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The world's transition from a fossil-fuel-driven society to a future net-zero or negative carbon dioxide

emission society will require a significant scale-up of Power-to-X technologies to capture and convert

CO2 to low carbon intensity fuels and chemicals. The deployment of Power-to-X technologies at

gigawatt scales necessary to impact CO2 emissions and replace existing fossil-fuel-dependent processes

will require vast quantities of raw materials and minerals. Many of the materials required in Power-to-X

systems, such as rare earth metal yttrium and iridium, differ from those used to construct and operate

petroleum-hydrocarbon-based processes for the last 100 years. Thus, electrolyzer manufacturers and

mineral producers face significant challenges in matching supply to the growing demand. In this

Perspective, we identify critical materials needed for Power-to-X electrolyzers and analyze the impacts

and risks of these materials' existing global supply chains. We then provide an overview of

methodologies for Environmental Life Cycle Assessment (LCA) and Social Life Cycle Assessment (SLCA)

that we encourage scientific communities to adopt early in the research process to evaluate the

multidimensional socio-environmental impacts throughout a product's life cycle, from raw material

extraction and processing to manufacturing, use, and end-of-life disposal. We advocate that life cycle

thinking is crucial for the informed, just and ethical development of disruptive technologies and systems

such as Power-to-X technologies.
Introduction

The transition to a low carbon or net zero future will require
governments, energy companies, and industrial sectors to
adopt new technological and policy approaches to (1) the
manufacturing of goods and services that society demands1 and
(2) to remove CO2 from the atmosphere.2–4 In this context,
Power-to-X technologies that use renewable energy to capture
and convert CO2 to products like ethylene5,6 or liquid fuels, such
as ethanol which can be blended into gasoline7–9 or further
processed to sustainable aviation fuels, will form a central
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strategy for global decarbonization efforts.10,11 Already, Power-
to-H2 projects using water electrolysis to produce green
hydrogen have advanced to industrial scales to demonstrate the
feasibility of large scale Power-to-X technologies where renew-
able electricity supply, product market, and government poli-
cies provide favorable conditions. There is now considerable
activity to develop and commercialize the next generation of
Power-to-X technologies as illustrated in Fig. 1 that convert CO2

to carbon products, or direct reduction of nitrogen to ammonia
(NH3), and can be integrated with or alongside water electrolysis
for H2.12

Signicant efforts are being expended to develop new
materials (catalysts, membranes, electrodes)13–18 and process
technologies for Power-to-X as a carbon capture and utilization
(CCU) strategy.19,20 Many scientic papers have been published
on these topics, as have numerous comprehensive reviews of
research advances in electrocatalysts, membranes, and elec-
trode materials.21–26 There are also techno-economic case
studies on the costs of implementing Power-to-X
technologies.27–30 In this Perspective, we look beyond the
immediate hot topics in the scientic literature on electro-
chemical CO2 conversion towards the demand and supply of
critical minerals and other materials required for large-scale
deployment of Power-to-X technologies and the impacts of
Chem. Sci., 2025, 16, 5819–5835 | 5819
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Fig. 1 Schematic representation of the Power-to-X concept: generating sustainable chemicals and fuels using renewable electricity.
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these materials supply chains on environments and social
groups. First, we identify the critical materials required for
state-of-the-art CO2 electrolyzer technologies. Second, we
analyze the primary sources of these materials and the potential
supply chain challenges in their extraction and purication. In
the third section of the Perspective, we provide suggestions on
how the early use of life-cycle assessment (LCA) and social life-
cycle assessment (SLCA) methodologies can inform more
sustainable and ethical use of resources in research, develop-
ment, and deployment of disruptive technologies for decar-
bonization. It is important to acknowledge from the outset that
the source of CO2 feedstock, how utilization of CO2 should be
considered within emissions accounting frameworks, economic
analysis, and the overall decarbonization benets and risks of
Power-to-X technologies have been placed outside the scope of
this Perspective. These are important considerations that are
already being considered as Power-to-X research, funding
dollars and deployment opportunities ramp up.31–33 Rather, we
focus here on the potential impacts of the materials, and their
associated supply chains, required to support Gigawatt scale
manufacturing and deployment of Power-to-X electrolyzers.
Importantly, this opens opportunities for well-considered and
pre-emptive LCA and SLCA studies to inform fundamental
research into electrolyzer materials and components. We
conclude with recommendations and an outlook.
5820 | Chem. Sci., 2025, 16, 5819–5835
Overview of materials required for
power-to-X

We focus our Power-to-X discussion in this article on the
materials requirements for electrochemical CO2 conversion (or
CO2 electrolysis), including both (a) solid-oxide electrolyzer cells
(SOEC) that operate at more than 800 °C to convert CO2 to
CO,34–36 and (b) low-temperature electrolyzer technologies that
operate at 60–120 °C and can be designed to produce a wide
range of products including CO, ethylene, and alcohols.23,37–39

We acknowledge there will also be signicant demand and
impacts for CO2 capture materials (e.g., amine-based solvents or
alternative media) and process equipment (e.g., structural steel)
to capture CO2 from industrial processes or via direct air
capture (DAC). However, we exclude those materials from our
scope because many of these requirements are like those in
conventional oil and gas and petrochemical industries. In
contrast, the catalysts, membranes, electrical conductors, and
other components required for large-scale CO2 electrolysis
present new and different challenges to conventional fossil-fuel
process industries. Additionally, CO2 electrolyzer technologies
will compete with H2-producing electrolyzers, batteries, and
other green energy technologies for some of the same critical
minerals.40,41 In fact, the materials and manufacturing tech-
nologies shared between the more mature H2-producing water
© 2025 The Author(s). Published by the Royal Society of Chemistry
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electrolyzers and nascent CO2 electrolyser technologies, allow
us to analyzer the likely future material demands as CO2 elec-
trolysers are scale-up and deployed.

