straight, irreversible
deformation prior to the pressure maximum would have been
difficult to identify since, as per Fig. 4(b) and (c), dimensional
changes up to the pressure maximum are small. Fortuitously
however, the tubes have an intrinsic curvature, and therefore
even a small degree of permanent strain gives a relatively large
macroscopic shape change, which can be measured readily.
Accordingly, five tubes were subjected to increasing degrees of
inflation before unloading. Two inflations were stopped before
the pressure maximum, one near the pressure maximum, and
two past the pressure maximum into the region where pressure
gradually reduced. The pressure–volume curves during all these
tests are shown in Fig. 6(a).

Fig. 6(b) superposes the initial shape of each tube specimen
before inflation in red and the final shape after the inflation-
deflation in grey. The degree of straightening is seen to increase
as the tubes are inflated to a greater extent. These before-and-
after images were quantified by fitting the inner radius of the
curved shape to the arc of a circle. The corresponding decrease in
curvature is plotted in Fig. 6(c). The central conclusion is that a
small decrease in curvature appears when deflated after a pres-
sure of 2.5 MPa, which is in reasonable agreement with the value
of 2.22 MPa expected for yielding (see Discussion and eqn (10)
below). The changes in curvature increase steadily (i.e. tubes
straighten more) with increasing levels of inflation, but there is
no abrupt increase at the pressure maximum, i.e. the pressure
maximum should not be ascribed to the initiation of yielding.

4. Discussion

We discuss three noteworthy aspects of inflation behavior: the
maximum in pressure, the non-axisymmetric growth of the
bulge, and the eventual growth into a hemispherical bubble
before rupture.

First consider the pressure–volume behavior. The initial
increase in pressure during inflation is readily captured by
linear elastic theory, eqn (3). The behavior beyond the yield
point depends on strain hardening behavior of the tube walls.
If there is no strain hardening, the wall stress saturates at a
constant value that is independent of inflation. If the degree of
inflation is sufficiently small that the tube dimensions are
nearly equal to undeformed dimensions, a constant wall stress
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immediately implies that the pressure must reach a plateau. If
the tube walls show post-yield strain hardening, the wall stress
increases gradually even beyond the yield point and hence the
pressure is expected to increase gradually with inflation. Neither
of these cases can predict a maximum in pressure. A pressure
maximum can only arise if changes in tube dimensions (increase
in diameter and decrease in wall thickness) are accounted for.

Consider an approximate plane strain thin-shell model to
capture the physics from the previous paragraph. The tube is
treated as a thin shell of mean radius Rm = (Ro + Ri)/2 and
thickness h = Ro � Ri in the inflated state. The undeformed radius
and thickness respectively are Rm0 = (Ro0 + Ri0)/2 and h0 = Ro0� Ri0.
For a tube that maintains cylindrical shape, a force balance (some-
times called Laplace equation) readily gives the expression

P ¼ h

Rm
sH (4)

where sH = sym is the hoop stress in the shell walls. If the
deformation is small, h/Rm = h0/Rm0 is constant, and therefore it
is immediately obvious that the pressure simply follows the hoop
stress, and hence can only increase monotonically or reach a
plateau, with inflation. To account for changes in tube dimensions,
we assume that the walls are incompressible,

2pRm0h0 = 2pRmh (5)

Accordingly,

P ¼ h0

Rm0

Rm0
2

Rm
2
sH ¼

h0

Rm0

1

lym2
sH (6)

where lym = Rm/Rm0 is the circumferential stretch based on the
mean radius, h0 and Rm0 are undeformed thickness and mean
radius, and h and Rm are deformed thickness and mean radius

respectively. Further the volume change can be related to the
deformations by

lym
2lz = Vm/Vm0 (7)

where Vm0 is the undeformed volume based on the mean radius and
Vm = Vm0 + DV is the deformed volume in the inflated state. Eqn (7) is
similar to eqn (1), but now applied to a thin shell of radius Rm. Now
assuming that the axial strain is small (lz = 1), as confirmed
experimentally, eqn (6) can be rewritten in terms of volume changes

P ¼ h0

Rm0

Vm0

Vm
sH (8)

All quantities with subscript 0 are fixed for a given sample.
Thus, the pressure–volume behavior can show a maximum if
the quantity sH/Vm has a maximum as Vm increases. Note that
the dependence of sH on Vm depends on the constitutive
behavior of the material. In contrast, the quantity Vm0/Vm is a
purely geometric aspect, specifically that Rm increases due to
inflation, which in turn reduces h due to wall incompressibility.

