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Separation of iso-butene and iso-butane is vital to producing

high purity iso-butene feedstock, but is challenging because of

their close molecular size and properties. Adsorptive separation

using porous materials like metal organic frameworks (MOFs) is

emerging as a potential energy-efficient alternative. But it's

hindered by the lack of porous materials that exhibit satisfactory

iso-butene/iso-butane separation performance. In this study, a

novel sulfonate functionalized material, ZU-603, is reported to

achieve the benchmark separation performance of iso-butene/

iso-butane via exploiting the geometric difference of the carbon

backbone between the planar iso-butene and tetrahedral iso-

butane. Single-crystal analysis of ZU-603 loaded with iso-butene

and simulation studies reveal that the sulfonate sites bound the

iso-butene via Sδ−⋯Hδ+C interactions, meanwhile iso-butene

molecules are efficiently stacked via π–π interactions within the

confined space, realizing higher stacking efficiency of iso-butene

than iso-butane. ZU-603 shows an exceptionally high iso-butene

adsorption uptake of 2.30 mmol g−1 (298 K, 1 bar) and a record

high iso-butene/iso-butane uptake ratio of 2.77 at 1 bar,

outperforming previously reported benchmarking materials (1.2).

Fixed-bed breakthrough experiments confirm the impressive iso-

butene/iso-butane dynamic separation ability of ZU-603. The

work provides a potential shape-recognition strategy in designing

functional materials for the efficient separation of hydrocarbons

with similar physicochemical properties.

Keywords: Adsorptive separation; Hydrocarbon; Metal-organic

frameworks; Iso-butene/iso-butane; Purification.

1 Introduction

Iso-butene (iso-C4H8) is an important feedstock in the
petroleum industry, which could be utilized in producing
butyl rubber, methyl methacrylate (MMA) and other high-
performance materials.1–4 One of the primary industrial
sources of iso-C4H8 is the catalytic dehydrogenation of iso-
butane (iso-C4H10), the product of which typically consists
of approximately equal mole fractions of iso-C4H8 and iso-
C4H10 isomers due to the limited conversion rate.5–7 To
obtain high purity iso-C4H8 from the mixture, an industrial
practice is to react the mixture with methanol to convert
iso-C4H8 into methyl tert-butyl ether (MTBE).8–10 Then
MTBE is separated from iso-C4H10 and cracked back into
iso-C4H8 and methanol.11 This complicated purification
process may be simplified by the more convenient
technology of adsorption separation.12–14 The potential
application of adsorption separation has been widely
investigated in separating chemicals with similar
physiochemical properties.15–21 The key to adsorption
separation is the design and application of high-
performance porous materials. In recent years, metal
organic frameworks (MOFs) with their extremely variable
pore structures and highly tunable nature have shown
promising application potential in the separation of
hydrocarbon gas mixtures with very close physiochemical
properties,22–26 including ethane/ethylene,27–31 ethylene/
acetylene,32–37 propane/propylene,38–44 C6 isomers,45–48 etc.
HKUST-1 shows preferential adsorption of iso-C4H8 over iso-
C4H10 in the very low-pressure range of 0.5 kPa. However, it
demonstrates negligible selectivity at higher pressures,
limiting its separation performance.49 Other than that, little
attention has been paid to investigating the adsorption
separation of iso-C4H8 and iso-C4H10 using MOFs.
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The properties of iso-C4H8 and iso-C4H10 are very similar,
where the most significant difference lies in the presence of a
CC double bond in the iso-C4H8 molecule. As a result, the 4
carbon atoms of iso-C4H8 are in the same plane while the 4
carbon atoms of the iso-C4H10 molecule form a triangular
pyramid. If this shape difference in the carbon backbone of
the 2 isomers could be utilized to discriminate one another,
the adsorption separation of iso-C4H8 and iso-C4H10 could be
achieved with high selectivity. Shape selective materials have
been developed in the literature for the separation of
butadiene,50 xylene isomers,51,52 etc. A feasible strategy is to
construct pore cages with limited space and suitable shape to
accommodate the desired molecule. The single pore cage of
the material could simultaneously accommodate multiple
target molecules with suitable molecular shape when the
molecules are densely packed. But for the undesired
molecules with inappropriate molecular shape, a single pore
cage could hardly accommodate multiple molecules, realizing
the preferential adsorption of the target molecule.