Commercial-scale SOEC technologies such as the Topsoe
eCOs™ technology to convert CO2 to CO and mixtures of CO2

and steam to syngas (CO + H2) for chemical manufacture.34,35

Sunre also offers a technology for simultaneous conversion of
CO2 and H2O to syngas (CO + H2).42,43 The operating tempera-
ture of SOEC is typically in the range of 750–900 °C, and these
high-temperature conditions improve reaction kinetics and
conductivity compared to low-temperature cells so that SOEC
can operate at a lower cell voltage than proton exchange
Fig. 2 Schematic representation of typical electrolyzers, detailing their
oxide electrolyzer cell (SOEC) and (b) proton exchange membrane (PEM

© 2025 The Author(s). Published by the Royal Society of Chemistry
membrane (PEM) or alkaline electrolyzers.44–46 We note that
some SOEC technologies can be operated reversibly as a solid
oxide fuel cell with the same or similar catalysts used at the
anode and cathode of the cell. In this Perspective we will refer to
the electrolyzer operating mode with the cathode (fuel elec-
trode) the half-cell where CO2 reduction occurs and the anode
(air electrode) the half-cell where water is oxidized, or another
oxidation reaction occurs.

The common design for SOEC is a sandwich structure with
a solid electrolyte between the porous anode and cathode layers
(Fig. 2a). The solid electrolyte must be an excellent ionic
conductor, have a high melting point and be corrosion resistant
components and the major elements associated with them: (a) solid-
) electrolyzer.

Chem. Sci., 2025, 16, 5819–5835 | 5821
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so the leading electrolytes are based on zirconia (ZrO2) or ceria
(CeO2). These materials are typically stabilized with rare earth
elements such as yttrium in yttrium oxide stabilized ZrO2

(YSZ),47 scandium oxide (Sc2O3) stabilized ZrO2 (ScSZ),48–51 and
gadolinium (Gd) doped ceria (Gd in GDC) or samarium (Sm)
doped ceria (SDC).52–56

The cathode in a SOECmust also be thermally stable and the
most effective SOEC cathode for CO2 electrolysis and CO2 + H2O
co-electrolysis is Ni-YSZ cermet.57–59 Further, to prevent Ni
oxidation by oxygen ions generated at the cathode, a thin layer
of Pd-GDC is sometimes applied to the surface of Ni-YSZ.60

Other materials such as Ni-GDC, Ni–Ru-GDC, and Cu-GDC have
been explored to improve performance.61,62 Similarly, anode
materials for SOECs must exhibit high ionic and electronic
conductivity, excellent stability in oxidizing environments,
effective catalytic activity for oxygen evolution reactions, and
thermal expansion coefficients that match those of the elec-
trolyte materials. The anode materials in a SOEC are oen like
the cathode catalysts and other materials such as including
perovskite-type oxides like La1−xSrxCo1−yFeyO3−d (LSCF),
La1−xSrxCoO3−d (LSC), and La1−xSrxMnO3−d (LSM).63–68 As
shown in Fig. 2a, there many other components required in
a SOEC such as diffusion layers, interconnectors, and current
collectors. However, for illustrative purposes of potential
material supply chain impacts, we will use only the catalyst and
electrolyte materials as the SOEC examples.

A key constraint of currently available SOEC technologies is
that the CO2 reduction product is limited to CO. Low-
temperature CO2 electrolysis technologies offer more exi-
bility than SOEC for products,69–72 operate at milder conditions,
so have less severe material property demands than high
temperatures, can operate with intermittent and exible load
swings with electricity prices, and are more likely to be viable at
small-to-medium scales in decentralized Power-to-X systems.
Although a few low-temperature CO2 electrolysis systems are
reaching pilot-scale demonstrations,73–77 these technologies are
less mature for commercial operations than SOEC technologies
such as Topsoe eCOs™. The key technical challenges for low-
temperature CO2 electrolysis are selectivity, energy efficiency,
including the anode reaction potential, and stability of
membranes and catalysts.

The leading low-temperature CO2 electrolyzer designs share
common device structures with proton exchange membrane
fuel cells (PEM FC). An ion-exchange membrane separates the
cathode cell, where CO2 reduction occurs, from the anode cell,
which most commonly operates with the water-to-oxygen
evolution reaction (OER). The CO2 electrolyzer can be
designed with any of the proton exchange membranes (PEM),78

anion exchange membranes (AEM),79 or bipolar membranes
(BPM).80 Many of the CO2 electrolyzers reported in the literature
are PEM materials such as Naon, and more reports are
emerging with AEMs (e.g., Sustainion) and BPMs due to their
high selectivity and stability.81,82 A variety of cell congurations
are reported for low-temperature CO2 electrolyzers, including
liquid-fed ow cells, gas-fed ow cells, membrane-electrode
assembly (MEA) cells,16,83–85 and more novel designs like
hollow-ber electrode cells under development.86 For
5822 | Chem. Sci., 2025, 16, 5819–5835
illustrative purposes, we described the MEA or zero-gap elec-
trolyzer here as this conguration is the most energy efficient
due to low resistances in the cell design.87–89 Fig. 2b shows the
key components of a MEA-based PEM cell are the ion-exchange
membrane sandwiched between the cathode catalyst layer and
the anode catalyst layer. The catalysts are each deposited on
a porous gas diffusion layer.