We now consider different scenarios for constitutive beha-
vior of the walls. Taking the walls to be linearly elastic with the
elastic modulus E, and under plane strain conditions

sH ¼
E

1� n2 lym � 1ð Þ ¼ 4

3
E

ffiffiffiffiffiffiffiffiffi
Vm

Vm0

r
� 1

� �
(9)

where n = 0.5 is the Poisson’s ratio for the incompressible walls.
Note that (lym � 1) is simply the circumferential strain.
Combining eqn (8) and (9) gives an expression for pressure:

P ¼ 4

3

h0

Rm0

Vm0

Vm
E

ffiffiffiffiffiffiffiffiffi
Vm

Vm0

r
� 1

� �
(10)

Fig. 6 (a) Pressure–volume curves for five tube specimens inflated to various pressures. (b) Each image shows an overlay of the initial shape of the tube
before inflation in red and after deflation in gray. (c) Initial and final curvature after deflation, measured along the inner perimeter, for each sample. Each
arrow is drawn to start at the initial curvature and end at the final curvature after deflating the tube.
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Note that Vm = Vm0 + DV, and hence eqn (10) can be
compared directly with the experimental data. Eqn (10) is shown
as a solid blue line in Fig. 7 and on a larger scale in the inset to
Fig. 7a. The functional form of the right-hand side implies a
maximum pressure, which may be determined analytically at a
Vm/Vm0 value of 4, or DV/Vm0 of 3. The location of the maximum
is denoted by a vertical dashed line in the inset to Fig. 7a. Fig. S5
shows that, eqn (10) is in reasonable agreement with a more
precise thin-shell analysis2 that does not specify lz = 1, except
that the more precise analysis predicts a pressure maximum at
Vm/Vm0 value of 3.27. Although approximate as compared to the
precise analysis of Fig. S5, the benefit of eqn (10) is that the
physical reason for the non-monotonic pressure evolution is
transparent: the quantity inside the brackets grows with infla-
tion because the hoop stress in eqn (4) grows, but the quantity
outside the brackets reduces with inflation for the purely
geometric reasons mentioned above.

This simple model can capture the existence of the max-
imum pressure as a coupling between geometric effects and
constitutive behavior of the walls. However, the predicted
volume at the maximum (DV/Vm0 = 3) far exceeds that observed
experimentally. The likely reason is yielding: beyond the yield
point, eqn (9) overestimates the increase in hoop stress with
inflation, and hence the pressure from eqn (10) rises far higher
than if we accounted for yielding.

We may expect yielding to occur when the hoop stress equals
the yield stress (incidentally, this is equivalent to applying the
Tresca yielding criterion to a thin-walled tube, because the shear
stress is simply equal to half of the hoop stress). Taking the yield
stress as 6.5 MPa, eqn (9) then predicts Vm/Vm0 = 1.083, i.e. DVm/
Vm0 = 0.083, at the yield point, from which eqn (10) predicts a
pressure of 2.22 MPa. This is in reasonable agreement with
both: the pressure at which the tube starts straightening signifi-
cantly, and also the pressure at which the measured PV curve
deviates from linearity (Fig. 4). Beyond this pressure, one should
expect significant deviations from eqn (10).

To capture post-yield behavior, we adopt the following
constitutive behavior:

sH ¼
E

1� n2 lym � 1ð Þ for sH � sy

sH ¼ sy þ ET lym � ly
� �

for sH 4 sy

9>=
>; (11)

Here the first part of the equation is identical to eqn (9), and
ly = 1 + 3sy/4E is the stretch at the yield point, i.e. when sH = sy.
in eqn (9). ET represents the tangent modulus of the uniaxial
stress–strain curve beyond the yield point. ET is positive, but
taken to be much less than E, thus causing the hoop stress to
increase more mildly with inflation than expected from the
linearly elastic behavior, eqn (9). Adopting eqn (11) as the
constitutive behavior, the pressure is expected to follow
eqn (10) up to the yield point, but beyond the yield point,
combining eqn (11) and eqn (9)

P ¼ h0

Rm0

Vm0

Vm
sy þ ET

ffiffiffiffiffiffiffiffiffi
Vm

Vm0

r
� 3sy

4E
� 1

� �� �
for sH 4sy

(12)

Consider first ET = 0, i.e. no strain hardening. In this case,
beyond the yield point, the hoop stress remains at sy, and
eqn (12) predicts a monotonic decrease in pressure as the tube
is inflated. This behavior is shown by the dashed green line in
Fig. 7, and Fig. S7 shows that this is in excellent agreement with a
more precise analysis of fully yielded tubes. Accordingly, there is
a sharp pressure maximum at P = 2.22 MPa corresponding to the
switch from eqn (10) to eqn (12) which occurs at the yield point.

