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MXenes, which are essentially 2D layered structures composed of transition metal carbides and nitrides
obtained from MAX phases, have gained substantial interest in the field of energy storage, especially for
their potential as electrodes in supercapacitors due to their unique properties such as high electrical
conductivity, large surface area, and tunable surface chemistry that enable efficient charge storage.
However, their practical implementation is hindered by challenges like self-restacking, oxidation, and
restricted ion transport within the layered structure. This review focuses on the synthesis process of
MXenes from MAX phases, highlighting the different etching techniques employed and how they
significantly influence the resulting MXene structure and subsequent electrochemical performance. It
further highlights the hybridization of MXenes with carbon-based materials, conducting polymers, and
metal oxides to enhance charge storage capacity, cyclic stability, and ion diffusion. The influence of
dimensional structuring (1D, 2D, and 3D architectures) on electrochemical performance is critically
analyzed, showcasing their role in optimizing electrolyte accessibility and energy density. Additionally,
the review highlights that while MXene-based supercapacitors have seen significant advancements in
terms of energy storage efficiency through various material combinations and fabrication techniques,
key challenges like large-scale production, long-term stability, and compatibility with electrolytes still

need to be addressed. Future research should prioritize developing scalable synthesis methods,
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Accepted 13th March 2025 optimizing hybrid material interactions, and investigating new electrolyte systems to fully realize the

potential of MXene-based supercapacitors for commercial applications. This comprehensive review
provides a roadmap for researchers aiming to bridge the gap between laboratory research and
commercial supercapacitor applications.
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1 Introduction

Currently, environmental problems are considered the most
concerning issues in the growing usage of fossil fuel-based
products. To mitigate the adverse effect of fossil fuels on the
environment, alternative environmentally friendly energy
sources such as geothermal energy, wind energy, solar energy,
and hydropower are extensively investigated. Although these
sources are environmentally friendly, it largely depends on
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nature to consistently supply the energy demands. Therefore, in
order to reduce the use of fossil fuels and lower the dependence
on these natural sources, a new energy storage device needs to
be explored.' Therefore, scientists are trying to develop super-
capacitors, parallel plate capacitors that can store energy as
batteries,>® as a new alternative type of energy storage device.
Supercapacitors have fast charge and discharge rates with
excellent cyclic capability and high power density.** Electrode
materials play a crucial role for supercapacitor applications. It
has been reported that electrode materials prepared from
carbon based materials (CNT, rGO, etc.),® transition metal based
materials” and conductive polymers® have been used in
supercapacitor-related applications. Among these active mate-
rials, transition metal nitrides and carbides known as MXene,
discovered by Naguib et. al.,” are extensively used for super-
capacitor applications due to their high electrical conductivity,
fast ion diffusion and excellent hydrophilic characteristics.*
MXene can be synthesized from MAX phases, where M refers
to transition metal such as V, Sc, Zr, Cr, Ti and Mo; a represents
metal element such as Sn, Ga, Ti, Ge, In, Al, Si, Cd, P, As, S; and
X indicates carbon (C) or nitrogen (N) atoms.'" MXene can be
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produced by etching the element “A” from the MAX phase using
different etching agents such as HF, H;PO,, NaOH or LiF."* The
general formula of MXene is denoted by M,.,X, Ty, where M
symbolizes a transition metal, X represents C or N atoms, T
denotes the surface terminating groups such as -OH, -O, -F,
introduced during etching process.”> This negative surface
groups of MXene makes it an excellent substrate for hybrid-
ization with other materials.*® Furthermore, due to the inherent
conductivity and the potentiality of charge transfer provided by
the transition metal M changeable oxidation number, MXene
exhibits exceptional electrochemical properties, and therefore,
it is well suited for use in supercapacitor applications.>**
Although MXene has the potential characteristics to fabricate
excellent electrode materials for supercapacitor applications, it
has some major issues that may reduce electrochemical
performance. During the fabrication of MXene from MAX
phases, a wide variety of negative functional groups are induced
on the MXene surface, which is why, aggregation occurs in
MXene suspension due to the van der walls interaction between
these polar groups.® Furthermore, the structural stability of
pure MXene-based electrodes during the cyclic performance
may be hampered due to the restacking nature of MXene.'
Additionally, Ti;C,T, may be partially oxidized by oxygen or
water molecules into the nonconductive titanium dioxide
(TiO,), decreasing the redox reaction active sites and raising the
charge transfer impedance.'” Scientists are trying to solve these
flaws by preparing MXene-based hybrid materials to enhance
their capacitive characteristics. To overcome these drawbacks,
scientists took the advantages of wide surface terminating
groups of MXenes, that allows MXene materials to interact with
other active material. This interaction increases the interlayer
spacing of MXene by avoiding the aggregation problem for
which ion transport between the MXene based hybrids is
enhanced. Therefore, the capacitive behavior of MXene based
hybrid structure is improved. The most promising hybridiza-
tion strategies include: (i) MXene/carbon-based hybrids: carbon
nanotubes (CNTs), graphene, and activated carbon can be
incorporated with MXenes to enhance conductivity, prevent
restacking, and increase surface area for improved ion diffu-
sion. (ii) MXene/conducting polymer hybrids: polyaniline
(PANI), polypyrrole (PPy), and PEDOT:PSS provide pseudoca-
pacitance, boosting energy storage capacity while maintaining
flexibility and mechanical stability. (iii) MXene/metal
compound hybrids: transition metal oxides (TMOs) and tran-
sition metal dichalcogenides (TMDs) improve charge storage
due to their redox activity, increasing the overall capacitance
and energy density. For example, Wang et al.*® prepared MXene/
PDA film where PDA acted as an interlayer spacer, reducing self-
stacking during cycling. In this hybrid structure, Ti made strong
bonds with oxygen atoms in polydopamine whereas dopamine
formed hydrogen bonds with surface functional groups,
ensuring the stability of the structure.’® Liu et al. fabricated
MXene/cellulose hybrid where cellulose increased the interlayer
space of MXene and also ensured the good mechanical (124.6
MPa) and electromagnetic properties (36 dB).* For using
additive materials with MXene nanosheets, enhanced electro-
chemical performance has been achieved which is extensively

© 2025 The Author(s). Published by the Royal Society of Chemistry

View Article Online

RSC Advances

discussed by many reports to enlighten the authors about the
recent research of MXene in supercapacitors. For example, Luo
et al. reported the application of MXene/conducting polymers
(PPy, PANI, PEDOT:PSS) composites in the research of super-
capacitors by discussing the preparation MXene/conducting
polymers electrodes and their uses in supercapacitors.”®
Thomas et al. highlighted the supercapacitor applications of
MXene hybrids with carbonaceous materials, conducting poly-
mers, transition metal dichalcogenides (TMDs), transition
metal oxides (TMOs), etc., thorough their fundamental proper-
ties, synthesis tactics and etching procedures comprising
various kind of MXenes.** Besides the interaction of MXene and
other active materials for excellent supercapacitor applications,
some other factors, like electrolytes, dimensional structure of
hybrid materials, fabrication technique of hybrid materials, are
very important to enhance the electrochemical performance.
These factors greatly influence capacitive performance.
However, there are some reports whereas these factors are
highlighted. For example, while the research conducted by Zang
et al. primarily investigated ways to improve the capacitance of
a material by manipulating its surface, creating films, and
combining it with other materials (creating a composite), they
did not delve deeply into other factors that could also signifi-
cantly impact capacitance, such as the type of electrolyte used,
the shape and size of the material (dimensional structures), and
the specific methods used to create the material (fabrication
techniques).* Orangi et al. elaborately discussed the fabrication
process of MXenes based electrode materials for energy storage
applications, however, they did not extensively analyze the
influence of multidimensional structural design, interlayer
spacing, and ion diffusion on capacitive performance.”> Hu
et al. shed light on the MXene-based supercapacitor perfor-
mance focusing on structure, design, surface chemistry, elec-
trode architecture and composites of MXenes, however, future
challenges (aggregation, oxidation, scalability) and the possible
solution for these hurdles weren't discussed.” While the review
reported by Panda et al. thoroughly examined how factors like
MXene sheet size, shape, electrode architecture, and electrolyte
type impact the performance of MXene-based supercapacitors,
it notably lacked a comprehensive analysis of how the multi-
dimensional structural design (1D, 2D, and 3D) of MXene
materials specifically influences ion transport and the overall
capacitive performance within the device.*® Among all these
factors, interlayer multidimensional structure of MXene hybrid
materials (1D, 2D, 3D) has also a great influence in capacitive
performance, because electrolyte ion transportation path
largely depends on it which can affect the electrochemical
performance. Hu et al. discussed the progress on MXene
symmetric supercapacitor focusing on 1D, 2D, 3D structures.*?

Herein, the influence of multidimensional structural design
of MXene hybridized materials for capacitive performance is
elaborately discussed. To the best of the authors' knowledge
this is the first report on the influence of the dimensional
structure of MXene hybrid materials in supercapacitor appli-
cations. Moreover, this review systematically discusses the
procedure of MXene synthesis from MAX phases, the prepara-
tion strategy of MXene-based hybrid materials and their
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multidimensional structural analysis in supercapacitors. The
effect of interlayer spacing ion diffusion and the electro-
chemical performance of multidimensional MXene hybrids are
also analyzed extensively. Finally, an overall guideline is
provided to tackle the challenges of preparing MXene-based
hybrid  materials for next-generation supercapacitor
applications.

2 Synthesis of MXenes
2.1 MAX phases to MXene

The protocol of MAX phase etching attracted a great deal of
attention among scientific communities because of the great
demand of using MXene in materials development research. In
“Top-down” selective etching strategies, MAX phase is con-
verted to MXene by breaking the bonds between ‘M’ and ‘A’. In
this procedure, the etching reaction is significantly sensitive to
air and moisture (<1 ppm H,0; <5 ppm O,).>* The etching
agents are categorized as acids (HF, H3;PO,), alkali (NaOH),

Table 1 A comparison of 2D MXenes etching from their MAX phases
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fluoride salt + HCI (LiF, KF, NH,F), molten salt (LiF + KF, CdBr,,
ZnCl,), NH,HF, and others. Among these, fluoride salt + HCI
(LiF, KF, NH,F) affects the multi-layered MXenes synthesis
when intercalation fabrication method is used. That is, the
etching agent mixture causes the interlayer space to expand by
increasing lattice parameter and weaken interflake interac-
tions.”® A summary on carbide, nitride, and carbonitride
precursors etching events is represented in Table 1. In contrast,
the delamination process is only suitable for a few layer-flakes
exfoliation of MXenes. It is a mechanical exfoliation of
MXenes, and it is comparatively challenging than intercalation.

