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Introduction to advances in emerging
thermoelectric materials and devices

Krishna Nama Manjunatha, *a Shashi Paul, *a Satyajit Sahu b and
Mona Zebarjadi c

Due to the growing global energy
demand and the increasing adoption of
sustainable and clean energy solutions,
research in thermoelectric generators

(TEGs) has intensified, leading to the
development of novel materials that are
earth-abundant, non-toxic, and produced
at low cost. The direct conversion of heat
into electricity is enabled by thermoelec-
tric materials, which have gained signifi-
cant attention because of their potential
for clean energy harvesting. TEGs have
recently gained popularity mainly due to
their simple device structure and opera-
tion, being lightweight, noise-free and
solid-state (there is no ongoing mainte-
nance as there are no moving parts), and
the possibility to integrate them with

various devices that produce heat as a
by-product. The performance of TEGs is
determined by the dimensionless ther-
moelectric figure of merit (ZT). Organic
and hybrid thermoelectric materials are
becoming increasingly popular because
of their flexibility and low cost of produc-
tion in the near future. These materials
are being explored due to the huge
demand for sustainability using self-
powered devices for applications in wear-
able electronics and IOT devices.1 Cur-
rently, ample research activities are
ongoing to improve the properties of
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TEGs. Some of the strategies used to
achieve high-performance TEGs include
the use of quantum-confinement effects,
point-defect engineering, exploration of
nanocomposite materials, synthesis of
2D composite materials, controlling car-
rier effective mass, and doping. It is
important to mention that the commer-
cially and most widely used TEG material
is Bi2Te3 due to its excellent thermoelec-
tric properties at room temperature.
Other emerging and experimentally stu-
died materials include lead telluride
(PbTe) (ZT = 1.0–2.0), silicon–germanium
(Si–Ge) (ZT = 0.5 to 1.5), skutterudites
(e.g., CoSb3) (ZT = 1.5 to 2), half–Heusler
compounds (ZT 0.5 to 1.5), and tin sele-
nide (SnSe) (ZT = 2.0 to 2.6).2,3 In the
power generation mode, these materials
are used in automotive waste-heat recov-
ery, industrial power generation, deep-
space probes, high-temperature power
generation, and space power generation
(e.g., NASA radioisotope thermoelectric
generators (RTGs)). TEGs are also

proposed for thermal management
(refrigeration, cooling, and thermal
switching) in batteries, high-power elec-
tronics, and medical devices. Although
there have been many advancements,
challenges remain in enhancing the ZT
of non-conventional and non-toxic mate-
rials to levels suitable for widespread
commercial applications that need to be
implemented at room temperature.
Ongoing research focuses on strategies
such as nano-structuring, band engineer-
ing, alternative novel compound materi-
als, 2D layered materials, and the
development of hybrid materials to
overcome current challenges posed by
commonly used bulk thermoelectric
materials. In contrast, recently, silicon
and silicon-based compounds have
gained huge interest in the thermoelec-
tric community. For example, SiGe Ther-
magy modules are already available
for commercial use.3 Nanostructured sili-
con has shown ZT = 0.3.4 In comparison,
silicon nanowires have shown a 100-fold

decrease in thermal conductivity as com-
pared to the bulk silicon, with ZT = 0.6 at
room temperature.5 A newly synthesized
silicon allotrope, Si24, features an intrin-
sic nanoscale porous structure that effec-
tively hinders heat conduction while
maintaining electrical conductivity.6 In
addition, authors have proposed a prac-
tical solution to further reduce the
thermal conductivity of Si24 without hin-
dering the electric conductivity (this is
the most important criterion for obtain-
ing high ZT) by adding guest atoms of
specific size exactly within the pores. Sili-
con nanocomposites with hierarchical
structures, including nanograins, nano-
pores, and metal nanoprecipitates, have
shown ZT 4 0.3 at room temperature.7

2D materials are also contenders for
thermoelectric materials due to their
unique properties that are best suited
for thermoelectricity. Some of their
advances will be mentioned later in this
editorial. This themed collection has cov-
ered the most recent progress in the
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synthesis, preparation, characterisation,
simulations, and properties of emerging
thermoelectric materials to reflect the
need for these materials to be further
explored and used in TEGs for clean
energy applications, especially in con-
verting waste heat to electricity at higher
efficiency.

With the emerging exploration of 2D
materials, borophene has gained huge
interest due to its higher strength-to-
weight ratio. Bilayer b12-phase boro-
phene has demonstrated superior ther-
moelectric properties that have been
theoretically studied for borophene on a
Cu(111) substrate, thus demonstrating
its application as an efficient heat-energy
converter. In this study, authors have con-
cluded that the Cu(111) substrate is more
suitable compared to Ag(111) for wide
range and high temperatures (https://doi.
org/10.1039/D3MA01121F). Another domi-
nant and widely explored 2D material is
graphene, which is a suitable material for
various applications including thermoelec-
tric devices. A recent article has adapted
the well-established Su–Schrieffer–Heeger
(SSH) model Hamiltonian to study the
thermal effects on graphene nanoribbons
(GNRs). Simulations carried out at 0 K
indicate that the bipolarons are stable,
and interestingly 50% (approximately) of
the ensemble states contain stable polar-
ons at higher temperatures. This study
indicates that the next generation of
thermoelectric devices should be able to
manage and control the number and
movement of charge carriers to obtain
more efficient TEGs (https://doi.org/10.
1039/D3MA01181J).