With increasing strain hardening, eqn (12) predicts a pres-
sure maximum beyond the yield point, i.e. the tube yields,
followed by a further increase in pressure up to some maximum
value. This latter behavior is consistent with our results which
show that yield and irreversible deformation precedes the
pressure maximum (Fig. 6). Not surprisingly, increasing the
strain hardening coefficient increases the volume and pressure

Fig. 7 Pressure–volume behavior predicted by the approximate thin shell model for various levels of tangential modulus parameter ET. Right graph
magnifies the behavior at small volume. Blue line is linearly elastic, eqn (10), which is shown over a larger range of pressures in the inset to the left graph.
Small vertical lines indicate location of the maximum.
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at the maximum. Incidentally, an ET value of 20 to 30 MPa can
reasonably fit the tensile experimental data immediately after
the yield point, i.e. the values used for illustration in Fig. 7 are
comparable to experiments. For such values, the shape of the
pressure–volume curve also agrees with experiments.

The above analysis was conducted using a thin-wall assump-
tion. The Section S2 shows that treating the tube as thick-walled
changes the discussion slightly. Briefly, if the tube is treated as
thick-walled63 (1) PV behavior remains close to eqn (10) in the
linear regime, (2) the first instance of yielding occurs at the
inner wall at a pressure of 1.71 MPa, lower than the 2.22 MPa
estimated above for a thin-walled model, and (3) the yield
process is more gradual since yielding starts at the inner wall
and propagates outwards. During this gradual yielding, the
pressure increases even if ET = 0; only once the yield surface
reaches the outer wall does the pressure start reducing.

As mentioned in Section 3.1, this Discussion adopted
6.5 MPa as the yield stress. Yet, this value was assigned based
on the stress at which the measured tensile stress–strain curve
deviated from linearity. Using somewhat different criteria, a
yield stress value as high as 8 MPa may be justified. In that case,
all the above pressure estimates would increase proportio-
nately. That would bring the maximum pressures in Fig. 7 in
closer agreement with the experimentally-observed maximum.
For example, if the yield stress were taken to be 8 MPa, the
pressure at the yield point in Fig. 7 would be 2.73 MPa.

The presence of a pressure maximum only indicates that the
homogeneous inflation (i.e. maintaining cylindrical shape) is
unstable, thus making the tube susceptible to a bulge instabil-
ity. Crucially (and different from a linearly elastic tube), any
bulge that initiates is highly susceptible to localization. This is
because any small imperfection induces strong local softening
beyond the yield point. Since the hoop stress is the largest
principal stress, the bulge, even if it starts axisymmetrically, has
a strong driving force to become non-axisymmetric. Indeed, a
computational study to be published,61 but also available in a
thesis,58 shows the bulge becomes non-axisymmetric if ET is
small but remains axisymmetric if ET is large.

While the presence of a yield stress can explain the non-
axisymmetric deformation, it cannot explain the evolution of
the bulge into a hemispherical bubble. Such behavior is not
encountered in metal tubes; instead, the yield localizes strongly
and proceeds to failure.36,44 Polyvinyl chloride can show mod-
est non-axisymmetric bulging, but not to the extent of forming
a hemispherical bubble; instead, Fig. S1c shows that an axially-
oriented neck appears which then thins locally prior to rupture.
The hemispherical bulge growth seen in our experiments must
therefore be attributable to the strain hardening that is evident
at high strains in the tensile tests. Specifically, the strain
hardening can limit, or at least reduce, local stretching (and
hence reduce local thinning) by recruiting surrounding material
into the bulge. Simulations58,61 show that with strain harden-
ing, the bulge can spread circumferentially and/or axially. How-
ever, if the strain hardening is weak, the bulge may rupture even
before it starts spreading. Thus, tentatively we speculate that the
tubes such as Fig. S1a–d have weak strain hardening and hence

the non-axisymmetric bulge localizes without much spreading,
causing rupture. In contrast, the polyethylene tubes examined
here have stronger strain hardening, allowing the bulge to
spread significantly before rupture. Note that the mechanical
properties of the tubes in Fig. S1 were not reported, and hence
this speculation cannot be evaluated at present.