The cathode catalyst is selected based on the desired CO2

reduction products from three main material groups (a) metals
and metal oxides of tin (Sn), indium (In), and bismuth (Bi) that
favor reaction pathways involving the formate ion (HCOO−), (b)
metals such as silver (Au) that favor CO production, and (c)
metals like copper that facilitate C–C coupling to enable
synthesis of C2+ hydrocarbons and alcohols.90 To achieve good
electrolyzer cell performance (current density) these metal and
metal oxide catalysts are typically deposited on a gas diffusion
electrode as nanoparticles with polymeric ionomers such as
Naon™ that act as binders and PTFE particles that provide
hydrophobicity to form a porous catalyst layer.91,92 Other
cathode catalysts being studied include carbon materials such
as graphene, carbon nanotubes (CNTs), carbon nanobers, and
carbon dots (CDs) due to their abundance, tailorable porous
structures, large surface area, good electrical conductivity,
resistance to extreme conditions, and eco-friendliness.93–96

The anode reaction in a low-temperature CO2 electrolyzer is
most oen the same OER as in the anode cell of a water elec-
trolyzer to produce H2. Thus, the benchmark anode catalyst for
CO2 electrolysis is iridium oxide (IrO2), just like for PEM water
electrolyzers.97,98 Nickel foam and NiFe alloys are also used as
cheaper anode catalysts, but these Ni electrodes do not yet
match the corrosion resistance of IrO2.99–102

The other components in a low-temperature electrolyzer
include a porous transport layer (PTL) or gas diffusion layer
(GDL) onto which the catalyst is deposited to address mass
transport limitations due to the CO2 feed and other gas
products.103–106 The PTL or GDL layers are typically made from
highly corrosion-resistant materials such as carbon cloth, Ni, or
Ti. Flow or bipolar plates are required to manage electrical
current, reactant and product uid supply, and separate cells in
a stack.107 These plates can be made of Ti or Ti-graphite
composites, which can withstand aggressive electrochemical
environments and resist oxygen and carbonates. Sometimes,
polypropylene is added to enhance resistance to high temper-
atures or chemical products like acids or alkaline solvents.108

Electrically insulating gasket materials such as silicone or PTFE
are usually employed to make the electrolyzer leakage-proof.
The anodic compartment in an MEA CO2 electrolyzer is typi-
cally supplied with a simple salt aqueous electrolyte (e.g.,
KHCO3, CsHCO3, KOH) to facilitate the oxygen evolution
reaction.109,110

To summarize, we can identify in Table 1 at least 30 different
minerals that could be required for large-scale deployment of
CO2 electrolyzer technologies for Power-to-X technologies.
Among these platinum-group metals (PGMs) such as Ir, Pd, and
Pt, and precious metals like Ag and Au, as well as transition
metals Ni, Cu, Ti, Y, and Zr, along with rare earth metals like La
and Sr are considered critical due to their high demand and
© 2025 The Author(s). Published by the Royal Society of Chemistry
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Table 1 Summary of the components and associated minerals required for both low-temperature and high-temperature CO2 electrolyzersa

Low-T electrolyzer High-T electrolyzer

Component Minerals Component Minerals

Anode Ir, Ni, Fe Anode La, Sr, Fe, Co, Mn
Membrane Naon, Sustainion, or PiperION Solid electrolytes Y, Zr, Sc, Gd, Ce
Cathode Cu, Au, Ag, Pd, or C Cathode Ni, Y, Zr, Gd, Ce
Porous transport layers Pt-plated Ni or Ti, C Diffusion barriers Gd, Ce
Flow plates Ti Inter-connectors Cr, Ni, and Fe-alloys
Current collectors Au-plated Cu Current collectors Au-plated Cu
End plates Al or stainless steel End plates Al or stainless steel
Gaskets PTFE or silicone rubber Gaskets Mica or Thermiculite
Electrolytes KHCO3, CsHCO3, or KOH
Binders or ionomers Naon or Aquivion

a Critical raw minerals and precious platinum group minerals are considered for further investigation to evaluate their associated supply risk,
economic vulnerability, and social and environmental risks.
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essential roles in manufacturing. Specically, low-temperature
CO2 electrolyzers rely on Ir, Pd, Pt, Au, Ag, Ni, Ti, and Cu for
optimal performance, while high-T SOECs depend on Ti, Y, Zr,
La, Sr, Ni, and Cu for their operation.
Critical mineral needs for power-to-X
systems

Although there are only a limited number of CO2 electrolysis
technologies, such as Topsoe eCOs™, being manufactured
commercially, the demand for water electrolyzers to produce
green hydrogen has pushed rapid development of
manufacturing capacity globally as shown in Fig. 3a. Since 2020,
demand and policy initiatives in China and the European Union
in particular have driven an increase in global capacity to
manufacture electrolyzers from 9 GW per year to an estimated
35.3 GW per year in 2024.111 The International Energy Agency
(IEA)111 predicts that capacity will reach 134.5 GW per year by
Fig. 3 (a) Current electrolyzer manufacturing capacity by region, projec
was drawn from the Electrolyzers – Energy System – IEA Report to r
electrolyzer design.112,113

© 2025 The Author(s). Published by the Royal Society of Chemistry
2030 and scenarios to achieve 2050 net-zero emission targets
will require Power-to-X technologies for H2 production and CO2

utilization to increase towards 184 GW per year. The scaling up
of electrolyzer manufacturing capacity increases demand for
materials we described in the previous section. Fig. 3b
summarizes the key metals andminerals used in SOEC and low-
temperature electrolyzers for Power-to-X processes and shows
their market prices. Given these requirements, it is essential to
evaluate the global availability of these critical minerals in
terms of reserves, production and processing capacities, and
recycling rates (Fig. 4), as well as supply chain demands, risks,
and vulnerabilities, to ensure their sustainable utilization in
Power-to-X technologies.
Platinum-group metals (PGMs)