Simulations based on density
functional theory (DFT) have shown
a ZT value of approximately 1.01 for
K2GeMnCl6, 1.00 for K2GeMnBr6, and
0.99 for K2GeMnI6 at room temperature.
The ZT values determined using these
materials are due to their ultra-low ther-
mal conductivity. Thus, halide double
perovskites K2GeMnX6 (X = Cl, Br, I)
exhibit promising ferromagnetic and
thermoelectric properties, making them
suitable candidates for semiconductor spin-
tronics and thermoelectric applications
(https://doi.org/10.1039/D3MA01160G).
Although double-perovskite halides have
shown good power conversion efficiency

in solar cells, recently they have
been studied to find their suitability in
thermoelectric applications. Density
functional theory (DFT) simulations of
these halides (A2YAuI6 (A = Rb, Cs))
have demonstrated potential use in ther-
moelectric applications with ZT values
being very close to ‘‘1’’. These com-
pounds thus provide some insights to
the experimental community to unfurl
the research with these ionic compounds
for applications in thermoelectricity
(https://doi.org/10.1039/D4MA00090K).
First-principles DFT calculations and
Boltzmann transport theory were applied
to study the effect of iodine monochlor-
ide (ICI) doping in single-wall carbon
nanotube (SWCNT) networks. Doping
has significantly enhanced the thermo-
electric power factor of SWCNT net-
works, with an increase from 0.28 to
2.4 mW m�1 K�2. This study clearly
indicated that the ICI intercalation and
filling in SWCNTs effectively improve the
thermoelectric properties (https://doi.
org/10.1039/D4MA00319E). An experi-
mental study on a 60-nm-thick crystal-
line silicon fabricated using a silicon-on-
insulator substrate showed a significant
reduction in thermal conductivity (up to
88% compared to bulk Si and 42% com-
pared to plain Si membranes) at room
temperature. Importantly, a ZT of 0.04 is
shown on the Si membrane, which is
considerably higher than that of bulk Si
(ZT = 0.001) (https://doi.org/10.1039/
D4MA00095A). The growth of a p-type
CuSbSe2 single crystal with the vertical
Bridgman technique resulted in excellent
thermoelectric and optoelectronic prop-
erties, making it a promising material for
renewable energy applications. This
material showed a ZT value of E 0.976
and a power factor of 0.00672 mW cm�1 K�2

at 543 K. Hence, it is worth mentioning
that CuSbSe2 single crystals will be a
promising contender amongst the new
generation of thermoelectric materials
(https://doi.org/10.1039/D4MA00298A).
Another study has interestingly shown
that dual substitutions could hinder the
thermoelectric properties as compared to
single substitution of atoms in Yb4Sb3. A
La and Bi co-substituted Yb4Sb3 com-
pound was synthesised and a detailed
investigation of the transport properties

concluded that the substituted com-
pounds exhibited similar Seebeck coeffi-
cients to the pristine material, but their
resistivity significantly increased. This
further prevented improvement in the
ZT and a maximum value of 0.5 was
measured at 1273 K for the parent
and co-substituted Yb4Sb3 compounds.
Thus, it is clear that more work is
required to further understand and opti-
mise this material before adapting it
for TEG devices (https://doi.org/10.1039/
D3MA00903C). Recent exploration of
thermoelectric materials based on rela-
tively earth-abundant and nontoxic raw
materials has emerged with a new com-
pound, argyrodite (Ag8SiSe6). This mate-
rial was studied in more detail for the
first time and has exhibited n-type ther-
moelectric performance at room tem-
perature. Currently, this material is
highly sensitive to its cooling history,
hence precise control over synthesis con-
ditions is important to achieve good
thermoelectric properties. Quenching
conditions were optimised, and a notable
enhancement in ZT value was observed
and exceeded 0.7. This material further
promises a better alternative to conven-
tionally used Bi2Te3-based compounds
that are used for room-temperature
TEG applications (https://doi.org/10.
1039/D3MA01190A).

In summary, it is very clear that
researchers are exploring various nano-
structuring materials and moving away
from commonly used bulk materials for
thermoelectric applications. All the
efforts are focused towards improving
the Seebeck coefficient and reducing
the thermal conductivity, thus leading
to higher ZT values for making highly
efficient TEGs. At the nanoscale, these
materials exhibit reduced thermal con-
ductivity, hindered heat conduction,
increased phonon boundary scattering,
and reduced phonon mean free paths.
Considering sustainability, toxicity, and
earth abundance, nanostructured silicon
and germanium are the next promising
materials for high-efficiency thermoelec-
tric materials. This themed collection
features the latest research on new and
novel thermoelectric materials and their
uses in thermoelectric generators (TEGs)
for energy harvesting applications. It
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covers novel thermoelectric materials for
TEGs, advanced synthesis, processing,
and characterisation techniques for ther-
moelectric materials, as outlined above.
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