5. An additional experiment:
non-axisymmetric bulge propagation

The last paragraph of the previous section raises the question:
what would happen if the strain hardening was much stronger?
The behavior of hyperelastic tubes provides some guidance.1,2,17,18

Neo–Hookean tubes show an axisymmetric bulge after some
degree of inflation, and the bulge remains localized and grows
circumferentially with continued expansion. However, if the con-
stitutive behavior includes strain hardening, the local circumfer-
ential expansion saturates. With continued inflation, the bulge
then propagates axially, which matches experimental observations
on rubber tubes (Fig. 1(a), left image). Analogously, we speculate
that even in tubes with yielding behavior, sufficiently strong strain
hardening may limit the local bulge growth and force axial bulge
propagation. This speculation is difficult to test directly because
there is no means of tuning the strain hardening behavior of the
material at will. Nevertheless, we may approximate strong strain
hardening by inflating the tubes within a rigid external ‘‘limiter’’ of
a larger diameter. Thus, as the bulge contacts the limiter, we
anticipate that further local expansion of the bulge will be pre-
vented, roughly analogous to the effect of strain hardening.

Experiments were conducted using as a limiter a transparent
tube made of polyvinyl chloride which showed negligible
deformation under experimental conditions and hence may
be regarded as rigid. The inner diameter of the limiter tube was
11.4 mm, chosen to be smaller than the diameter at which the
non-axisymmetric bulge would burst.

Fig. 8(a) shows the pressure vs. time curve during inflation at
0.6 mL min�1, the same conditions as Fig. 4. Fig. 8(b) shows
images of the experiment, and the corresponding video is
available as SI. The initial bulge forms similar to that in the
previous figures in this paper, and as in Fig. 4(a), the pressure
decreases sharply as the bulge initiates. However, once the
bulge contacts the limiter, the pressure increases slightly and
reaches a plateau. During the plateau, the video and the images
in Fig. 8(b) show stable axial propagation of the bulge. By
equating the volumetric rate of inflation to the volume asso-
ciated with bulge propagation, the bulge propagation speed, v,
is expected to be

v ¼ Flow rate

p Rl
2 � Ro0

2ð Þ (13)

where Rl is the limiter radius and Ro0 is the undeformed outer
radius of the tube. The propagation speed measured from the
video is in excellent agreement with this expectation (not
shown here but verified in Pazin59 for multiple flow rates).
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By tracking the bottom end of the tube, changes in tube
length can be monitored. Fig. 8(a) shows that the bottom end
first displaces downwards (tube length increases) and then
upwards (tube length decreases) as the bulge initiates, and finally
downwards again as the bulge propagates stably. The ratio of the
end displacement to the tube length gives the mean axial stretch
over the entire tube. Up to bulge initiation, this quantity is in good
agreement with that shown in Fig. 4(c). But once the bulge starts
propagating stably, deformation is entirely localized in the narrow
zone within which the bulge propagates – as with other propagat-
ing instabilities, regions far ahead or far behind the propagation
zone do not undergo any change. The change in tube length
during propagation is relatively small; for example, in the time
from 300 s to 420 s, the video shows the bulge propagating
approximately 32 mm whereas the end-displacement is 2.5 mm,
corresponding to a strain of 1.9%. Thus, unlike bulge propagation
of a rubber hose,1,2 the non-axisymmetric bulge propagation of
Fig. 4 occurs with very little axial strain.