Currently, the demand for PGMs in Power-to-X applications is
relatively small compared with other end-use applications such
as automotive catalytic converters (Pt), catalysts for petroleum
ted capacity by 2030, and targets for net zero emissions. The database
eproduce the graph.111 (b) Current prices of critical minerals used in

Chem. Sci., 2025, 16, 5819–5835 | 5823
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Fig. 4 Breakdown of critical minerals by global distribution, including (a) reserves, (b) production, and (c) processing capacity, along with the
three leading contributing countries.114–119 (d) Estimated worldwide end-of-life recycling rates for these critical minerals.120–123 The country
abbreviations are as follows: ZAF (South Africa), RUS (Russia), ZWE (Zimbabwe), CAN (Canada), AUS (Australia), PER (Peru), MEX (Mexico), IDN
(Indonesia), CHL (Chile), BRA (Brazil), USA (United States of America), ESP (Spain), SWZ (Switzerland), PHL (Philippines), and JPN (Japan).
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rening and chemical production (Pt), and corrosion-resistant
alloys (Ir). However, the PGM requirements for both H2 elec-
trolyzers and CO2 electrolyzers are more intensive than some
existing applications. For example, the anode in a state-of-the-
art electrolyzer, typically has an Ir loading of 0.5–3 mg
cm−2.124 Even at the lower end of this loading range, a 1 MW
electrolyzer capable of converting approximately 5 tons per day
of CO2 to CO, as projected by Twelve for 2029,76,125 would require
around 0.67 kg of Ir at the anodes, based on VoltaChem's
optimized Ir loading of 0.67 g kW−1 for high-efficiency opera-
tion.126 Scaling this to a scenario of converting 1 Gt of CO2 over
a 5 year electrolyzer lifespan and assuming no catalyst recycling
and a 5 ton per day CO2 conversion rate, nearly 73 tons of Ir
would be required. Given the current global Ir production of
5824 | Chem. Sci., 2025, 16, 5819–5835
approximately 7.5 tons per year and other applications
demands for Ir,127,128 this makes CO2 electrolysis with PEM
electrolyzers impractical due to Ir supply constraints. Further,
the high cost of Ir as a component in the electrolyzer stack is
oen cited as a driver for research to develop new catalysts that
can operate with lower loadings and to develop non-PGM anode
catalysts,129 and this simple analysis above shows that scarcity
and supply chain risks for iridium are just as critical as cost.

Additionally, platinum and palladium can be used as
cathode catalysts, and Pt can be used as a corrosion-resistant
coating in the bipolar plates and current collectors. According
to the Hobson (2021)130 report, reserves and production of
PGMs, especially Pt and Ir are limited to a few countries, with
South Africa accounting for 80–90% of production, followed by
© 2025 The Author(s). Published by the Royal Society of Chemistry
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Russia.131 However, processing is more diversied, with Can-
ada, South Africa, Russia, and Japan accounting for over 80% of
global PGM processing facilities. Annual production levels
currently stand at approximately 26 000 tons of Ag, 3000 tons of
Au, 190 tons of Pt, and around 220 tons of Pd.132 Depending on
the sources in 2024, around 8–9 tons of Ir are produced annu-
ally.133 Given the prices and scarcity of these PGMs, recycling is
an essential part of the supply chain. The global end-of-life
(EOL) recycling rate for Ir is around 15%, compared to
approximately 93% for Au.120 However, in industrial applica-
tions, including electrochemical processes, EOL recycling rates
for Ir have already reached 40–50% and continue to
improve.133,134

Nickel

Ni is essential in electrolyzer manufacturing due to its corrosion
resistance, catalytic activity, and durability. In low-temperature
CO2 electrolyzers, Ni or Ni alloys (e.g., Ni–Fe, Ni–Co) replace Ir-
or Ru-based catalysts as anode materials and, in some cases,
serve as the porous transport layer. In high-temperature elec-
trolyzers, Ni has greater demand, being used in interconnectors
for its high conductivity and stability, as well as in electrodes
alongside perovskite or perovskite-like oxides. Compared to
other applications, like lithium-ion batteries (which use 52% of
global Ni output in cathodes) and stainless steel (68% of total
demand), electrolyzers consume relatively less Ni but are
a growing segment.135,136 Ni intensity varies, with SOEC
requiring around 150 kg,137 while PEM electrolyzers may see
increased Ni demand as reliance on Ir for anode development
decreases. Global Ni demand reached 2.8 million metric tons in
2023, with a 4.8% annual growth rate driven by EVs and
renewable technologies.138 Indonesia holds 22% of global
reserves, and Australia dominates mining, while China controls
rening and processing. Recycling from EOL products, espe-
cially stainless steel, and batteries offers a secondary Ni source.

Titanium

In PEM electrolyzers, Ti is primarily used in components like
compression plates, bipolar plates, and PTLs as electrode
supports. Ti as PTL reduces the required loading of PGMs and
withstands the acidic conditions essential for proton conduc-
tion, thus improving system durability and efficiency. Although
Ti usage in electrolyzers is less than in aerospace and biomed-
ical elds, demand is rising with the growth of Power-to-X
technologies.139 Ti demand dropped sharply at the onset of
the COVID-19 pandemic but has since rebounded. Ti is a highly
abundant light metal in the Earth's crust; however, most tita-
nium ores are used in non-metallic applications, such as TiO2

for white pigments. Only about 6% of titanium is processed into
the sponge, which is then converted to Ti metal, primarily for
alloy production.140 For PEM electrolyzers, metallic Ti require-
ments range from 380 to 414 kg per MW.21 In 2023, global Ti
production was approximately 330 000 metric tons,141 with
demand driven largely by the aerospace (35%) and chemical
(28%) industries. Australia holds the largest Ti reserves (around
30%), followed by South Africa and Canada. However, Ti
© 2025 The Author(s). Published by the Royal Society of Chemistry
rening is energy-intensive and costly, with China leading in
processing capacity. Ti recycling remains underdeveloped due
to its reactive properties and the high costs involved in
reprocessing.