2.1.1 HF solution etching. M. Naguib and coworkers first
used 50% concentrated hydrogen fluoride (HF) etching agent
for the synthesis of Ti;C,T, from TizAIC, at room temperature
for 2 hours.” In this study, successful etching was confirmed by
the shifted main peak of XRD pattern of Ti;C,T, and TizAlC,.
Another 50% hydrofluoric acid (HF) treated MXenes was
synthesized at room temperature with magnetic stirring at
200 rpm for 96 hours. The etched MXenes was washed several

MAX phase MXene Etching agent Temperature (°C) Time (hour) Yield (%) Ref.
Ti,AlIC Ti,CTy 10% HF Room temp. 10 80 26
V,AIC V,CT, 50% HF Room temp. 92 60 27
Nb,CT, Nb,CT, 50% HF Room temp. 90 100 28
Ti,AIN Ti,NT, KF + HCI Room temp. 24 N/A 29
TizAlIC, TizC,Ty 50% HF Room temp. 2 100 9
(Tip.sNby 5),AIC (Tip.sNby.5),CT} 51% HF Room temp. 28 80 30
(Vo.5Cro.5);A1C, (Vo.5Cro.5)3CoTx 50% HF 69 N/A
Ta,AlC, Ta,C,Ty 50% HF 72 90
Nb,AIC; Nb,C;T, 50% HF Room temp. 96 77 31
Mo,TiAIC, Mo,TiC,T, 50% HF Room temp. 48 100 32
Mo, TIAlC, Mo,TiC,T, 50% HF 55 90
(Moy/3Y1/3),AlC Moy/5CTy 48% HF Room temp. 60 N/A 33
10% HF Room temp. 72 N/A 33
Mo, TiAIC, Mo, TiC, T, 48-51% HF Room temp. 48 N/A 32
Mo, Ti,AlC; Mo, Ti,C,Ty 48-51% HF 55 90 N/A 32
(Wa38¢y/5),A1C W,/3CTy 48% HF Room temp. 30 N/A 34
Zr;Al;Cs Zr3C, Ty 50% HF Room temp. 60 N/A 35
Hf;3[Al(S1)]4Cs Hf;C,T, 35% HF Room temp. 60 N/A 36
Ti,AIC Ti,CT, 0.9 M LiF + 6 M HCI 40 15 N/A 37
Mo,Ga,C Mo,CT, 3 M LiF + 12 M HCI 35 384 N/A 38
Mo,Ga,C Mo0,CT, NH,CI + HCl 140-180 24 N/A 39
Nb,AIC Nb,CT, 0.75 g NaBF, + 37% HCl 180 15-35 N/A 40
V,AIC V,CT, 2 g LiF + 40 M HCI 90 48 N/A M
V,AIC V,CT, 1.5 g NaF + HCI 90 120 42
V,AIC V,CT, LiF + HCl 90 120 N/A 43
V,AIC V,CT, 2 g NaF + 1.24 g LiF + 4.48 g KF + 90 72 N/A 44
40 ml HCI
TizAIC, TizC,Ty 0.75 g NaBF, + 37% HCl 180 8-32 N/A 40
Ti,AlC, Ti;C,T, 1 g LiF + 6 M HCI 35 24 N/A 45
Ti,AIC, Ti;C, Ty 3 M LiF + 6 M HCI 40 45 100 46
Ti;AICN Ti;CNT, 0.66 g LiF + 6 M HCI 35 12 N/A 33
(Nby sZr.5),AlC, (Nbg gZr5)4C5Tx LiF +12 M HCl 50 168 N/A 47
(Wy3Sc43),A1C W,/3CTy 4 g LiF + 12 M HCI 35 48 N/A 34
Ti;AIC, Ti;C, T 1 M NH,HF, 80 12 N/A 48
Ti;AlC, Ti;C, Ty NH,F 150 24 N/A 49
Ti AN, TiyN,T, 59% KF + 29% LiF + 12% NaF 550 0.5 N/A 50
Ti,AlIC, Ti;C,Ty 2.07 g LiF + 3.35 g NaF + 7.52 g KF 30, 40, 50, 60 12, 24, 48 N/A 51
Ti,AlC, Ti;C, Ty SnF, (1:6) 550 6 N/A 52
Ti,AIN, TiyN,T, KF + LiF + NaF 550 0.5 N/A 29
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Fig. 1 (a) Schematic representation of V,CT, synthesis from V,AIC; SEM images of (b) V,AIC phase and (c) V,CT,. (d) XRD patterns of V,AIC and

V,CT,, (*) denotes residual V,AIC phase.?

times with centrifugation at 4500 rpm reaching a pH level of 4
(ref. 27) and further was coined as multilayer MXenes. Here,
a few layers of V,CT, were synthesized using 1-methyl-2-
pyrolidinone treatment and the inter sheet space was formed
by intercalation treatment of tetrabutylammonium hydroxide
(TBAOH). The explanation of HF etching phase transition is
represented in Fig. 1. The XRD pattern proved the MXenes
phase formation before and after the HF etching. Moreover, HF
etching-based MXenes synthesis research were carried out by
incorporating transition metal carbide nanosheets such as
Ti,CT,,”® Nb,CT,,>® (TigsNbys)CTx,**  (Vo.5Cro.5)3CoTy,™
Ta,C3Ty,* NbyCsTy,® MO0,TiC,Ty,*> M0,TirCyTy,? W, ;3CTy,
Zr;C,T,,* Hf,C,T,.%

2.1.2 Fluoride and HCl mixture etching. Metal nitride
(Ti,N) etching is difficult for higher formation energy of Ti,AIN.
Here, selective etching and intercalation are achieved by soaking
Ti,AIN in a mixture of potassium fluoride (KF) and hydrochloric
acid (HCI). Thereafter, exfoliation of Ti,N is done in DMSO to
obtain few layer of Ti,NT, flakes.?® Additionally, Halim et al.,
reported a research work for large scale production of molyb-
denum carbide (M0,CT,) MXene by selectively etching gallium
from Mo,Ga,C precursor.*® In this study, etching was done by
using a mixture of 3 M of LiF and 12 M of HCI, next, the inter-
calation process was continued by using TBAOH and finally
delamination was completed.®® The synthesized Mo,CT, was
heat treated in a temperature range of 300-10 K to behave like
a semiconductor, conversely, it behaved like metal. The synthesis
procedures (etching, delamination and filtration) and the char-
acterization results of this work are represented in Fig. 2.

© 2025 The Author(s). Published by the Royal Society of Chemistry

Furthermore, fluoride salt and HCI etching protocol was
comparatively suitable to synthesize multilayer flakes than
other processes. There were different kinds of MXene synthe-
sized and reported such as Ti,CT,,*” Nb,CT,,*® V,CT,,** V,CT,,**
V,CT,,® V,CTy,* TizChTy, TisCoTy,* TizCoTy,*® Ti;CNT,,*
(Nby.gZ1¢ 2)4C5Ty,"” W,,3CT,.>*

2.1.3 Salt based etching. Water dispersible Ti;C,T, MXene
was synthesized without the use of HF and lacked the -OH
terminal group.® Here, molten salt (SnF,) was used as a selective
etchant to synthesize Ti;C,T, from Ti;AlC, MAX precursor.
During etching, AlF; was formed, and Sn remained as a byprod-
uct that was etched by stirring and agitations. This was the first
reported molten salt etching-based research work. Soundiraraju
et al®® were the first research work to report on the two-
dimensional transition metal nitride, Ti;N3-based MXenes from
Ti4AIN;.% In this work, ternary eutectic composition, a mixture of
salt KF, LiF, and NaF was maintained at 550 °C for 30 minutes
with a heating incremental of 10 °C per minute.> Furthermore,
TBAOH was used in delamination for synthesis of few flakes. The
etching and delamination process of this work is represented in
Fig. 3. Moreover, major salt-based etching was performed at
higher temperature at which the salt or mixture of salt solution
can be melted. There are numerous research work reporting the
synthesis of 2D MXenes, including Ti;C,Ty,* NH,F,* KF + LiF +
NaF,* LiF + NaF + KF,** SnF, (1:6),”> KF + LiF + NaF.”

2.1.4 Other etching methods. Although there are a variety
of etching methods, only a few number studies was reported.
The non-conventional etching strategies are electrochemical
etching,” hydrochloric acid etching,’® and alkaline etching with

RSC Adv, 2025, 15, 8948-8976 | 8951
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(a) Schematic representation of etching and delamination of Mo,Ga,C MAX phase; (b) digital images of delamination and filtration; (c) XRD

patterns of (i) Mo,Ga,C (black), (i) Mo,CT,—Li (green), (iii) Mo,CT, (red), (iv) Mo,CT, intercalated by TBAOH (blue) and (v) paper (purple), (d) same
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Fig. 3 Schematic of molten salt synthesis of Ti4NsT, from Ti4AlNs at
550 °C and delamination by TBAOH.
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high temperature hydrothermal approach.’” Electrochemical
etching involves flowing an electric current in an electrolyte
solution to remove specific atomic layers from MAX phases,
offering precise control over the etching process. Hydrochloric
acid (HCI) etching is a simpler chemical approach where HCI
selectively dissolves certain elements, though it may be less
efficient than fluoride-based etching. Alkaline hydrothermal
etching utilizes a heated alkaline solution under high pressure
to break bonds in MAX phases, making it particularly useful for
obtaining stable MXenes without strong acids. Compared to

8952 | RSC Adv, 2025, 15, 8948-8976

traditional HF etching, these methods can reduce safety
hazards, improve structural control, and enhance environ-
mental friendliness. However, each approach has limitations,
such as slower reaction rates or incomplete etching, which
researchers continue to refine for large-scale applications.

3 Possible hybridization of MXenes
for supercapacitor application

MXene can be considered one of the best electrode materials for
supercapacitor application. Lukatskaya et al. found that mac-
roporous multilayered MXene (Ti;C,T,) film handled up to 210
F g 'at 10 V s~' of scan rate.® However, it has been reported
that freestanding individual MXene electrodes suffers from
restacking and oxidation (in contact with oxygen and water)
problems,* for which reason intercalation of MXene with other
materials is very necessary. In the following section, the
possible hybridization of MXene materials with their prepara-
tion process and capacitive behavior are highlighted.