Upon releasing the pressure, the tube was found to be
deformed permanently where a tall ridge appeared along the
length of the tube. An image of the cross section (inset to
Fig. 8(c)) shows a C-shaped portion whose thickness is close to
that of the undeformed tube, and a much thinner portion that
is bowed outwards. This latter section forms the ridge. Increas-
ing the limiter radius reduces the plateau pressure at which the
bulge propagates, increases the height of the ridge, and reduces
the thickness of the wall comprising the ridge as shown in Fig.
S7.59 A limiter radius exceeding 12 mm did not allow stable
propagation; instead, before or soon after the bulge touched
the limiter, the tube ruptured. Crucially, for all limiters that
allow bulge propagation, the ridged section itself has a uniform
thickness throughout, which is characteristic of stable neck
propagation.55,56

These observations suggest the schematic of Fig. 8(d) regard-
ing the mechanics of stable propagation of the non-

axisymmetric bulge. It shows a cartoon of the strain state at
three cross sections that coexist along the length of the tube.
The lowest cartoon labeled (i) shows a cross section far ahead of
the bulge propagation zone. This region has already experienced
peak pressure before the bulge first initiated and hence may
have already undergone a modest degree of yielding as per the
discussion of Section 3.3, nevertheless, its dimensions are very
close to those of the undeformed tube. The middle cartoon
labeled (ii) illustrates a section within the bulge propagation
zone. Here the tube wall has a localized neck, which is propa-
gating circumferentially. Such circumferential propagation can
continue until the external diameter reaches the limiter dia-
meter. The topmost cartoon labeled (iii) shows a cross section
which is far behind the propagation zone where deformation is
already complete. Here the outer surface of the tube is fully in
contact with the limiter tube and hence further circumferential
expansion is not possible. The cross section comprises two
distinct thicknesses: a thin necked region which has undergone
severe permanent deformation, and a thick unnecked region
that has undergone only modest deformation. Upon releasing
the pressure, the unnecked region recoils elastically, forcing the
thin necked region to bow outwards and form a ridge.

To our knowledge, this is the first report of this type of non-
axisymmetric bulge propagation, and it adds to the known
examples of propagating instabilities such as bulge propaga-
tion in an inflated rubber tube; the buckle collapse of an
externally-pressurized tube; neck propagation in a bar under
tension.1,56,62 Similar to the latter two instabilities, yielding is
essential to this non-axisymmetric propagation instability.

We note one caveat. This section was motivated by the
question of what happens to a non-axisymmetric bulge if the
material is extremely strain hardening. Yet, the tests conducted
here are not true strain hardening. The limiter only limits the
overall increase in diameter, whereas true strain hardening
would impose a limitation on the local strain everywhere.

Fig. 8 (a) Pressure and length change vs. time curves of the inflated tube surrounding by a stiff limiter. (b) Images at the time-points corresponding to
the dashed vertical lines in (a). (c) Tube after pressure is released showing a prominent ridge along the length of the tube. The cross-sectional view of the
tube. (d) Schematics of cross sections ahead, at, and behind the bulge as the bulge propagates stably.
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6. Summary and conclusions

In summary, we have conducted an experimental study of the
bulge instability in polyethylene tubes undergoing inflation.
During inflation at a fixed rate, the pressure first increases,
then reduces gradually, and then reduces steeply but in a
continuous fashion. Quantitative video analysis shows that an
axisymmetric bulge grows gradually starting from the pressure
maximum. Later during inflation, the bulge starts growing non-
axisymmetrically, eventually adopting the shape of a hemispheri-
cal bubble. It is this non-axisymmetric growth that causes a rapid
drop in pressure and eventually rupture. These behaviors are very
different from those of rubber tubes that are well-studied in the
literature, polyurethane tubes from our own previous research,
and metal tubes. We interpret the results relying on an approx-
imate plane strain model which makes transparent the reasons
why the pressure maximum appears. In general, the pressure
evolution during tube inflation is a coupling of two factors:
geometric (the tube diameter increases and walls become thinner
with increasing inflation) and constitutive behavior of the material
(the tube wall yields). We show that accounting for both of these
can readily explain the pressure evolution during inflation. Even
linearly elastic tubes are predicted show a maximum in pressure
during inflation, albeit at a relatively high inflation volume.
Yielding reduces the volume at the maximum significantly; the
maximum appears either at the yield point (if the strain hardening
is weak) or at a higher value (if the strain hardening is stronger).
The decrease in pressure occurs due to change in deformed
dimensions, and later due to non-axisymmetric bulge growth.
The eventual formation of a hemispherical bubble must be
attributable to the strain hardening at large strain which is seen
in tensile tests. Finally, we show that if the bulge expansion is
constrained by a rigid tube, the non-axisymmetric bulge can
propagate in the axial direction. Upon depressurization, the tube
is left with a prominent ridge that results from plastic deformation
during bulge propagation. This appears to be a new kind of
propagating instability which is only possible with materials that
are both yielding and strain hardening.
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