Copper

In electrolyzers, Cu has a very diverse application mostly as
current collectors. While Cu use in electrolyzers is compara-
tively small, the electro-reduction of CO2 to multi-carbon
products is increasing its demands as an important cathode
material. In CO2 electrolysis systems, approximately 0.45 kg of
Cu is required as a cathode catalyst material,22,142 along with an
additional 6.82 kg for stack components such as current
collectors,21 totaling around 7.27 kg of Cu to develop a 1 MW
electrolyzer capable of converting approximately 2.67 tonnes of
CO2 per day. Global Cu demand reached around 25 million
metric tons in 2023, with the energy sector accounting for 15%
of this, largely driven by electric vehicles and power grids
compared to electrolyzers.143 Chile and Peru hold the largest Cu
reserves, accounting for nearly 40% of the global supply, while
China leads in Cu rening and processing.144 Cu recycling is
well-established, with nearly 32% of the global Cu supply
derived from secondary sources. EOL recycling for Cu is effi-
cient, recovering up to 95% of the material, and plays a signi-
cant role in stabilizing the supply chain.

Yttrium

Y is an important material in SOECs, due to its role as a stabi-
lizer in electrolytes, e.g., in YSZ, where it enhances ionic
conductivity and structural stability at high operating temper-
atures. Although Y demand in electrolyzers is lower than in
applications like phosphors, lasers, and ceramic materials, its
role in supporting advanced electrolyzer technology is critical.
SOECs require a modest amount of Y, with typical SOEC elec-
trolytes containing around 8–10% Y by weight in YSZ.145,146

High-T fuel cells consume 14 g of Y per kW (17.7 g Y2O3),
whereas high-T electrolyzers are estimated to require 5.2 g
kW−1.137,147 Y is primarily concentrated in ion adsorption clay
(IAC) deposits and in the mineral xenotime.148 IAC deposits are
predominantly mined in the southern provinces of China and
Myanmar, with additional deposits currently under develop-
ment in Chile, Brazil, and Uganda. Global Y production is
relatively low, totaling about 8500 metric tons in 2023, primarily
driven by applications in phosphors for LED displays and high-
temperature ceramics. China controls around 70% of global Y
reserves and production, making the supply chain sensitive to
regional mining policies and trade dynamics. Y recycling is
currently limited due to its low abundance and complex
extraction from other rare earth elements.

Zirconium

Zr, oen combined with Y to create YSZ, serves as the electrolyte
in SOECs. SOEC systems use approximately 8–10% YSZ by
weight for their electrolytes, contributing to an estimated
intensity of approximately 40 kg of Zr per MW of capacity.137

Global Zr production was around 1.6 million metric tons in
Chem. Sci., 2025, 16, 5819–5835 | 5825
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2023, with about 80% of it used in ceramics and refractory
applications.149 Major Zr reserves are found in Australia, South
Africa, and China, with Australia producing about 40% of the
global supply. Recycling of zirconium is limited, primarily due
to its complex separation processes and the high-temperature
ceramics that make it challenging to recover from end-of-life
products.
Strontium and lanthanum

These two rare earth materials are increasingly recognized for
their valuable role in electrolyzer manufacturing, especially in
SOECs. Sr- and La-based compounds, such as strontium-doped
lanthanum manganite (LSM), are commonly employed as
cathode materials or as mixed ionic–electronic conductors,
improving electrochemical performance and efficiency.150 The
required quantities of Sr and La for SOECs depend on the
electrode formulation, typically ranging from 1 to 5 kg per MW
of electrolyzer capacity.151 Global production of these materials
remains modest, with most Sr and La compounds used in glass
ceramics production. China is the primary supplier, accounting
for around 70% of the global supply. Recycling of Sr and La is
limited, due to both their widespread use across various end
products and the challenges of separating them from other rare
earth elements.
Supply chain and economic vulnerabilities

An estimated demand intensity, supply-side scarcity, and price
volatility for these critical minerals by 2050 are listed in Fig. 5.
This projection accounts for expected advancements in elec-
trolyzer manufacturing within Power-to-X technology, particu-
larly in industrial-scale applications, that are likely to drive
demand for these minerals in the coming decades. To estimate
the demand intensity for each critical mineral in 2050, we
considered the compounded effect of yearly growth rates on
Fig. 5 Supply chain and economic vulnerabilities of critical minerals use
supply-side scarcity, and price volatility.

5826 | Chem. Sci., 2025, 16, 5819–5835
current demand levels. The growth rate was speculated based
on historical trends, industrial projections, and expected tech-
nological advancements in various sectors, including the rising
adoption of EVs & batteries, catalysts, renewable energy tech-
nologies, advanced electronics, and the hydrogen & fuel cell
economy. Similarly, supply-side scarcity was assessed using the
Reserves-to-Production (R/P) ratio, which estimates the number
of years that known reserves can sustain current production
levels. Price volatility was evaluated using statistical methods
that analyze historical price uctuations and predict future
trends. While a quantitative analysis of these factors is possible,
we were limited to a qualitative approach due to the lack of exact
values and quantitative models for the interdependent param-
eters involved.