3.1 MXene/CNT hybrid

Carbon nanotube (CNT) possesses excellent electrical, thermal
and mechanical properties. This increases the potential of

© 2025 The Author(s). Published by the Royal Society of Chemistry
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utilizing CNT in developing promising materials in various
applications such as wearable electronic devices, sensors,
supercapacitors.®® Laser ablation, chemical vapor deposition
(CVD) and arc discharge are the most commonly used methods
to synthesis CNT. It is worth mentioning that as-prepared CNT
may possess metallic impurities.®* Furthermore, CNT may be
aggregated in colloidal suspension because of the van der Waals
interaction between the sidewalls of CNT.** These issues restrict
the practical application of individual CNT. Thus, incorporating
MXene material with CNT can be a possible solution. A hybrid
material composed of MXene and Carbon Nanotubes (CNTs)
overcomes the individual limitations of each component,
exhibiting superior electrical and mechanical properties,
a larger surface area, and high pore volume, making it a highly
promising candidate for supercapacitor applications;
researchers like Yu et al. have extensively explored the diverse
applications of MXene/CNT hybrids, including various fabrica-
tion methods and structural architectures to optimize their
performance across different applications.®* Here, the prepa-
ration process is summarized first, and then an elaborate
discussion is made regarding the supercapacitor applications of
multidimensional MXene/CNT hybrid material.

3.1.1 Preparation process of MXene/CNT hybrid materials.
Carbon nanotube (CNT) can perform dual activity of MXene/
CNT hybrids for supercapacitor application. It can solve the
aggregation problem of MXene, and further, it increases the
interlayer spacing of MXene sheets, which effectively transfers
electrolyte ions during the charge-discharge process,
enhancing the electrochemical performance of MXene/CNT
hybrids.

To synthesize MXene/CNT hybrid material, mainly two
approaches are involved: the integration of CNT and MXene
with chemically reactive (chemical) and without chemically
reactive (physical) process. Preparing MXene and CNT hybrid
material without chemically reactive process is an easy tech-
nique that involves different techniques like mechanical mix-
ing,* co-dispersion and self-assembly.®> Mechanical Mixing is
the frequently used technique involving ultrasonication of
a certain amount of MXene and CNT dispersion followed by
vacuum filtration to prepare a thin film. Yan et al prepared
MXene/CNT hybrid material by ultrasonic stirring of MXene
and CNT colloidal suspension followed by filtering the mixed
dispersion.®* Regarding the self-assembly method, Guo et al
developed MXene/CNT composite material by taking the
advantage of electrostatic interaction between MXene and
CNT.*® The terminating group (-OH, -F, -O etc.) of MXene
makes it a highly negative charged particle, ensuring strong
electrochemical interaction with positively charged CNT-poly-
ethyleneimine.®® There are many chemically reactive process
involved in preparing MXene/CNT hybrid material such as in
situ technique,® thermal treatment,*® microwave process* and
hydrothermal process.” Regarding the chemical process, it may
need high energy consumption, like 800 °C for thermal treat-
ment,*® which makes this process unsuitable for scalable
production. On the other hand, mechanical mixing, self-
assembly, co-dispersion methods are the easiest and most
widely used techniques for the fabrication of MXene/CNT

© 2025 The Author(s). Published by the Royal Society of Chemistry
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hybrids and also, in this regard the hybridized materials
provide superior mechanical strength due to the hydrogen
bonding between the materials.

The as-prepared MXene/CNT hybrid material by the above
mentioned techniques can be formed into one-dimension (1D),
two-dimension 2D or three-dimension (3D) structures to meet
the required demands for supercapacitor application. 1D
MXene/CNT materials are found in the form of fiber or yarn.”
Yu et al. dropped MXene solution on CNT scaffold and after
drying the MXene/CNT ink, it is peeled off and scrolled into
a helical fiber by Archimedean spirals.” 2D MXene/CNT hybrid
material can be prepared in the form of thin film, paper,
nanosheets or coating on textile substrate.” Weng et al. utilized
layer by layer method to fabricate MXene/CNT composite film.
For this, they sprayed MXene/PVA suspension (positively
charged particle) on CNT/PSS (negatively charged particle) to
prepare the composite layer.” In case of 3D structure of MXene/
CNT hybrid material, it forms in foams or aerogel.”>”® The as-
prepared MXene/CNT hybrid material with different architec-
tures exhibits unique mechanical, electrical, low density,
making this hybrid structure a potential material for super-
capacitor applications. The application of MXene/CNT hybrid
material's structure in supercapacitor is extensively discussed
in the next section.

3.1.2 Capacitive performance of 1D MXene/CNT hybrid
materials. Zhao et al.”” used wet spinning technique to fabricate
MXene/CNT fibers for supercapacitors application, Fig. 4(a).
Regarding the MXene/CNT wet spinning solution preparation,
CNT was dispersed into sodium taurodeoxycholate (STDOC)
surfactant in order to form strong hydrogen bond between CNT
and MXene. The as prepared fiber not only showed enhanced
mechanical (~61 MPa) and electrical performance (~1142 S cm™")
with a very low CNT content of ~1 wt% than pure MXene but also
increased the interlayer spacing of MXene from 13.5 A to ~17 A.
They found that with the increasing of CNT loading, the equiva-
lent series resistance (ESR) value was reduced, revealing the
successful reduction of charge transfer resistance in the 1D hybrid
fiber that resulted in high specific capacitance (295 F g~ at 5 mv
s~'in 1 M H,S0, electrolyte solution) which can be attributed to
the porosity of hybrid fibers.”” Furthermore, to evaluate the
capacitive performance for practical applications, they woven
MXene/CNT fiber electrode into the cotton fabric to construct the
symmetric supercapacitor. The symmetric supercapacitor dis-
played rectangular and triangular shape regarding CV and GCD
tests even with the increasing of scan rate and current density
respectively, Fig. 4(b) and (c), proving the high energy storage
capacity. In addition, it also showed high gravimetric energy
density of ~5.79 mW h g~ 1.7

In addition, Wang et al used “Biscrolling” technique to
prepare Ti;C,T, MXene/CNT yarn, as shown in Fig. 4(d).”® For
this, they decorated five layers of CNT sheets on a glass
substrate with fixing an electric motor at the end. Then Ti;C, T,
MXene dispersion were then dropped on the CNT sheets fol-
lowed by pulling by motor to obtain MXene/CNT yarn. The
biscrolled yarn showed volumetric and gravimetric capacitances
of 1083 F cm >, 532 F g~ in 3 M H,S0, electrolyte solution.
Besides, they also fabricated symmetric supercapacitor with
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Fig. 4

(a) Schematic illustration wet spun MXene/CNT hybrid fibers;”” (b) the CV curves and (c) GCD curves of symmetric supercapacitors at

various scan rate and current density, respectively;”” (d) schematic illustration of biscrolling technique to fabricate MXene/CNT yarn;”® (e) (1)
vacuum filtration technique to fabricate MXene/CNT technique with (Il) top view of the 5 wt% mass ratio of MXene/CNT film, (Ill) loading test, (V)
rolling test and (V and VI) folding test of the MXene/CNT films;” (f) SEM image of MXene/CNT hybrids with thickness (1) 7.65 um, (1) 9.69 um and
(1) 10.05 um for pure MXene, 5 wt% and 10 wt% mass ratio of MXne/CNT respectively;”® (g) the volumetric capacitance as a function of the CNT
content;5* (h) cyclic performance of TizC,T,/CNT hybrid supercapacitor;®° (i) schematic illustration of electrolyte ion transportation pathways of
(I) vacuum-dried dense MXene film, (ll) freeze-dried porous MXene film, and (Ill) freeze-dried MXene/CNT film.8*

PVA/H,SO, gel electrolyte that demonstrated the highest energy
and power density of 8.54 mW h cm™® and 530 mW cm®
respectively. Regarding aqueous electrolyte solution, the high-
est gravimetric capacitance of biscrolled yarn (532 F g~ " (ref.
78)) than Wet Spun Yarn (295 F g * (ref. 77)) may be attributed
to the molar concentration of H,SO, electrolyte, because
enhanced concentration increases the ion conductivity of elec-
trolyte that causes the increase of specific capacitance of

8954 | RSC Adv, 2025, 15, 8948-8976

supercapacitor.® In a similar studies, MXene suspension was
drop-casted on CNT scaffold and then MXene/CNT film was
peeled off and scrolled into fiber formation, and in this helical
structured fiber, MXene was wrapped into CNT corridor.”” CNTs
maintain highly orientation in this hybrid fiber, providing high
mechanical strength electrical conductivity without sacrificing
plenty of spaces, contributing to the more ion transportation for
enhanced capacitance.”

© 2025 The Author(s). Published by the Royal Society of Chemistry
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3.1.3 Capacitive performance of 2D MXene/CNT hybrid
materials. Besides the 1D MXene/CNT fiber structure, film like
2D MXene/CNT structure was also seen to fabricate. Chen et al.”®
prepared Ti;C,T, MXene/carbon nanotubes (CNTs) composite
film by simple vacuum filtration technique and the prepared
composite film was folded into various shapes with load bearing
capacity, as demonstrated in Fig. 4(e). In addition, they found
that increasing CNT loading enhanced the interlayer structure,
Fig. 4(f), however, the increased CNT loading in the hybrid film
lowered the capacitance from 300 F ¢~ (5% loading of CNT) to
265 F g' (10% loading of CNT) at the current density of
1 A g "7 Moreover, GCD analysis of different CNT loading (0%,
1%, 5% and 10%) revealed that the MXene/CNT-5% showed the
longest time of charge-discharge process among the other
composition of hybrid films, confirming the largest capacitance.
Although, the addition of CNT enhances the restacking prob-
lems of MXenes with high capacitance performance by
increasing the interlayer spaces, more addition of CNT may
reduce the capacitance performance of supercapacitors because
CNT has lower capacitance and conductivity than MXenes.”
Similar result was also found with the increasing of CNT loading
by Yan et al.** They mixed d-Tiz;C, and CNT in different ratios
followed by filtration in order to get 2D TizC,/CNT hybrid
materials. In case of electrochemical performance in an alkaline
electrolyte solution, they noticed that with the increasing of CNT
content, the volumetric capacitance was increased gradually
which began to decrease with further increasing of CNT content,
as shown in Fig. 4(g).** Although the capacitance was decreased
with more CNT loading, the Ti;C,/CNT hybrid's capacitance
performance of different ratios was still better than pure MXene
which proved the increasing of distance between Ti;C, sheets
along with the overcome of Ti;C, sheets aggregation.** So, it can
be conferred that the porous structure of MXene/CNT hybrid are
the primary reason to enhance the capacitive performance. To
introduce the more of porous structure in MXene/CNT hybrids,
Li et al.** followed new strategy where they added NaOH into
Tiz;C,T, MXene/CNTs mixture. The introduction of NaOH dis-
rupted the electrostatic repulsion between the MXene sheets
which causes the MXene flakes to be wrinkled and flocculated,
forming Ti;C,T, MXene/CNTs flocs which was further vacuum
filtrated into Ti;C,T, MXene/CNTs film. This hybrid film over-
comes the as usual dense stacking of 2D film by forming a more
porous structure. Moreover, for better electrochemical perfor-
mance, the alkali induced Ti;C,T, MXene/CNT film was
annealed at 400 °C to eliminate the fluorine and hydroxyl
terminations in order to promote the transport of electrolyte
ions. The as prepared hybrid film displayed the specific capaci-
tance of 336.2 F g which was better than alkali induced MXene
film (280.9 F g~") at the high current density of 1000 A g that
can be attributed to the more developed porous structure of
alkali induced Ti;C,T, MXene/CNT film than the alkali induced
MXene film.®> Moreover, a new film of Co@N-CNT/TizC,T,
MXenes was also developed as an electrode material to fabricate
a flexible solid-state symmetric supercapacitor where PA/LiCl gel
was used as an electrolyte.®* This symmetrical supercapacitor
displayed excellent cycling stability (85000 cycles) and