In this work, a shape-recognizing sulfonate functional
material, ZU-603, was found to be capable of separating the
iso-C4H8 and iso-C4H10 mixture. Pure component adsorption
isotherms show that ZU-603 exhibits higher adsorption
affinity toward iso-C4H8 over iso-C4H10 with an iso-C4H8/iso-
C4H10 uptake ratio of 2.77, superior to previously reported
HKUST-1 (1.2).49 Fixed bed breakthrough experiments further
prove the separation performance of ZU-603. The structures
of single crystals loaded with iso-C4H8 molecules were solved
to unveil the adsorption behavior. Coupled with the DFT-D
simulation, the separation mechanism was revealed.

2 Results and discussion

Mild conditions of ambient temperature and pressure are
utilized for the synthesis of ZU-603, with methanol and water

as solvents. The mild synthesis conditions enable ZU-603 to
be further scaled-up. The Cu metal node is coordinated with
the 4,4′-dipyridyl disulfide ligand to form the pore windows
of ZU-603, with an opening of approximately 5.2 Å × 5.2 Å
(Fig. 1), close to the molecular dimensions of iso-C4H8 and
iso-C4H10 (Fig. S1†). The sulfonate anion,
1,2-ethanedisulfonate, serves as the connecting unit of the
pore windows, which further forms the pore cage (as
illustrated by the orange sphere in Fig. 1) of ZU-603. It's
revealed that the pore cages are connected to form a 2D
layered structure (Fig. S2†). And then multiple 2D layered
structures are stacked together to form the 3D structure
of ZU-603, which endows it with the sql topology (Fig.
S3†). The powder X-ray diffraction patterns of the
synthesized samples match well with the simulated ones,
confirming the high purity of the synthesized materials
(Fig. 2f). Besides, the permanent porosity of ZU-603 is
investigated via N2 adsorption experiments at 77 K (Fig.
S4†), which displays a Brunauer–Emmett–Teller (BET)
surface area of 214 m2 g−1 (Fig. S5†). Thermogravimetric
analysis shows that ZU-603 is stable up to 240 °C (Fig.
S6†). The SEM image of ZU-603 shows a flake-like
morphology with a narrow size distribution in the range
of 0.9–1.2 μm (Fig. S7†).

To explore the adsorptive properties of ZU-603 for iso-
C4H8 and iso-C4H10, pure component adsorption–desorption
isotherms are collected at 298 K and 313 K (Fig. 2a and b and
S8†). It's displayed that ZU-603 shows higher adsorption
affinity toward iso-C4H8 over iso-C4H10 at both temperatures.
At 298 K, ZU-603 exhibits a steep iso-C4H8 uptake at the
pressure as low as 0.003 bar. The iso-C4H8 uptake is 2.30
mmol g−1 at 1 bar. For iso-C4H10, the uptake at 1 bar is 0.83
mmol g−1. The iso-C4H8/iso-C4H10 uptake at 1 bar is 2.77,
higher than that of HKUST-1 (1.2).49 Ideal adsorbed solution
theory was applied to calculate the adsorption selectivity

Fig. 1 The building blocks of the pore window of ZU-603 and the illustration of the pore window. The sulfonate anion is used to connect the pore
window to construct the 3D framework of ZU-603, and the illustration of the pore cage is derived from the assembly of the pore window and the
sulfonate anion. The van der Waals radius of hydrogen (1.1 Å) is deducted when taking the measurements (color code: silver, C; white, H; red, O;
blue, N; yellow, S; pink, Cu; orange, illustration of the space within the expanded pore cage. The components that build a single contracted pore
window and a single expanded pore cage are highlighted in red for clarity).
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(IAST selectivity). At infinity dilution, the IAST selectivity is 39
at 298 K and 14 at 313 K (Fig. 2c and S9 and S10†). It's noted
that ZU-603 not only possesses a very high iso-C4H8 uptake of
2.10 mmol g−1 at 0.5 bar, but also shows the highest iso-
C4H8/iso-C4H10 uptake ratio of 3.33 at 0.5 bar compared with
other reported materials (Fig. 2d): SD-65 (1.29),53 Mg-gallate
(1.27),54 ZU-609 (1.20),55 and HKUST-1 (1.23).49 The time
dependent adsorption profiles of both isomers were further
measured to investigate the diffusion rate of iso-C4H8 and
iso-C4H10 within the pores of ZU-603 (Fig. 2e). The diffusion
time constants of iso-C4H8 and iso-C4H10 were calculated
using the micropore diffusion model, which are 7.42 × 10−4

s−1 and 6.43 × 10−4 s−1 for iso-C4H8 and iso-C4H10,
respectively (Fig. S11 and S12†). The result indicates that
both isomers show a close diffusion rate within the pores of
ZU-603.