By 2050, demand intensity for Ir, Pt, and Pd is expected to
persist due to the continuous advancement of fuel cells and
catalytic converters alongside the electrolyzers, though Pd may
decline as combustion engines phase out. Cu and Ni will be
extremely demanding minerals, while Ti will see high demand
in renewable applications. La, Zr, and Y will be in moderate
demand, which will continuously help advance the Power-to-X
sectors as alternative minerals. On the supply side, Ir, Ni, and
Pt face extreme scarcity, while Cu is at high risk due to its role in
electrication. Price volatility will be most severe for Ir, Ni, Pd,
and Pt, driven by concentrated supply and geopolitical sensi-
tivities, while Cu, Ag, and Au will also face high volatility. La, Zr,
and Y will experience moderate price shis due to medium
scarcity risks, and Ti and Sr are expected to remain stable.

Multi-dimensional socio-environmental risks

The large-scale production of critical minerals for electrolyzers
entails extensive socio-environmental risks with profound
impacts on both society and the environment. Fig. 6 provides an
overview of the criticality, risk levels, and risk types associated
with electrolyzer critical mineral extraction. Environmentally,
d in electrolyzer manufacturing, focusing on future demand intensity,

© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig. 6 Multi-dimensional socio-environmental risk assessment associated with the extraction and processing of critical minerals used in
electrolyzer manufacturing.
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the energy-intensive extraction and processing phases rely
heavily on fossil fuels, emitting substantial greenhouse gases
and reinforcing non-renewable energy dependency. Mining
activities further disrupt ecosystems, converting vast areas for
extraction, which jeopardizes local biodiversity and reduces
agricultural land, threatening food security. This process is also
water-intensive, depleting local water supplies, affecting
communities, and occasionally sparking conicts over limited
resources. Moreover, mineral production generates signicant
waste, polluting surrounding land and water and posing long-
term waste management challenges. Socially, critical mineral
extraction deepens inequalities and social injustices in affected
regions. Communities oen experience economic hardship,
with poverty andmarginalization persisting or worsening due to
resource exploitation. Corruption and violence can rise in these
areas, compounded by poor working conditions in mining
facilities, which expose workers to hazardous environments,
leading to frequent workplace injuries and long-term health
issues. Human rights abuses within the supply chain, such as
forced and child labor, are common, alongside gender-based
wage disparities and limited opportunities for women. Wage
insecurity further destabilizes affected communities, impacting
workers' economic well-being.

The risk of reserve depletion is another crucial factor in
determining the long-term availability of critical materials. This
involves assessing the remaining global reserves, current
extraction rates, and the feasibility of alternative sources or
substitutes. The geographic concentration of reserves can
increase vulnerability, especially if key suppliers face economic
or political instability. Economic risks encompass price vola-
tility, supply chain disruptions, and market uctuations. The
prices of critical materials oen experience signicant varia-
tions due to changing demand, trade restrictions, and geopo-
litical factors. Analyzing historical price trends, investment
risks, and the nancial stability of mining operations helps
© 2025 The Author(s). Published by the Royal Society of Chemistry
predict future economic vulnerabilities. Additionally, the role of
industrial policies and taxation structures in inuencing
material availability should be examined. Geopolitical risks are
among the most complex and unpredictable factors in the
analysis. Trade dependencies, export restrictions, and diplo-
matic tensions between resource-rich and resource-dependent
nations can signicantly impact material supply chains. Eval-
uating a country's political stability, trade policies, and history
of resource nationalization helps anticipate potential disrup-
tions. These interconnected socio-environmental, economic,
and geopolitical risks underscore the need for sustainable
policies and practices in critical mineral extraction to mitigate
the adverse effects on local communities and the environment.
More importantly, LCA and SLCA are critical for assessing the
sustainability of critical minerals used in electrolyzer
manufacturing as they provide a comprehensive view of the
environmental and social impacts associated with these
materials.
Environmental life cycle assessment
approaches

The environmental life cycle assessment of electrolyzers
provides a comprehensive view of the environmental impacts
associated with each stage of production, focusing particularly
on the use of critical minerals, PGMs, transition metals, and
rare earth elements. For example, PGMs Ir, Pt, and Pd are
currently irreplaceable for PEM electrolyzers, but their extrac-
tion and rening are energy-intensive processes that emit
signicant amounts of CO2, with an estimated 3289 kg of CO2

released for every kilogram of PGMs produced.152 Similarly,
transition metals like Ni and Cu, which are crucial for low-T
electrolyzers, also contribute to high carbon footprints. Ni
mining, for instance, is associated with large sulfur dioxide
emissions, contributing to acid rain and disrupting ecosystems
Chem. Sci., 2025, 16, 5819–5835 | 5827
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in mining regions.153 Rare earth elements such as La and Sr are
critical in SOEs for their stability at high temperatures, but their
concentrated production and chemical-intensive extraction
processes oen lead to severe water and air pollution.

Understanding and addressing these environmental impacts
in the electrolyzer market requires detailed life cycle inventory
(LCI) data to assess energy inputs, emissions, and waste
generation at each stage of the supply chain. The extraction
phase is particularly impactful for PGMs, which are mined in
politically and environmentally sensitive regions like South
Africa and Russia, where deep mining increases energy
consumption and waste output. For transition metals, Cu and
Ni mining oen occurs in developing regions with limited
environmental regulations, raising concerns about soil
contamination and water toxicity, which directly affect local
ecosystems. The rening and manufacturing processes are also
signicant, as high-purity metals like Pt and Ir demand energy-
intensive rening methods, leading to large quantities of waste.
These environmental costs extend to the transportation phase
as electrolyzer components are oen shipped globally. Addi-
tionally, end-of-life management for these materials is
a growing concern, as electrolyzers have limited lifespans, and
the disposal or recycling of valuable metals, especially PGMs, is
crucial to prevent resource depletion and reduce environmental
burden.