© 2025 The Author(s). Published by the Royal Society of Chemistry

View Article Online

RSC Advances

coulombic efficiency (99.7%) for their high surface area and
pseudocapacitance.*

Besides the widely used Ti;C,T,-MXene, Nb,CT, MXene
hybrid with MWCNTs was also used by Xiao et al.** Here, the
lower conductivity of Nb,CT, than Ti;C,T, was improved by
introducing MWCNT with the Nb,CT,-MXene. In addition, it
has been found that the specific capacitance of Nb,CT,/
MWCNT and pure Nb,CT, was 202 Fg~"and 186 F g~ " at 2 mV
s~' in three electrode system where 1 M H,SO, as used as an
electrolyte. This significant capacitive performance of Nb,CT,/
MWCNT were mainly derived by introducing MWCNT as
a conductive bridge.**

3.1.4 Capacitive performance of 3D MXene/CNT hybrid
materials. To achieve the highest capacitance, Yang et al®
prepared honeycomb like Ti;C,T,@CNT hybrid sponges by
electrochemical deposition, to obtain high speed ion exchange
with gravimetric capacitance of 468 F g ' at 10 mV s~ . More-
over, the prepared Ti;C,T,@CNT-based symmetric super-
capacitor offered 92.8% retention after 10 000 cycles of the
charge-discharge process 10 mA cm 2, as depicted in
Fig. 4(h).** The highest capacitance of 3D like MXene/CNT
honeycomb sponges may be attributed to the formation of
more porous structure in spongy film*® that results in providing
more opening path for electrolyte ion exchange. The effect of
this porous structure of MXene/CNT hybrids on supercapacitor
applications are investigated by Zhang et al.** They fabricated
three different MXene-based films namely, a densely packed
TizC,T, film (D-MF) by vacuum filtration, a porous TizC,T, film
by freeze-drying (3D-PMF), and a porous TizC,T,/CNT film by
freeze-drying (3D-PMCEF). Furthermore, they used these films to
create symmetric supercapacitors (SSCs).** They observed that
3D-PMCF had the highest area of the cyclic voltammetry (CV)
curve compared with D-MF and 3D-PMF, indicating the highest
specific capacitance (about 375 F g~'). This capacitance is
attributed to the bigger pore volume (0.103 cm® g~') of 3D-
PMCF than those of the other two samples (D-MF: 0.01 cm® g;
3D-PMF: 0.065 cm® g~ "), resulting in improved ion accessibility.
Here, CNT acts as the spacer to increase the pore volume of
PMCF than PMF and D-MF samples and for increasing porous
structure, the ion transportation is fast in case of 3D-PMCF than
the other samples, as demonstrated in Fig. 4(i).** Moreover,
a new 3D structure of Ti;C,T,-MXene/CNT hybrid was devel-
oped by Gao et al.® Regarding this, at first, they prepared a new
knotted CNT which was then dispersed in CTAB solution. After
that MXene-knotted CNT composite electrodes were prepared
by a self-assembly process which was further used for investi-
gating the electrochemical performance in an organic electro-
lyte for maximizing ion accessibility. They found that MXene-
knotted CNT hybrids showed high capacitance, up to 130 F
g~' (276 F cm ) in organic electrolytes with a capacitance
retention of ~56% at scan rates from 10 mV s~ " to 10 Vs~ . For
comparison, they also prepared Ti;C,T,-MXene/non-knotted
MWCNT 2D structure, however, this 2D structure only dis-
played a capacitance retention of 39% from 10 to 500 mV s~ *.5
This proves that the 3D structure design allows more electrolyte
ion accessibility than 2D structure which means 3D like MXene/
CNT possess more capacitive performance. An overall
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comparison of preparation, structure and electrochemical
performance of MXene/CNT is shown in Table 2.

3.2 MXene/PPy

The use of conductive polymer like polypyrrole with the notable
2D MXene structure has opened a new era for the fabrication of
wearable, flexible, lightweight, and portable devices. Due to the
surface termination group of M,,.1X,,Ty, where T, represents -O, —
OH, and/or -F terminating groups, MXene exhibits superior
reinforcing properties towards the conducting polymers.”*** As
MXene and conducting polymer exhibit excellent interfacial
bonding, the hybrid material of MXene/conductive polymer offers
significant advantages ranging from versatility, compatibility and
high performance products. For instance, polypyrrole is
a conductive polymer that is widely used for preparing energy
storage devices.” Intercalation of polypyrrole with MXene solves
the degradation problem of MXene in the presence of water and
oxygen,’® attracting scientists to produce novel MXene/PPy mate-
rial for next generation wearable and flexible supercapacitor-
based devices. In addition, the intercalation of PPy can expand
the interlayer spaces of MXene with porous structure which may
offer an excellent transmission of electrolyte ion during charge/
discharge cycles.””*® Due to the increasing of interlayer spacing
and strong interfacial bonding between polypyrrole and MXene
materials, an ion transfer path is created,” resulting in the
highest capacitance. In this section, the preparation process and
application of MXene/PPy hybrids are described elaborately.

3.2.1 Preparation process of MXene/PPy hybrid materials.
During the preparation of MXene/PPy hybrids, the N-H group of
polypyrrole and the terminating groups of MXene forms strong
hydrogen bond, ensuring the deposition order of polypyrrole in
the MXene structure for which ion transport pathways are
created for fast charge storage.® Different techniques were re-
ported to prepare MXene/PPy hybridized material such as in situ
polymerization, self-assembly and electro polymerization. Tong
et al* fabricated Ti;C,T,/PPy hybrid films using the in situ
polymerization technique. In this work, 5 mg ml™" of Ti;C,T,
and 80 pL pyrrole (monomer) solution were mixed under
mechanical agitation and then placed into an ice bath. Then
15 mg ml ™" of APS (oxidant) solution was added dropwise into
the above solution to initiate the polymerization. Chen et al.*®
also followed the in situ polymerization technique to prepare
MXene/PPy nanocomposite film. They prepared Tiz;C,T, solu-
tion by adding HCL into pyrrole solution followed by stirring at
2 °C. Next, APS was added into the solution mixture to initiate
the polymerization. Another technique of the in situ polymeri-
zation involves the oxidant free polymerization.*® In this case,
the terminating group -OH of Ti;C,T, with acidic nature
promotes the proton transfer from -OH group to pyrrole
monomer initiating the polymerization and form hydrogen
bond to get freestanding MXene/PPy nanocomposite.'”® In
addition to the in situ polymerization of PPy and MXene, it was
reported that electrochemical deposition is also applied to
fabricate the MXene/PPy hybrid composite film.***

3.2.2 Capacitive performance of 1D MXene/PPy hybrid
materials. 1D fiber electrode can meet the requirement of

© 2025 The Author(s). Published by the Royal Society of Chemistry
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wearable electronic device by making the flexible textile based
supercapacitor with fast charging/discharging and long cycle
life. The fiber electrode can be easily integrated into textiles by
weaving or knitting, facilitating the preparation of textile based
supercapacitor. Yang et al.'”> prepared a porous core-shell PPy/
TizC,T, MXene@cotton fiber (PMCF) electrode by in situ poly-
merization technique to investigate the electrochemical
performance in order to use PMCF as a flexible energy-storage
device in the future. Fig. 5(a) shows that the MXene/PPy was
wrapped around the cotton yarns which formed a core (cotton
fiber) and shell (MXene/PPy) shell structure. This core-shell
structure made a porous model, ensuring the electrolyte ion
transfer pathways to enhance the capacitive performance. It was
found that with the increasing of PPy/MXene loading on cotton
fiber, the specific capacitance was increased which was even
better than the individual PPy coated cotton fiber, as demon-
strated in Fig. 5(b), and this enhanced capacitance can be
attributed to the formation of a more porous structure with the
increasing of electroactive materials loading.'*> Moreover, the
remarkable conductivity and mechanical strength of the hybrid
materials material make it a promising candidate for future
flexible energy storage devices.'”

3.2.3 Capacitive performance of 2D MXene/PPy hybrid
materials. Free-standing 2D composite film is a widely used
morphological structure for supercapacitor applications. Zhu
et al'® followed the electrophoretic deposition to prepare
freestanding PPy/layered Ti;C, film which formed a porous
structure, Fig. 5(c) and (d), due to the existence of MXene
material. This porous structure enhanced the electrolyte ion
transfer pathway during the charge-discharge process,
benefitting high capacitive performance.'® It had been found
that the capacity of PPy/layered Ti;C, film reached to 406 F cm >
which was 30% more than the pure PPy free-standing film
(about 300 F cm?), confirming the formation of a more porous
structure in PPy/layered Ti;C, film than the pure PPy film.'*
Moreover, a solid-state supercapacitor was also fabricated by
using PPy/layered Ti;C, film which demonstrated an excellent
capacitance of up to 35 mF cm ™2 and perfect cycling stability.'**
Besides, the electrodeposition techniques, in situ polymeriza-
tion technique was also adopted by Boota et al.'® However, in-
stead of using any oxidant, they took the advantage of strong
acidic character of MXene as well as hydrogen bond between
MXene and pyrrole, that may assist in formation of the aligned
polymerized chains. After self-assembled polymerization
process, vacuum filtration was used to get free-standing film.'**
The as fabricated PPy/Ti;C,T, exhibited higher volumetric
capacitance of ~1000 F cm™* and capacitance retention of 92%
after 25000 cycles which was due to the hydrogen bonding,
increased interlayer space of composite film and surface redox
processes of the PPy and MXene.'” Although the MXene/PPy
can exhibit interesting result, some drawbacks, such as time
consuming in electrolyte ion transportation or filling out elec-
trolyte gel in cell assembly still exist that can be improved by
using liquid electrolytes as spacer.'® Fan et al. used an inno-
vative strategy by addressing this challenges, where they intro-
duced both polymerized polypyrrole (PPy) particles and ionic
liquid (ILs)-based microemulsion particles as “dual spacers”, to