Grand Canonical Monte Carlo (GCMC) simulation was
used to elucidate the preferential adsorption of iso-C4H8

over iso-C4H10 at a fixed pressure of 1 atm. Snapshots at
different steps are taken to understand the adsorption
process (Fig. S13 and S14†). The two images compare the
adsorption behaviour of iso-C4H8 and iso-C4H10 in ZU-603
at 1 bar. Iso-C4H8 shows significantly higher uptake, with
dense and progressive filling of the framework cavities from
panel (1) to (10), while iso-C4H10 adsorption remains sparse
even at saturation. This contrast highlights ZU-603's
selective adsorption driven by stronger interactions with the
unsaturated iso-C4H8 likely due to π-complexation or better
shape compatibility. In addition, the low energy snapshot

of iso-C4H8 also shows a higher packing density than that
of iso-C4H10 (Fig. S15†). The average loading of iso-C4H8 is
0.77 molecules per unit cell and iso-C4H10 is 0.21 molecules
per unit cell, yielding an uptake ratio of 3.66 at 1 bar,
which is very similar to the experimental result of 2.77. To
further unveil the higher adsorption uptake of iso-C4H8

over iso-C4H10, the structures of the single crystals loaded
with iso-C4H8 were successfully obtained. It's found that 2
iso-C4H8 molecules could be simultaneously adsorbed
within the same pore cage of ZU-603 (Fig. 3a). This allows
the maximized occupation of the pore space. Further
investigation into the packing diagram of the 2 iso-C4H8

molecules adsorbed reveals the reason behind such a
phenomenon. Due to the double bond of iso-C4H8

molecules, the 4 carbon atoms of iso-C4H8 are distributed
in the same plane, which could be utilized to pack two iso-
C4H8 molecules in a space efficient way. In detail, the 2
iso-C4H8 molecules are stacked in a confined pore cage of
ZU-603 in a way that the aforementioned planes within
each iso-C4H8 run parallel to each other, with a distance of
3.4 Å between the two planes (Fig. 3b). This facilitates the
space-efficient packing of iso-C4H8 in the limited space of
the pore cages within ZU-603, which could not be achieved
by iso-C4H10. The O atoms of the sulfonate anions are the
primary binding site of iso-C4H8, with the C–H⋯O
hydrogen bond in the range of 1.7–2.9 Å (Fig. 3c). DFT-D
calculation was applied to calculate the specific binding
sites of iso-C4H10 within ZU-603. The result show that like
iso-C4H8, O atoms of the sulfonate anions are also the

Fig. 2 Pure component adsorption isotherms of iso-C4H8 and iso-C4H10 on ZU-603 at (a) 298 K and (b) 313 K; (c) iso-C4H8/iso-C4H10 (50/50) IAST
selectivity of ZU-603 calculated in the pressure range of 0–1 bar at 298 K and 313 K; (d) comparison of uptake ratio of iso-C4H8 (0.5 bar)/iso-
C4H10 (0.5 bar) and iso-C4H8 (0.5 bar) uptake of ZU-603 against other reported materials; (e) time dependent adsorption profiles of iso-C4H8 and
iso-C4H10 at 298 K and 0.6 bar; (f) powder X-ray diffraction patterns (PXRD) of the activated sample and pattern simulated using the crystal
structure of ZU-603.
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main binding sites of iso-C4H10, where the C–H⋯O
hydrogen bond is in the range of 2.6–2.9 Å (Fig. 3d).

A fixed bed breakthrough experiment with a gas
mixture of iso-C4H8/iso-C4H10 (50/50, v/v) was carried out
to investigate the dynamic separation performance of ZU-
603. The results show that ZU-603 could selectively adsorb
iso-C4H8 in the binary mixture with a breakthrough
sequence of iso-C4H8 < iso-C4H10. After the introduction
of the gas mixture, both isomers were adsorbed within
the column packed with ZU-603 until 23.5 min, where
iso-C4H10 first elutes. Iso-C4H8 did not breakthrough until
50 min, with an effective dynamic adsorption capacity of
1.06 mmol g−1. The results show a good dynamic
separation performance of ZU-603 for the binary mixture
(Fig. 4a). Cycling adsorption experiments of pure
component iso-C4H8 show no obvious gas uptake loss

after 5 cycles, exhibiting the good cycling capacity of ZU-
603 (Fig. 4b).