Targeted mitigation strategies can reduce the environmental
impact of electrolyzer production. Recycling plays a critical role,
especially for PGMs, where recovery from end-of-life compo-
nents or alternative sources, like catalytic converters, can rein-
troduce these valuable metals into production cycles, offsetting
the need for new extraction. Europe, for instance, has begun
piloting high-purity PGM recovery facilities to create a more
circular economy for these materials, potentially reducing CO2

emissions by reusing them instead of mining. Another key
approach is material substitution. Transition metals like Cu
and Ni, which are widely used but environmentally costly, could
be partially replaced by alternative alloys or composite materials
that offer similar electrochemical properties with a lower envi-
ronmental footprint. Moreover, energy efficiency improvements
in the mining and processing of Cu and Ni are essential; some
operations are already exploring carbon-neutral and renewable-
powered extraction methods that could substantially reduce
emissions from these materials. Further, supply chain locali-
zation and decentralization are important for reducing envi-
ronmental impacts and ensuring sustainable access to these
critical minerals. Rare earth elements, such as La and Sr, have
heavily concentrated production in regions like China, where
extraction practices oen have limited environmental oversight,
affecting water and air quality. Diversifying the supply chain for
rare earth elements and other critical materials can mitigate
risks related to transportation emissions and supply instability.
Decentralized supply chains also reduce dependency on single-
source countries, making materials more resilient to geopolit-
ical or economic uctuations. Localizing recycling and recovery
facilities, especially for PGMs, could support regional supply
security while lowering the carbon footprint of long-distance
5828 | Chem. Sci., 2025, 16, 5819–5835
transportation, which is currently a signicant part of the
electrolyzer production process.
Social life cycle assessment (SLCA)
approaches

Although a detailed SLCA would require considerable eldwork,
data on employment benets, economic multiplier effects and
social benets provided by investment can be evaluated in
concert with the negative social impacts of potential increase in
conict, crime and competing land uses. SLCA for critical
materials needed for electrolyzer production is essential for
identifying social risks and impacts along the supply chain.
Many electrolyzer components require minerals mined in
regions with complex socio-political conditions. For example,
PGMs are primarily sourced from countries like South Africa
and Russia. In South Africa, Ir and Pt mining has long been
associated with poor working conditions, low wages, and health
hazards, leading to frequent labor strikes and local unrest.154

These social issues increase the risk of supply chain disruptions
and add to the social costs of electrolyzer production. The
reliance on transition metals like Ni and Cu brings similar
challenges. Ni and Cu are frequently mined in countries with
limited environmental and labor regulations, such as Indonesia
and the Democratic Republic of Congo (DRC).155 In these
regions, mining oen leads to severe labor exploitation,
including child labor and hazardous working conditions
without adequate safety measures.156

The mining of rare earth elements like La and Sr is
concentrated in China, where extraction and processing prac-
tices impose severe social and environmental burdens on local
communities. In areas like Inner Mongolia, the mining of rare
earth elements is linked to signicant environmental degrada-
tion, including soil and water pollution, which in turn affects
agricultural livelihoods and public health.157 The concentrated
production of rare earth elements also creates dependency and
heightens the vulnerability of global supply chains, potentially
impacting communities if demand increases or political
conditions shi. Such hotspots of production introduce
signicant social risks that make the electrolyzer supply chain
highly vulnerable to disruptions.

The insights from SLCA suggest that targeted strategies can
signicantly improve the social sustainability of electrolyzer
production. Key among these is ethical sourcing, where
companies implement policies to ensure materials are mined
under fair labor conditions and from reputable suppliers.
Certication programs that verify responsible mining practices,
such as Initiative for Responsible Mining Assurance (IRMA) or
Fairmined certication, can help mitigate risks associated with
labor exploitation and poor working conditions. These certi-
cations also allow companies to trace their supply chains and
identify potential social hotspots, giving them a framework to
support local communities affected by mining operations. Rare
earth mining practices could incorporate sustainable water and
soil management. Mining companies can partner with local
governments to improve healthcare, education, and safety
© 2025 The Author(s). Published by the Royal Society of Chemistry
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measures, providing more stable and healthy environments for
workers and residents. Engaging local stakeholders and
adopting corporate social responsibility (CSR) standards would
further promote a sustainable and socially responsible supply
chain. Such investments not only improve worker well-being
but also foster positive community relationships, reducing the
risk of social conict or strikes that may disrupt electrolyzer
supply chains.
Conclusions

Renewable Power-to-X technology is gaining worldwide recog-
nition as a key driver for global decarbonization efforts.
Consequently, a major opportunity and challenge in developing
Power-to-X systems lies in identifying and advancing early niche
applications that require minimal additional infrastructure yet
offer promising commercial potential, representing an impor-
tant transitional phase for the present facilities. Critical factors
for success include scalable Power-to-X technology solutions,
the manufacturing of high-capacity electrolyzers, and ensuring
the availability of essential materials to support this growth.
However, understanding and securing the material supply for
Power-to-X systems is oen overlooked. Electrolyzer
manufacturing relies on substantial amounts of critical
minerals, including PGMs, rare-earth elements, and high-
demand transition materials, posing social and environ-
mental risks for sustainable sourcing. Consequently, assessing
the sustainability and vulnerability of these critical materials
through an LCA is essential at the project design stage, ensuring
responsible scaling in the Power-to-X roadmap. Future research
could also evaluate relative costs in monetary terms of various
sources of metals and their comparative economic and ecolog-
ical benets. Given current trends in LCA for critical minerals,
a Power-to-X system for the manufacturing and development of
electrolyzers could potentially incorporate the following
components:

(i) Sustainable mining practices: sustainable mining prac-
tices are essential to reduce the environmental impact of
sourcing critical materials for Power-to-X systems, particularly
for electrolyzers, which require PGMs, rare and transition
metals. Green mining techniques, such as in situ leaching and
the use of renewable energy at mine sites, help lower the carbon
footprint of mining operations. For example, the mining
company Rio Tinto has initiated green hydrogen production for
use in its iron ore mines in Pilbara, Australia, reducing fossil
fuel dependence on-site.158 Additionally, the reclamation and
rehabilitation of mining sites can restore ecosystems post-
extraction, as demonstrated by the Sustainable Rehabilitation
project at Vale's Sudbury site in Canada, where former mining
lands have been transformed into forests and wetlands.159

Energy recovery systems, like those used at copper mines in the
U.S., capture and reuse excess heat from smelting processes,
minimizing waste.159 Finally, enhanced waste and water
management, as practiced by companies like Anglo American in
their tailings reprocessing and water ltration initiatives, helps
minimize pollution and preserves local water sources.
© 2025 The Author(s). Published by the Royal Society of Chemistry
(ii) Supply chain transparency and ethical sourcing of critical
minerals: transparent supply chains ensure that materials are
ethically sourced and that their production respects both envi-
ronmental and human rights standards. For instance, block-
chain technology can be applied to track minerals from mine to
market, as demonstrated by IBM and Ford in a project to trace
cobalt from the DRC to the U.S. for battery production.160 This
level of transparency is crucial for Power-to-X technologies,
especially for rare-earth elements and PGMs used in catalysts.
Companies like Tesla have implemented policies to source
cobalt only from suppliers certied as conict-free and envi-
ronmentally responsible.161 Such transparency measures not
only promote ethical sourcing but also protect companies from
supply chain disruptions caused by geopolitical or environ-
mental factors.

(iii) Reducing material intensity and substitution of critical
minerals: Reducing the mass of critical minerals and rare earth
metals required in an electrolyzer device has a direct impact on
the demand for freshly mined and processed materials. For
example, supply chain risks can be reduced if the requirements
for iridium catalyst can be decreased without loss of perfor-
mance through either new catalyst design, better fabrication of
the catalyst layer, or development of substitutes from more
abundant metals such as Ni, Fe, and Co.133,134,162,163 Likewise, if
the electrolyzer performance can be maintained for longer by
development of more durable and stable catalysts, and
membranes, then the need for replacement materials can be
delayed. Another opportunity for substitution is use of carbon-
based bipolar plates to replace titanium-based bipolar plates in
the electrolysis stack, which has already been reported by the
Fraunhofer Institute.164

(iv) Electrolyzer recycling and easy-to-recycle electrolyzers:
the most advanced CO2 electrolyzer technologies are yet to be
demonstrated much beyond 1000 h (Topsoe eCOS™SOEC – says
potential for “2 years”),165 and for commercial deployment will
need to achieve closer to the 5–7 year operating lives projected
for H2 electrolyzers in many of the mega-scale green H2 projects
under development. Regardless of the exact operating lifetime,
it's clear that Power-to-X technologies also need plans for EoL
management to reduce environmental impacts and improve
supply chain risks.166,167 To date, the regulatory frameworks,
technology, and value chains for electrolyzer recycling have not
developed to the same degree as for battery recycling.168

Research is needed to both develop (a) electrolyzer stacks that
are easier to disassemble for recovery of metals andmembranes
recycle and (b) optimized recycling processes to recover those
materials.

(v) Knowledge development and business intelligence:
building a knowledge base and business intelligence network is
critical for the long-term viability of Power-to-X projects,
enabling proactive responses to resource scarcity, policy
changes, and technological advancements. Institutions like the
International Renewable Energy Agency (IRENA)169 and research
initiatives under the European Union's Horizon 2020
program170 promote knowledge-sharing on Power-to-X mate-
rials and technologies. A successful example is the HySupply
project, a Germany–Australia partnership focused on hydrogen
Chem. Sci., 2025, 16, 5819–5835 | 5829
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production and trade.171 This collaboration develops expertise
in hydrogen supply chains, assessing logistics, regulatory
frameworks, and potential partnerships. Business intelligence
efforts, such as market analysis and technology monitoring,
also enable companies to anticipate shis in material prices
and adopt new technologies as they emerge, ensuring compet-
itiveness in a rapidly evolving industry.

(vi) Economic diplomacy and partnerships: economic
diplomacy and partnerships with resource-rich countries are
essential to secure a stable supply of critical minerals needed
for Power-to-X. Countries such as Japan have established
strategic agreements with Australia and Canada to ensure the
supply of rare-earth metals crucial for clean technologies.172

Similarly, the European Union has partnered with African
countries to develop sustainable cobalt and lithium supply
chains under the EU-Africa Battery Alliance.173 These part-
nerships promote economic development while securing
access to essential materials. Companies also benet from
partnerships with research institutions and other stake-
holders to develop local supply chains and minimize depen-
dency on imports. For instance, through the H2Global
Foundation, Germany has partnered with green hydrogen
suppliers in North Africa to ensure a steady supply while
fostering local infrastructure development and renewable
energy growth.174

By integrating these six components with LCA, the Power-to-
X ecosystem can evolve into a resilient and sustainable network
that supports global decarbonization goals while addressing
environmental, social, and economic challenges associated
with critical material supply chains.
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