RSC Adv, 2025, 15, 8948-8976 | 8957
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(a) Cross section of MXene/PPy wrapped around the cotton fiber;*°? (b) specific capacitance of PPy@cotton fiber and (PPy/MXene)

@cotton fiber with different mass loading of electrochemically active substance;**? (c and d) cross-section of porous PPy/l-TizC, film and dense
PPy film respectively;'*® (e) schematic diagram of MXene/PPy—PVA hydrogel fabrication process;*** (f) SEM image MXene/PPy—PVA hydrogel with
porous structure;*** (g) comparison of specific capacitance between MXene/PPy—PVA and MXene/PVA hydrogel at different current density.***

fabricate functionalized Ti;C,-MXene composite films for high-
performance and wide-temperature application in super-
capacitors. Their prepared composite electrode displayed
excellent rate capability between 4 °C and 50 °C as well as high
gravimetric energy density of 31.2 W h kg™ *.1%

3.2.4 Capacitive performance of 3D MXene/PPy hybrid
materials. Conductive hydrogels are combined with electroactive
materials within the porous network and for this reason, a supe-
rior conductive path and ion diffusion network are achieved that
offers excellent capacitive performance for supercapacitor appli-
cations. In order to investigate the capacitive performance of
conductive hydrogel, Zhang et al.*** prepared Ti;C,-MXene/PPy/
PVA hydrogels. Regarding this, they first fabricated Ti;C,-
MXene/PVA by freeze-drying method, and then by following the
in situ polymerization technique, Tiz;C,-MXene/PPy/PVA was
prepared with porous structure, as shown in Fig. 5(e) and (f).
Fig. 5(g) displays that MXene/PPy/PVA hydrogel offers a specific
capacity of 614 F g " at 1 A g~ ' current density which was better
than the capacity (lower than 500 F g ') of MXene/PVA hydrogel

8958 | RSC Adv, 2025, 15, 8948-8976

and even at higher temperature, the specific capacitance of
MXene/PPy/PVA was higher than the MXene/PVA."* This
enhanced capacitance was attributed to the intrinsic conductive
properties of PPy that act as a conductive bridge to connect
MXene nanosheets, enhancing the electrochemical performance.
Moreover, a solid-state supercapacitor was decorated by two
identical MXene/PPy-PVA hydrogel electrodes with a layer of
H,SO,/PVA gel electrolyte, which exhibited high capacitance (184
F g ') with 83% capacitance retention over 1000 cycles.'** In
another study, the in situ technique was applied, however, instead
of PVA, nickel foam was used to create a conductive 3D
morphology of Ti;C,T,@PPy Nanowires (NW) composite.’” In
this study, almost similar capacitance (610 F g ') and rate capa-
bility (100% after 14 000 cycles) were fond which was attributed to
the PPy nanowires matrix which connected separated MXene
blocks through porous structure, enabling highly ions and
charges transport for high supercapacitor performance.'”
Besides the in situ polymerization process, the electro-
chemical deposition technique was also used to fabricate 3D

© 2025 The Author(s). Published by the Royal Society of Chemistry


http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d5ra00271k

View Article Online
RSC Advances

Review

"[OYO09[V JAUIA A[od = VAd ‘9]0114dAjod = Add ‘uonualay adueloede) = - *D ‘ooueydede) dIoWN[OA = D “A ‘9oueldede) dmawiseln = D) 'O ‘@oueldede) @1y = D v,

S9[04d (ag) axmonns aisodwod
L0T 000 ¥T I9J€ %001 — 019 — HOM N € snoiod 3 uoneziawaAjod n1s uy MN Add®*1D%IL
(ag) asodwoo ayy
S9[04d -e[oquuered Ry uoneziawAiod
80T 000S 19Ye 9%¥ 98 — 91V — YOSTH N T [eoTwIoyo0199[H Add/PuaxXIN
S3[04Ad 00T 1940 %€8 — 781 — 93 VAd/*OS°H
S9[04d (ag) 19801pAy ‘uonezirowjod
70T 000 0T I2A0 %00T ¥19 — YOS'TH N 1T n1s ul pue SUIAIp 99310 VAd/Add/*OFIL
(az)
9po1I[3 3[1x3) ‘uonisodap
14" — — 0T €ve — YOSTH N T [edrwayo0m29]a pue A1p-diq Add/“LeDfL
(ac) spomospa
S9[04d 9[nxa) ‘uonezriawAjod nas uz
€11 000 0€ I9YJ® %876 — 6€V S6C'T YOS%eN N T pue bﬂgommm.ﬁwm I1B1S0I109[H &Q\RHNU«,_H
S9[04d (opomoare
000F 19J® %89°€L 19°SST 7) FOSTH I T (ag) sysodwosouru
S9[24d (epomoaro 2INJONIIS0INVY
TIT 000T 191® %¥9°€8 — 8S¥ — €)"OS'H N T 3 uopeziwA[od ny1s ur Of11/Add
(ae) wry
— /98070 YOSTH/VAd 1sodwos ‘uonezirowAjod
S9[24Ad [E2TWaYD01309[d pue
10T 000 0T I9Je %96 — — 60T°0 YOS*H N ¢ uonisodap oparoydonds[d Add/LPDIL
$9[945 000
0T 12358 Aedap OoN 6£°C 6£0°0 YOS°H/VAd (ag) wry sysodwod
S9[04d Zurpueysoary ‘uonezrrswiijod
€0T 000 0T 19)€ %00T 90% — €020 YOS*H N §°0 [e21W_Y201303[d Add/*O%1L
S9[04d (ae) wyy asodwod
S0T 000 ST 19Y€ %76 000T 91¥ — "OS'H N 1T ‘uonezuowAd[od nus ur Add/*Of1L
(az)
S9[04d asodwos a1 uedio ‘ofoiikd
ITT 0007 IoYe %EE €8 — 9¢'¥81 — YOS%eN I T Jo uonezuowAjod ns uf Add/*1ED%IL
(az) wyy asodwod
01T — — SLCS 11°¢C YOS%eN N §°0 ‘uonezrowAiod ny1s uy £dd/ LeDFIL
S9[04d (az) wyy aasodwod ‘o10114d
60T 000T I9)e %8/ — LEY — YOS*H N T Jo uonezirawAfod ngs uy Add/ LeOFIL
S9[04d (ar) aanonmns [[2Ys-a10d U01I0d®)IUIXIN
0T 0007C 191 9%¢E"€8 9S5¥°0 9°90S — YOSTH N T snoiod ‘uoneziawAfod nys ur /&dd
‘Jod ,dD ((_wd A) (D -A) (,_84a) (D D) (_wo a) (D V) 4010914 1MmPNNS LS[elId1eW PLIqAH

wnwndo

wnwndo

wnwndo

pue poyrowt uoneredaid

SPUAAY Add/aUsx N JO @oueLIOad 1821WBYD041D3]9 JO uosuedwod v ¢ dlqe)

'90UB217 paModun 0'g uong LNy suowiwoD aaireas) e sepun pasusol|siapiesiyl |[EEGEEL ()

'917:62:0 9202/2/8 UO papeo|umoq ‘G20z 1ew ap g Uo paUs!iand @01y Ss300Y uado

RSC Adv, 2025, 15, 8948-8976 | 8959

© 2025 The Author(s). Published by the Royal Society of Chemistry


http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d5ra00271k

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

Open Access Article. Published on 24 de marg 2025. Downloaded on 8/2/2026 0:29:46.

(cc)

RSC Advances

carambola-like structures.'® First, 2D TizC,T,-MXene was
added with pyrrole monomer and then an electric field was
applied.’® In this case, the pyrrole monomer was polymerized
in the layered space of Ti;C,T,-MXene where the wide func-
tional groups of MXene nanosheets acted as a core polymer,
forming carambola like structure. When the current density was
increased from 0.5 A g ' to 8 Ag™ ", the as decorated carambola
like MXene/PPy displayed 50% capacitance retention which was
about 2.4% for pure PPy film. This excellent capacity retention
was attributed to the formation 3D structure due to providing
more pathways to promote the electrolyte ions. In addition, the
symmetric supercapacitor decorated by 3D carambola-like
MXene/PPy structure which showed a high specific capaci-
tance of 184 F g~' at a scan rate of 10 mV s~ and superior
capacity retention of about 86.4% after 5000 cycles.'*® An overall
comparison of preparation, structure and electrochemical
performance of MXene/PPy is shown in Table 3.

3.3 MXene/PANI hybrid

At present, as a conductive polymer, polyaniline (PANI) is widely
used for various purposes such as super capacitors, electrodes,
electromagnetic shielding, wearable gas sensor and human
motion monitoring sensor. The intrinsic conductivity, low cost,
ease of processibility, thermal and environmental stability and
faradaic pseudo capacitance makes PANI an excellent substrate
for supercapacitor applications.">**® The choice of PANI for the
supercapacitor devices has been facing flaws, for example, PANI
gets stacked during the preparation of thin film. This is because
in aniline monomer, lone electron pair of nitrogen atom is
attracted by the benzene due to the resonance, causing electron
cloud in benzene structure. Thus, it aggregates in aqueous
solution and shows improper film forming properties."'” To
improve the low dispersibility of polyaniline and get better
electrochemical performance, it is necessary to disperse the
polyaniline uniformly, thus the interaction of MXene with PANI
can solve the low dispersibility problem. Furthermore, it also
solves the restacking problem as well as increase the interlayer
space of MXene,"*® improving the surface wettability of Ti;C, for
more active sites and provide faradaic reactions, thus improving
the electrochemical performance." In the coming subsection,
the preparation and application of MXene/PANI in super-
capacitor is discussed.

3.3.1 Preparation process of MXene/PANI hybrid materials.
MXene/PANI hybrids can be prepared by numerous fabrication
techniques such as layer-by-layer assembly, in situ polymeriza-
tion, electropolymerization, dip coating, hydrothermal reaction,
and so many others." In situ polymerization is a referred fabri-
cation method to polymerize the aniline monomer onto MXene
structure either with'® or without the aid of an oxidant." Such
preparation process of MXene/PANI may contribute higher
electrical conductivity with enhanced mechanical properties.
Wei et al.' and Zhao et al.'* used in situ polymerization tech-
nique to prepare MXene/PANI hybrids. Zhao and other co-
workers mixed Ti;C,T,/HCI and aniline solutions together and
then the APS/HCI solution was added into the mixed solution to
initiate the polymerization at 0-5 °C." Yun et al. followed layer
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by layer fabrication strategy with a glass substrate that was first
immersed into polyaniline nanofiber (PNF) and then dipped into
MXene solution.** This process was repeated several times until
the desired layer obtained. Yin et al. also used layer by layer
polymerization technique to fabricate MXene/PANI hybrids.'*
Furthermore, Jia et al.**® used dip coating process to prepare
MXene/PANI based hybrids.