3 Conclusions

In summary, a novel sulfonate functionalized
ultramicroporous material, ZU-603, was designed and it
exhibits an excellent iso-C4H8/iso-C4H10 separation
performance because of its selective shape-recognizing ability
toward iso-C4H8 molecules over iso-C4H10. Through
exploiting the CC double bond and the planar
configuration of iso-C4H8, ZU-603 with suitable pore size and
distributed sulfonate functional sites induces the effective
packing of 2 iso-C4H8 molecules within the limited volume of
1 pore cage of the material via Sδ−⋯Hδ+C interactions and
π–π guest–guest interactions. This work not only provides an

Fig. 3 (a) 2 iso-C4H8 molecules adsorbed in one pore cage of ZU-603 as revealed by single crystal analysis; (b) the packing diagram of 2 iso-C4H8

molecules adsorbed within one pore cage of ZU-603 as revealed by single crystal analysis; (c) the specific binding sites of iso-C4H8 on ZU-603 as
revealed by single crystal experiments; (d) the specific binding sites of iso-C4H10 on ZU-603 as revealed by DFT-D calculations (color code: silver,
C; white, H; red, O; blue, N; yellow, S; pink, Cu; orange, C of the adsorbed molecules).

Fig. 4 (a) Breakthrough experiment on ZU-603 using a gas mixture of iso-C4H8/iso-C4H10 (50/50, v/v) with a mix gas flow rate of 0.8 mL min−1 at
298 K and (b) cycling adsorption tests of iso-C4H8 on ZU-603 at 298 K.
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important case of iso-C4H8/iso-C4H10 porous materials with
both high capacity and selectivity, but also demonstrates the
shape-recognizing strategy in the separation of C4
hydrocarbons, which may also be applied in designing high-
performance materials for other challenging separations.

4 Experimental section
Materials

All chemicals were used as received without further
purification. 4,4′-Dipyridyl disulfide (>97%) was purchased
from TCI Chemicals, and 1,2-ethanedisulfonate disodium salt
(98%) was purchased from Energy Chemical. Cu(NO3)2·3H2O
(AR) and methanol (AR) were purchased from Sinopharm
Chemical Reagent Co., Ltd.

Synthesis of ZU-603 (powder)

4,4′-Dipyridyl disulfide (1 mmol, 0.220 g) is dissolved in 20
mL anhydrous methanol, yielding the ligand solution.
Cu(NO3)2·3H2O (0.5 mmol, 0.121 g) and 1,2-ethanedisulfonate
disodium salt (0.5 mmol, 0.117 g) are dissolved in 3 mL
deionized water, after which 10 mL anhydrous methanol is
added to the salt solution. The salt solution is then slowly
added to the ligand solution under constant stirring. The
composite is then stirred for 24 h at 25 °C. The purple
product is obtained by filtration and purified by washing
with 250 mL anhydrous methanol. The product is then
soaked in anhydrous methanol for 3 days.

Synthesis of ZU-603 (single crystal)

Cu(NO3)2·3H2O (0.02 g) and 1,2-ethanedisulfonate disodium
salt (0.02 g) are dissolved in 20 mL deionized water. 4,4′-
Dipyridyl disulfide (0.02 g) is dissolved in 20 mL methanol.
Then the methanol solution is carefully layered onto the
water solution at ambient temperature. The single crystals of
ZU-603 are obtained after two weeks.

Single crystal X-ray crystallography

The crystal structures of ZU-603 and iso-C4H8 loaded ZU-603
are determined by single crystal X-ray diffraction
experiments. The X-ray diffraction experiments are conducted
using a Bruker D8 Venture diffractometer equipped with a
PHOTONII/CMOS detector (GaKα, λ = 1.34139 Å). Data
collection is performed using APEX3, and the dataset of each
sample is integrated and reduced using SaintPlus 6.01. The
space group of the material is determined using XPREP in
APEX3. Structure solutions and refinements are carried out
with SHELXS-201 and SHELXL-2018 with APEX3 for the
samples described above. The CIF file of ZU-603 has been
deposited at CCDC (2453159).

Thermogravimetric analysis (TGA)

The thermal gravimetric analysis is performed on a TGA
Q500 V20.13 Build 39. Experiments are carried out using a
platinum pan under nitrogen atmosphere which is conducted

by a flow rate of 60 mL min−1 nitrogen gas. The data are
collected in the temperature range of 55 °C to 900 °C with a
ramp of 10 °C min−1.

Scanning electron microscopy (SEM)

The morphology of ZU-603 was characterized using a Hitachi
SU-8010 scanning electron microscope.

N2 adsorption measurements

N2 adsorption and desorption isotherms on activated
materials are measured on a Micromeritics ASAP 2460
surface area analyzer at 77 K.

C4 gas equilibrium adsorption measurements

Iso-C4H8 and iso-C4H10 isotherms are collected on a
Micromeritics ASAP 2050 surface area analyzer at 298 K.