During the preparation process of MXene/PANI hybrids,
polyaniline acts as a conductive bridge for linking adjacent
layers of MXene together, accelerating the charge transfer
among different MXene layers.’” The anchored PANI on the
MXene surface can provide many active sites for rapidly trans-
ferring electrolyte ions.”® In case of MXene/PANI hybrids,
positively charged aniline and negatively charged functional
groups (e.g., Ti-OH- and Ti-F-) on the surface of MXene would
attract each other. The electrostatic interactions promote
nanostructured PANI anchored on the surface of MXene, and
then the formed PANI nanostructures prevent MXene layers
from stacking and collapsing.™® Cai et al.'* proposed possible
mechanism of polyaniline and MXene. They mentioned that
cationic radicals of aniline monomer are produced during the
polymerization of aniline. Negatively charged Ti;C,T, nano-
sheets are able to attract positively charged radicals by electro-
static adsorption, as demonstrated in Fig. 6(a)."* Thus, aniline
monomers can be anchored on the surface of Ti;C,T, nano-
sheets, and the oxygen and hydroxyl functional groups act as
anchored sites.**

3.3.2 Capacitive performance of 1D MXene/PANI hybrid
materials. 1D like fiber, yarn or wire like electrodes prepared
with electroactive materials, offer high flexibility with superior
capacitive performance. Liu et al.*®** prepared MXene/PANI/
carbon fiber hybrids where 1D carbon fibers were covered
with Ti;C,T,-MXene/PANI by drop coating method and MXene/
PANI were uniformly packed on the fiber surface. The uniformly
packed Ti;C,T,/PANI hierarchical structure not only solved the
agglomeration of PANI and self-stacking of MXene nanosheets
but also provided porous structure that facilitated the electro-
lyte ion migration during charge-discharge process, as shown
in Fig. 6(b), resulting in an excellent charge storage perfor-
mance. For this porous conductive materials on the fiber
surface, MXene/PANI/carbon fiber demonstrated a high areal
capacitance of 1347 mF cm ™ at a constant current density of 1
mA cm 2 along with 81% capacity retention after 5000 cycles at
20 mA cm 2% Similarly, in another study, instead of drop
coating procedure, it has been found that carbon fiber@Ti;C, T,
MXene/PANI fiber electrodes were prepared by Cheng et al. by
following the in situ “co-growth” technique which offered 3D
porous structure on the fiber surface."* Cheng et al. found that
with the increasing of polymerization time of aniline monomer,
denser and compact sized particles were formed on the fiber
surface and also by increasing the MXene content, agglomera-
tion was found; which negatively affected the capacitance
performance of the electrode materials, as shown in Fig. 6(c).***
Hence, they optimized the electroactive materials with 30 mg
MXene and 2 h polymerization time which showed the capaci-
tance of 193.75 F g~ ' at current density of 1 A g™, and the 89%
capacitance retention was after 2000 charge-discharge cycles.'**

© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig.6 (a) Schematic illustration of MXene/PANI polymerization mechanism,*? (b) ion migration of MXene/PANI coated activated carbon cloth;**°
(c) capacitive performance of CF@MXene/PANI composite fiber with different mass loading of MXene and polymerization time;** (d) CV curves
of MXene/PANI coated activated carbon cloth electrode with different mass ratio of MXene and PANI;**° (e) cyclic performance of TisC,/PANI-NT
electrodes (5000 cycles at 1 A g™3), the inset exhibits the GCD curves of the last five charge—discharge cycles;*2 (f) GCD curve of organ-like TizC»
MXenes/polyaniline hybrids at different current density with almost triangular characteristics;*** (g) SEM image of PANI@TisC,T,/PVA hydrogel
with sponge structure;*** (h) cyclic voltammetry (CV) curve of PANI@TisC,T,/PVA with rectangular shape and broad redox peak.***

Almost similar concept has also been found in

a study,'*® where it can be conferred that excess amount of MXene or PANI can

Liu et al. optimized the MXene/PANI mass ratio with 3: 7 in lieu  impede the individual capacitive performance which may not
of using 1:9, 5:5, 7:3, 9:1 mass ratio, because 3MXene@7- allow us the purpose of using MXene/PANI composites; there-
PANI carbon cloth exhibited the largest peak current and inte- fore, before using MXene/PANI based composite fiber in
gration area than other composition, as shown in Fig. 6(d), supercapacitor applications, the content of MXene/PANI must
confirming the highest capacity.**” From the above discussion, be optimized.
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3.3.3 Capacitive performance of 2D MXene/PANI hybrid
materials. Wu et al.'* fabricated Ti;C,/PANI-nanotube (NT)
electrodes following the in situ polymerization of aniline
monomer on the Ti;C, surface using malic acid and tartaric
acid as the organic proton acid and ammonium persulfate as
the oxidant. They noticed that the tube structured of polyaniline
causes the MXene/PANI NT prepared by malic acid, which was
denoted as Tiz;C,/PANI-NT-1, showed higher capacitive perfor-
mance than the tartaric acid prepared electrode, which was
denoted as Ti;C,/PANI-NT-2. The highest capacitive perfor-
mance was attributed to the less -OH group of malic acid than
tartaric acid, causing the lesser pore volume and specific
capacitance of Ti;C,/PANI-NT-2. Finally, in a typical three-
electrode system with 1 M H,SO, aqueous electrolyte, Ti;C,/
PANI-NT-1 offered high specific capacitance (596.6 F g~ ') at 0.1
of A g~ and excellent cyclic stability (94.7%) measured by the
GCD test at 0.1 A g, because of providing more ion transport
channels by PANI-NTs. The long term cyclic stability,displayed
in Fig. 6(e), revealed the enhanced pseudocapacitance contri-
bution of PANI due to the cancelation of the swelling and
shrinkage.”®>'*> In addition to the in situ polymerization
method, electrochemical deposition technique was also
applied, where amino functionalized Ti;C, covalently bonded
with amine nitrogen of PANI chains, ensuring faster ion diffu-
sion path.”* The as-prepared hybrids showed triangular curve
of GCD at various current density, as demonstrated in Fig. 6(f),
confirming good electrochemical behavior with reversible
characteristics of an idle supercapacitor to fabricate novel
MXene/PANI hybrids. Besides the preparation of flexible thin
film of MXene/PANI electrodes, wearable supercapacitor was
also prepared by using MXene and PANI electroactive materials
with cotton fabric.’*® It has been found that in situ polymeri-
zation of aniline monomer with cotton fabric displayed lower
areal capacitance (214.3 mF cm™> at 1 mA cm™?) than the
MXene/cotton and MXene/PANI@cotton electrode which was
471.3 mF cm~ > and 1027.5 mF cm™>.** The enhanced capaci-
tance of MXene/PANI modified fabric was attributed to the
reducing ion diffusion pathways by MXene and providing
enhanced electroactive surface by PANL."**

3.3.4 Capacitive performance of 3D MXene/PANI hybrid
materials. Introducing interlayer spacer with 3D networks
creates porous structure as well as facilitates more reactive sites,
thus solving the restacking problem of MXene with enhanced
electrochemical performance.””**® Introducing PANI with
various formation, such as polyaniline nanotubes,**® polyani-
line nanoribbons,**® and polyaniline nanofibers (PANINFs),"**
as an interlayer spacer, could provide the active sites on the
surface as well as the transport of electrolyte ions. Li et al.
prepared Tiz;C,T, MXene/PANI hybrid materials, where 3D
constructive network by introducing PANI nanofibers into
MXene layers increased the charge transfer among different
MXene layers, acting as a conductive bridge between the adja-
cent layers of MXene.'”” The as prepared electrode exhibited
high specific capacity of 563 F g at 0.5 A g ' and a high
capacitance retention of 84.72%.'” Regarding the PANI
nanofibers/MXene hybrids, positively charged PANINFs and the
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negatively charged Ti;C,T, nanosheets are interacted with each
other by electrostatic interaction and hydrogen bonding,
providing abundant accessible sites and facilitate the diffusion
of ions. Cao et al.*** prepared a 3D PANI@Ti;C,T,/PVA sponge
structure, as displayed in Fig. 6(g). In this structure, the -OH
group of PVA and -O, -OH and-F polar groups of Ti;C,T, were
interconnected by electrostatic attraction, and further PANI was
in situ polymerized onto the surface of Ti;C,T,/PVA. The intro-
duction of PVA into Ti;C,T, layer via sol-gel and freeze dried
process creates the porous sponge template and the later
inclusion of PANI, further improves the pore utilization rate of
the porous sponge with enhanced specific capacitance of the
electrode material.*** The as fabricated PANI@Ti;C,T,/PVA
hybrids was further used to prepare a flexible symmetric
supercapacitor which showed both rectangular shape and redox
peaks, indicating both the double layer capacitance and the
pseudocapacitance, as illustrated in Fig. 6(h)."** An overall
comparison of preparation, structure and electrochemical
performance of MXene/PANI is shown in Table 4.

3.4 MXene/graphene hybrid

2D graphene material possesses excellent electrical, thermal
and mechanical properties for which this notable material has
attracted scientists' attention to fabricate supercapacitor-based
devices. Furthermore, graphene has a broad operating area
(2630 m*> g') and light weight structure, making graphene
a great material to prepare supercapacitor-based devices.'"”
Although the use of graphene materials (GO and rGO) enhances
the electrochemical performance, it has some shortcomings
like -1 bond attraction that enhances the aggregation of
individual graphene suspension for which it may surpass the
use of individual graphene based material for supercapacitor
applications.™®

Fabricating MXene/graphene hybrid material can solve the
aforementioned problems. During the fabrication of MXene/
graphene hybrids, MXene material intercalate into the gra-
phene sheets, thus solving the aggregation problems of gra-
phene and the hydrophilicity of MXene can improve
electrochemical performance of MXene/graphene hybrid
materials. For the supercapacitor applications, graphene oxide
(GO) and reduced graphene oxide (rGO), derivatives of gra-
phene, are currently extensively used. In this section, the
preparation and supercapacitors application of MXene-based
graphene hybrid material are highlighted.