Kinetic adsorption measurement

The time-dependent adsorption profiles of different C4
isomers on ZU-603 are measured using a BEL-SORP-max II at
0.6 bar and 298 K or 313 K. For the experiments at the
specified pressure, a fixed amount of target gas is introduced
into the sample chamber, and then the equipment monitors
the pressure in the chamber until it becomes stable.

Breakthrough experiments

The fixed-bed breakthrough experiments and cycling tests are
carried out on dynamic gas breakthrough equipment. All
experiments are conducted using stainless-steel columns with
an inner diameter of 4.6 mm and a length of 10 cm. The ZU-
603 sample packed in the column is 0.8409 g. The packing
density is calculated to be 0.506 g cm−3, which remained the
same after constant N2 purging at 20 mL min−1 for 24 hours.
The gas mixture consists of 1 : 1 mole ratio iso-C4H8, and iso-
C4H10. The column packed with porous materials are
regenerated by purging dry N2 with a flow rate of 20 mL
min−1 at 100 °C overnight.

Grand Canonical Monte Carlo (GCMC) simulation

The gradual packing of iso-C4H8 and iso-C4H10 was
determined through GCMC simulations in the sorption
module. The framework of ZU-603 was first optimized by
DFT-D calculations, and considered to be rigid during the
simulation. The charges for atoms of ZU-603 were derived
from Qeq method and Qeq_charged 1.1 parameters. The
simulations adopted the task of fixed pressure at 100 kPa,
the Metropolis method in the sorption module, the universal
force field (UFF) for ZU-603, and the configurational bias
method in the sorption module. The interaction energy
between the adsorbed molecules and the framework was
computed through the Coulomb and Lennard-Jones 6–12 (LJ)
potentials. The cutoff radius was chosen as 18.5 Å for LJ
potential and the long range electrostatic interactions were
handled using the Ewald summation method. The loading
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steps and the equilibration steps were 1 × 107; the production
steps were 1 × 107.

Dispersion-corrected density functional theory (DFT-D)
calculations

The Quantum-Espresso package is applied for dispersion-
corrected density-functional theory (DFT-D) calculations. The
van der Waals interactions are accounted for by the addition
of semi-empirical dispersive forces to conventional DFT-D.
Vanderbilt-type ultrasoft pseudopotentials and generalized
gradient approximation (GGA) with Perdew–Burk–Ernzerhof
(PBE) exchange corrections are utilized. A cutoff energy of
544 eV and a 3 × 3 × 3 k-point mesh (generated using the
Monkhorst–Pack scheme) are enough for the total energy to
converge within 0.01 meV per atom. The structure of ZU-603
is first optimized and the results are a good match for the
experimentally determined crystal structure of the material.
Iso-C4H10 molecules are then introduced to various locations
of the pore channels, followed by a full structural relaxation.

Calculation of ideal adsorbed solution theory (IAST)
selectivity

The software IAST++ is used for the calculation of IAST
selectivity. Using the Dual-Site Langmuir–Freundlich (DSLF)
model, the adsorption isotherms of iso-C4H8 and iso-C4H10

on ZU-603 at 298 K are fitted. The fitted model parameters
are input into the software to calculate the IAST selectivity at
298 K for an iso-C4H8/iso-C4H10 mixture with a 0.5/0.5
composition ratio. The employed model equation is shown in
eqn (1):

n Pð Þ ¼ q1
k1Pð Þn1

1þ k1Pð Þn1 þ q2
k2Pð Þn2

1þ k2Pð Þn2 (1)

where n(P) is the adsorption amount at pressure P; P is the
equilibrium pressure of the gas phase; q1, q2, k1, k2, n1, n2 are
the fitted constants.

The equation for IAST selectivity is given by eqn (2):

Sads ¼ q1=q2
p1=p2

(2)

where q1 and q2 are the molar amounts of the two
components adsorbed, and p1 and p2 are the partial
pressures of the two components in the gas phase.

Calculation of diffusion time constants

The time dependent adsorption profiles of iso-C4H8 and iso-
C4H10 on ZU-603 are fitted using the micropore diffusion
model,56,57 from which the diffusion time constant Dc/rc

2 of
the gas was obtained. The specific equation is as follows:

qt
qe

≈ 6ffiffiffiffi
rc

p
ffiffiffiffiffiffiffi
Dct
π

r
qt=qe < 0:3
� �

(3)

where qt is the amount of gas adsorbed at time t; qe is the
equilibrium adsorption capacity; qt/qe is obtained from the
instrument; Dc is the diffusion coefficient of a specific gas

component in ZU-603; rc is the equivalent radius of the
adsorbent particles.
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