3.4.1 Preparation of MXene/graphene hybrid materials.
Fabrication of MXene/graphene-based hybrid material involves
different approaches, like mechanical mixing, hydrothermal
process, reduction process and self-assembly. By using the
electrostatic self-assembly strategy, Yan et al.**® created MXene/
rGO composites in which poly(diallyldimethylammonium
chloride) modified rGO has a positive charge and the MXene
nanosheet has a negative charge. They mixed modified rGO and
MXene suspension by ultrasonication followed by vacuum
filtration to get freestanding MXene/rGO hybrid film. Liao
et al.** prepared sulphur, nitrogen doped MXene/GO suspen-
sion followed by blade coating on polyester substrate to get

© 2025 The Author(s). Published by the Royal Society of Chemistry
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MXene/GO film. The film was then treated with HI acid for 30
minutes to achieve MXene/rGO hybrid film.

In addition to the 2D composite film structure shown in
Fig. 7(a),”* 3D like hydrogel of MXene/rGO hybrids was also
fabricated for supercapacitor application. Through a graphene
oxide (GO)- aided self-assembly technique, Chen et al**
developed 3D macroscopic hydrogel with enhanced porous
structure. Regarding this, they kept Ti;C,T, and GO mixture
solution at 70 °C under N, atmosphere for 30 hours in the
presence of NaHSO;. The as-prepared hydrogel, depicted in
Fig. 7(b) was washed with DI water. Furthermore, in order to
prevent MXene from oxidizing, Zhao et al.*** added ascorbic
acid to the Ti;C,T, and GO suspension that was then undergone
hydrothermal treatment at 65 °C for 3 hours. After cooling
down, the resultant hydrogel was dialyzed in ethanol solvent for
6 hours followed by freeze drying. The as-prepared hydrogel
exhibited high-conductive 3D Ti;C,T,/rGO porous structure.
Shao et al.*** and Saha et al.**® also prepared MXene/rGO gel like
electrodes for supercapacitor application.

3.4.2 Capacitive performance of 1D MXene/graphene
hybrid materials. Yang et al. prepared MXene/graphene fiber
via wet spinning technique in order to fabricate all solid state
supercapacitor.” Regarding the fiber preparation, first they
prepared MXene/GO fiber which was treated by a mixture of HI
and acetic acid in order to decorate Ti;C, MXene/rGO fiber. For
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hybrid fiber increased from 21.2 S m ' to 2.9 x 10* S m,
suggesting the potential use as flexible electrode for super-
capacitor application. Further, it was found that the prepared
flexible electrode with 90 wt% of Ti;C,-MXene displayed high
volumetric capacitance, 586.4 F cm >, and high areal capaci-
tance, 372.2 mF cm ™2, which was far better than net rGO fiber
(7.8 mF cm™? and 16.4 F cm™* respectively)."”” This superior
electrochemical performance of MXene hybrid fibers was
attributed to the extra redox reaction of Ti atoms.*” Similarly, in
another study, the wet spun MXene/rGO fiber with 88 wt% of
MXene also displayed higher volumetric capacitance (about 341
F cm ) than pure GO fiber (about 29 F cm ™).’ The lower
capacitance of graphene fibers may be attributed to the aggre-
gation problem of graphene while processing fibers due to not
adding any additive solution. While adding MXene solution
with graphene during fiber formation, significate improve-
ments in capacitive performance has been noticed. The addi-
tion of MXene and graphene solution together not only
enhances the capacitive performance but also improves the
aggregation problem of graphene and the weak interlayer
interaction of MXene during the fiber formation via solution
spinning process. In addition, capacitive performance also
depends on electrolyte ion transportation.
3.4.3 Capacitive performance of 2D MXene/graphene
hybrid materials. In the film like 2D MXene/graphene hybrid

this reduction, the electrical conductivity of Ti;C, MXene/rGO materials, generally reduced graphene oxide acted as
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Fig. 7 (a) Flexible (i) and freestanding (ii) MXene/rGO hybrid film,**® (b) (i) synthesis process of TizC,T,/rGO hydrogel (i), digital and SEM image of

TizC,T,/rGO,** (c) rectangular shape of MXene/rGO (i) under relaxed state indicating double layer capacitive behavior, identical CV curves of
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a conductive bridge to assemble the different layers of MXene
materials which improve the smooth electrolyte ion transfer
process, thus supercapacitor performance of the electrode is
ameliorated significantly.” In a study, it has been found that
graphene acted as a mechanical skeleton between the MXene
nanosheets in MXene/graphene composite electrode, prepared
by electrochemically exfoliated graphene (EG) and TizC,Ty-
MXene (~200 nm) through homogenous self-assembly, that
displayed electrode film thickness of 2.5 pm with interlayer
spaces; therefore, electrolyte ion transportation is promoted.**
When Ti;C,T,/EG was used for all solid state supercapacitor, it
displayed a high volumetric capacitance up to 216 F cm > at 0.1
A cm3.** However, having negative charge of both graphene
and MXene materials during self-assembly process may not
fully recover the restacking problem of 2D materials TizC,T,
which may be solved by electrostatic self-assembly process.'*
Yan et al. fabricated MXene/graphene composite electrode by
using positively charged rGO and negatively charged Ti;C,T,-
MXene which demonstrated an ultrahigh electrical conductivity
of 2261 S cm™' with excellent volumetric capacitance, 1040 F
cm? at a scan rate of 2 mV s, and a high rate capability with
61% capacitance retention at 1 V s~ '.**° The enhanced electro-
chemical performance is achieved due to the more open
structure of electrostatic self-assembled MXene/graphene
composite electrode. Moreover, for creating a high pore struc-
ture, Fan and co-workers used holey graphene oxides.'** In
addition, they annealed Ti;C,T, to remove -F group from
MXene in order to create -OH, which created more pseudoca-
pacitive reaction. For using holey graphene oxide and annealed
Ti;C,Ty, the composite electrode exhibited an ultrahigh volu-
metric capacitance of 1445 F cm™> at 2 mV s~ .1

3.4.4 Capacitive performance of 3D MXene/graphene
hybrid materials. For supercapacitor application, Liu et al'®
prepared Co;0, doped 3D MXene/RGO hybrid porous aerogels
via in situ reduction technique of GO. In this hybrid structure,
rGO acted as conductive bridge and also enhanced the ion
transportation to achieve high capacitance. The prepared hybrid
film with porous aerogel exhibited 345 F g~' capacitance at 3A
g~ ! and 85% capacitance retention after 10000 cycles. Zhou
et al.** fabricated Ti;C,T,/rGO hybrid materials for stretchable
supercapacitor applications. Their prepared electrode showed
almost rectangular CV curve at relaxed state under different scan
rates resulting double layer capacitive behavior. Moreover, the
identical CV curve under different strains proved excellent elec-
trochemical and structural integrity under larger strains. Fig. 7(c)
shows the CV curve at relaxed state and deformation state.' Ma
et al.** followed a novel strategy where they modified MXene
surface with lignosulfonate, by products of the sulfite process in
the wood pulping process, and they took the advantage m-m
interaction between lignosulfonate and graphene to form a 3D
ultrathick aerogel structure. The as-prepared aerogel structure
showed highly symmetrical GCD curve, as shown in Fig. 7(d),
with 386 F g ' specific capacitance which indicated a high
coulombic efficiency and higher capacitive behavior. The devel-
oped 3D structure of graphene incorporated MXene hybrid
material can enhance the potential window due to the enhanced
interlayer space and the faster ion diffusion of MXene hybrids.'®
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This may result in enhanced electrochemical performance of
electrodes for supercapacitor application. In addition to the 3D
structure, Xu et al.** prepared micro-supercapacitors by MXene/
rGO (EGMX) hybrid film, showing an excellent volumetric and
gravimetric capacitance of 370 F cm > and 405 F g, respec-
tively. An overall outlook of MXene/graphene hybrids in super-
capacitor application is presented in Table 5.

3.5 MXene/nanocellulose hybrid

With the increasing demand for energy storage devices and the
growing concern of environmental problems, natural resources
have been explored extensively to fabricate supercapacitor
devices. Due to the attractive properties such as large surface
area, exceptional chemical structure and high porosity, nano-
cellulose drew a great deal of the attention of large number of
scientists to develop supercapacitor devices. Furthermore, due
to light the weight characteristics of nanocellulose, it can be
used as a suitable substrate for the fabrication of next genera-
tion wearable supercapacitor-based devices. Although nano-
cellulose is an insulating material, surface modification is
possible due to the abundant hydroxyl group of nanocellulose
that allows it to act as a binder of active material for super-
capacitor related application.'®® In addition, the porous struc-
ture of nanocellulose allows the ions transportation through
nanocellulose based electrodes, thus enhancing the electro-
chemical performance of supercapacitor.’®” In spite of having
great potentiality to use nanocellulose in fabricating super-
capacitor, the composition of nanocellulose base electrode
materials (ratio of nanocellulose and active material such as
CNT, rGO and MXene) need to be optimized to get the best
performance from supercapacitor devices. Among the different
active materials, MXene, a newly discovered transitional mate-
rials, were used extensively for electrode materials for its high
metallic conductivity that can reach up to 8000 S cm™'.1%1%°
However, for supercapacitor application, MXene have been
suffering from restacking problem resulting in poor ion trans-
portation. This flaw, can be solved by incorporating nano-
cellulose with MXene, resulting in an increase of the interlayer
spacing of MXene. This facilitates the ion transportation path
and further enhances the electrochemical performance of
supercapacitor. In this section, the preparation process and the
application of MXene/nanocellulose hybrids in supercapacitor
are highlighted.

3.5.1 Preparation process of MXene/nanocellulose hybrid
materials. Different strategies were followed to fabricate
MXene/nanocellulose hybrids. Feng et al.'”® mixed MXene and
tempo oxidized cellulose nanofiber (TOCNF) under high speed
stirring on a heating stage with nitrogen condition to get
MXene/TOCNF slurry. Then they made MXene/TOCNF hybrid
film by blade coating on polystyrene substrate.'”® Zhou et al.'”*
mixed Ti;C,T, and tempo oxidized cellulose nanofiber by
ultrasonicating and then sprayed on bacterial cellulose BC
substrate using layer by layer fabrication technique. The as-
prepared hybrids film possessed high mechanical strength
(>250 MPa)."”* Feng et al. used one-pot wet co-milling process to
prepare MXene/CNF hybrid slurry."”? Zhou and other co-
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workers'” followed vacuum filtration fabrication technique to
prepare individual Ti;C,T, and cellulose nanofiber (CNF)
suspension. Then they vacuum filtered the suspension with
CNF at the bottom and top layer, as shown in Fig. 8(a), showing
excellent mechanical (112.5 MPa) and electrical properties (143
S m~").*® Song et al. fabricated TiC,/CNF flexible hybrids by
mixing both Ti;C, and CNF suspension followed by vacuum
filtration.”®® It can be observed that according to the reported
research work, all reported strategies to fabricate MXene/CNF
hybrids, resulted in high mechanical and electrical hybrid film.

During the exfoliation process of MXene from MAX phase by
using different etching agents such as HF, NaOH, H;PO, and
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LiF, abundant terminating groups (-OH, —-O and -F) are usually
induced. This negative terminating group of MXene can be
confirmed by negative zeta potential, as it can be seen in
Fig. 8b,"”* which can form hydrogen bond with the hydroxyl
group (-OH) of cellulose, providing strong bonding with the
interface.'®* Moreover, the polar groups of both MXene and
cellulose possess strong interaction via hydrogen bonding,
facilitating the solution mixture of MXene and nanocellulose to
get the hybrid film. Fig. 8(c) shows the hydrogen bonding of
MXene and nanocellulose.'”

3.5.2 Capacitive performance of 1D MXene/cellulose
nanofiber electrode. Due to the restacking problem of MXene
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sheets, it exhibits lower spinnability to fabricate MXene based
fibers, resulting in lower strength.®** Regarding this problem,
adding cellulose with MXene nanosheets may offer the better
solution spinnability, ensuring the strengthen of MXene/cellulose
fiber with superior electrochemical performance. In a study, it
has been found that Ti;C,T,-MXene-based hollow and solid core—
shell fibers with regenerated cellulose (RC) by coaxial wet spin-
ning, where RC was tough component and graphene oxide/
MXene was conductive components, displayed mechanical
strength of 134.7 MPa with a high conductivity of 2.37 x 10’ S
m . In addition, to improve the spinnability with ordered
structure of MXene nanosheets without binder, a new techno-
logical advancement of MXene processing is developed which is
its Liquid Crystal (LC) phase, that constitute both liquid-like
fluidity and crystal-like order.’® Zhang et al. showed that the
LC phase of MXene fibers displayed high electrical conductivity
with enhanced volumetric capacitance, ~1265 F cm >.'®
However, binder free LC phase of MXene needs high MXene sheet
size and concentration*®>'*® for imparting spinnability properties,
which may make it difficult to achieve, however, S. Usman et al.
introduced cellulose nanocrystals (CNC) into MXene sheets,
offering LC phase with lower MXene sheets and concentration,
~1 pum and =10 mg ml ™" respectively.””® They prepared micro-
fibers of LC-MXene/CNC by wet spinning method, as displayed in
Fig. 8(d). The improved ordering result of LC-MXene/CNC fibers
resulted in high tensile strength, ~60 MPa, high conductivity,
~3000 S cm™*, and volumetric capacitance, ~950 F cm 3,7

3.5.3 Capacitive performance of 2D MXene/cellulose elec-
trode. Due to the strong interfacial bond and the binding capa-
bilities of cellulose, the incorporation of cellulose with MXene
can enhance the mechanical properties of MXene/cellulose
hybrids. Furthermore, introducing cellulose can pull and
expand the MXene nanosheets, as shown in Fig. 8(e), and thus
facilitating the fast ion transportation between the MXene sheets
resulting in the increase of electrochemical performance."”” It has
been found that electrostatic self-assembly between the Ti;C,T,-
MXene/CNF hybrids with positively charged polyethyleneimine
(PEI) showed areal capacitance of 93.9 mF cm > at a current
density of 0.1 mA cm 2. The positively charged PEI cross-linked
the negative MXene/CNF hybrids through electrostatic interac-
tion. Therefore, hydrogen bonding between MXene and CNF as
well as electrostatic interaction resulted in flexible, high strength
and oriented MXene sheets that resulted in ion transportation for
enhanced capacitance.” In addition to facilitate the electrolyte
ion transportation due to use of cellulose with MXene materials,
it has also been noticed that alkalization and annealing of Ti;C,T,
improved the electrochemical performance.'® Besides, the widely
used titanium carbide MXene for supercapacitors, Etman et al.**
used Mo, 33CT, MXene to fabricate MXene/cellulose electrode by
simply ultrasonicating MXene and cellulose suspension followed
by vacuum filtration. The MXene/cellulose electrode displayed
volumetric capacitance up to 1178 F cm > with 5 wt% cellulose
content. Moreover, the composite electrode exhibited 95%
capacity retention after 3000 cycles. This outstanding properties
to cellulose that may provide tunneling for ion transportation,
thus increasing cellulose content and enhancing the
capacitance.'®
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Although nanocellulose can facilitate ion transportation
between the MXene nanosheets, it may sometimes slightly
decrease the electrochemical performance because of being an
electrochemically inactive material. Tian et al. showed that 5%,
10% and 20% loading of CNF with Ti;C,T, exhibited tensile
strength of 139 MPa, 181 MPa and 340 MPa with decreasing
capacitance of 369 F g~ ', 324 Fg~ ' and 298 F g ', respectively."®
This slight reduction of capacitance with enhanced mechanical
strength does not limit the ion transportation for super-
capacitor application, thus proving the practical application of
CNF/Ti3C,T, hybrid film.**

3.5.4 Capacitive performance of 3D MXene/cellulose elec-
trode. Preparing 3D architecture from 2D materials not only
benefits from avoiding restacking problems but also gets an
advantage from porous construction for electrolyte ion trans-
portation. However, 2D materials like MXene impedes the
formation of 3D structure due to the van der walls interaction
between MXene nanosheets.'® Intercalating cellulose with
MXene nanosheets enables the formation of 3D like foam,
aerogel or hydrogel structure via template method, in situ
foaming, freeze drying and so many others method.'®>'**"*%* In
a study of,"”® Ti;C,T,-MXene composite aerogel was prepared
via ice templating process where functionalized cellulose
nanocrystal (f-CNC) served as a structural modifier and poly-
urethane as a cross-linker with MXene. In addition, to investi-
gate the capacitive performance, MXene pristine paper and
MXene aerogel was also prepared where it has been found that
the composite aerogel showed the highest area of CV curves,
demonstrating excellent electrochemical performance, as
shown in Fig. 8(f) which contributed 178 Fg~', 201 F g™, 225 F
g~ ' for pristine MXene paper, MXene aerogel, and composite
aerogel respectively.””® The enhanced capacitive performance
was obtained due to the large surface activity, excellent elec-
trolyte interactions, and fast ion transportation."”® An ion
transportation of pure Ti;C,T,-MXene film and 3D porous
MXene framework, which constituted with Ti;C,T,-MXene and
bacterial cellulose, is displayed in Fig. 8(g). When the porous 3D
Ti;C,T,-MXene/bacterial cellulose was used as anode for
asymmetric supercapacitor, it exhibited a high areal capaci-
tance of 925 mF cm ™%, a maximum energy and power density of
252 um W h cm™ 2 and 34.02 mW cm ™ respectively.'”

However, introducing additional active material with 3D
MXene/cellulose hybrids can improve the mechanical and elec-
trochemical performance with multifunctional applications
which may prove the promising wearable electronics. It has been
found that, Cai et al.** introduced in situ grown SnS, onto MXene
nanosheets followed by adding CNF. By adding SnS,, extra H"
storage is achieved during the charge-discharge process which
contributed specific capacitance of 171.6 F g ' with high
mechanical strength (78.3 MPa).*** Moreover, more H' transport
were activated by SnS, under solar intensity that contributed
60% increase in capacitance under solar intensity of 1 kW m 2,1
Besides, 3D like MXene/Ag nanowires (NWs)/cellulose composite
displayed a high capacitance of 505 F g ' with excellent
conductivity, 58843 S m~*, and mechanical properties, tensile
strength of 34 MPa and Young's modulus of 6 GPa.*”®
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3.6 Challenges and future perspective

MXene is a newly discovered material with high electrical
conductivity, excellent hydrophilicity characteristic due to the
surface terminating groups and also it has an intrinsic capa-
bility for the fabrication of electrode materials in supercapacitor
related applications. Due to the tunable surface groups of
MXene and synthesis process of multiple MXene compositions,
there may exist some problems for the fabrication of MXene
based hybrids electrodes which should have been introduced
properly. For example,

e There exists almost 20 different MXene composition and
during etching of “A” element from MAX phases, tunable
functional groups appeared on MXene surface. For this etching
of MAX phase, different etching elements and synthesis
conditions are applied, as summarized in Table 1. This
synthesis procedure led to producing multilayered MXene of
different compositions and wide variety of surface groups.
Therefore, it is needed to further study to address the cause and
solution of restacking problems of different MXene composi-
tions. Moreover, the fabrication process of MXene hybrids
should also be investigated to get the best output of MXene
based electrodes. Furthermore, the most popular etching
methods used to synthesis MXene, HF and LiF/HCL, are
considered hazardous procedures. Therefore, due to the over
growing concern of the environment, it is urgent to explore new
environmentally friendly process to synthesis MXene.

e During the process of individual MXene material, aggrega-
tion problem appears due to its strong hydrophilicity that may
reduce the electrochemical performance of MXene materials. For
this reason, preparation of MXene based hybrid materials is the
best solution in this regard. Introducing active materials with the
MXene can increase the interlayer spacing and further solve the
stacking problem of MXne, thus allowing the use as electrode
material in supercapacitor related applications. However, the
ratio of MXene and hybridized material during the preparation
of electrodes should be properly investigated to guarantee high
performance for supercapacitor-based application.

e Furthermore, the investigation of electrolyte performance
for supercapacitor applications is needed. The capacitance
property of MXene based hybrid materials largely depends on
the electrolyte. There are several electrolytes used such as
aqueous electrolyte, ionic electrolyte and organic electrolyte.
There is different composition of MXene, and thus there are
many possible MXene based hybridization compositions, so the
influence of electrolyte on the performance of MXene hybrid-
ized materials should be studied elaborately for supercapacitor
applications.

4 Conclusion

MXenes, derived from MAX phases, show great promise for
supercapacitor applications due to their high conductivity,
hydrophilic nature, and customizable surface chemistry;
however, issues like self-restacking, oxidation, and limited ion
transport restrict their full potential. By combining MXenes
with carbon materials, conducting polymers, and metal oxides,
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researchers can significantly improve their electrochemical
performance through enhanced charge storage, cyclic stability,
and ion diffusion. Designing MXene-based structures in 1D, 2D,
and 3D formats further optimizes electrolyte access and charge
transport. Despite these advancements, challenges remain in
scaling up production, achieving long-term stability, and
ensuring electrolyte compatibility. Future research should
prioritize developing scalable synthesis methods, innovative
hybridization strategies, and environmentally friendly process-
ing techniques to enable MXene-based supercapacitors to
bridge the gap between high energy and power density, paving
the way for next-generation energy storage technologies.
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