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Ammonia serves as a viable medium for hydrogen storage owing to its significant hydrogen content and
elevated energy density, and the absence of carbon dioxide emissions during ammonia-to-hydrogen
production has inspired more research on ammonia decomposition. Despite growing interest, a significant
gap persists between the depth of existing studies and the practical approach to on-the-spot hydrogen
generation using ammonia decomposition. The creation of effective and accessible catalysts to feed
ammonia decomposition is a critical step in addressing this daunting challenge. This paper systematically
summarizes four key catalyst design strategies, including size effect, alkalinity modulation, metal-support
interactions, and alloying, informed by experimental and theoretical investigations into ammonia
decomposition. Each strategy's underlying mechanism for enhancing ammonia decomposition is
elucidated in detail. Moreover, the paper categorizes catalysts employed in existing ammonia
Received 6th September 2024, decomposition reactors to guide future catalyst development. The influence of diverse energy sources and
Accepted 20th January 2025 reactor configurations on catalyst performance is also discussed to provide a comprehensive framework

for advancing ammonia decomposition catalyst research.
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1 Introduction and 10 atmospheres. Furthermore, it is noteworthy that

hydrogen production does not result in carbon dioxide
The pressing challenges of global energy and environmental  emissions (Fig. 1a).” Therefore, the process of ammonia
pollution have motivated the international community to  decomposition into hydrogen has garnered increased focus
swiftly advance decarbonization efforts. The contradiction
between the growing global energy demand and the
escalating environmental impact has become more evident,
which highlights the important global demand for clean and
sustainable energy. To transition from fossil fuels to
renewable energy and mitigate the effects of pollution
emissions on the environment, green hydrogen energy serves
as an essential component in the comprehensive
decarbonization of the global energy system. As early as the
mid-twentieth century, liquid ammonia has received
widespread attention as a proven hydrogen energy carrier.?
Ammonia possesses a substantial hydrogen content (17.6
wt%) and energy density (3 kW h kg™) along with the
capability to be stored and transported at room temperature
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Fig. 1 (a) Density comparison of several kinds of hydrogen storage.> Copyright 2023, Royal Society of Chemistry. (b) The four-cornered model

suggesting a hydrogen square.* Copyright 2020, Elsevier.

in recent years. The decomposition of ammonia presents a
viable method for on-site hydrogen synthesis, successfully
mitigating the significant problems associated with hydrogen
shipping and storing that impede the broad adoption of the
use of hydrogen (Fig. 1b).* Although the kinetics and
mechanism of the ammonia decomposition reaction have
been widely and deeply studied at an early stage, there is still
no consensus on many important issues. In particular, the
structure-sensitive nature of ammonia decomposition leads
to different reaction mechanisms under varying conditions
and catalysts, which seriously limits the continuous
development, design, and application of the corresponding
catalysts and reactors.
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Ammonia decomposition, as a reversible process of the
ammonia synthesis reaction, also shares common features in
the application of catalysts. Nowadays, iron nitride,” Ru/
CNT,® and Ni-CeO, (ref. 7) catalysts for ammonia synthesis
by photo/electro/plasma catalysis at room temperature and
ambient pressure are also relevant in the field of ammonia
decomposition. Among them, the noble metal Ru-based
catalysts are recognized as the optimal catalysts with high
activity especially at low temperatures (below 500 °C).® Ru,
the most studied element in ammonia decomposition
catalysts, has been shown to achieve optimal exposure of Bs
sites with particle sizes ranging from 2 to 3 nanometers.” "
This finding underscores the significance of precise particle
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size control in optimizing the reaction effectiveness in Ru-
based materials towards ammonia decomposition. These
types of catalyst design methods have a substantial influence
on the -catalytic performance of the target ammonia
decomposition catalyst. Rational design of ammonia
decomposition catalysts is one of the cornerstones to
achieving efficient ammonia decomposition for hydrogen
generation. However, the design and development of new
ammonia decomposition catalysts have not been summarized
in the literature.

In this review, several major catalyst design strategies are
summarized from the perspective of catalyst design and
development, including size effect, alkalinity modulation,
metal-support interaction and alloy effect. The microscopic
modulation mechanisms and mechanisms involved in each
design strategy are also elaborated in detail. In addition, the
applications of the catalysts in industrial reactors are also
summarized. This review is intended to assist in the design
and development of catalysts and reactors for hydrogen
production from ammonia decomposition.

2 Ammonia decomposition catalysis
technologies

Similar to ammonia synthesis technology, the catalytic
technologies for ammonia decomposition mainly include
thermal, photothermal, electrocatalytic, photoelectrocatalytic
and microwave catalytic technologies. Among them, thermal
catalysis is one of the many technologies widely studied
because of its strong stability and industrialization basis.
According to the results of the thermodynamic equilibrium
theory of ammonia decomposition reaction, high
temperature and low pressure are the necessary factors to
realize the high decomposition rate of ammonia, which can
reach 99% at 400 °C and ordinary pressure, but the
temperature is as high as 700 °C if ammonia is to be
completely decomposed.’® In addition, due to the influence
of external factors and the dynamic equilibrium of the
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reaction, the actual thermal catalytic method to realize the
ammonia decomposition process often requires higher
temperatures. Therefore, the rationalization of ammonia
decomposition catalysts will effectively improve the
decomposition efficiency and reduce energy consumption.
Gong et al. prepared a series of nickel-based catalysts based
on zeolite Y with different cationic types and achieved 98%
NH; decomposition at 600 °C."* Han et al used Co
nanoparticles modified with dual structural constraints of
LaCoO, to achieve nearly 100% ammonia decomposition at
600 °C."* Whereas ruthenium-based catalysts tend to show
better low-temperature catalytic activity than other ammonia
decomposition catalysts, e.g, Ru/CeO,NR achieves a
decomposition of 91.29% at 450 °C, but it fails to achieve
complete decomposition at 500 °C or even higher
temperatures corresponding to decomposition greater than
99%."> Among the many literature reports, Fang et al. used
Ru/MgO(111) to thermally catalyze ammonia decomposition,
which can achieve full decomposition at about 450 °C
(Fig. 2a and b),'® which is the best performance achieved by
a single thermally catalytic technology in the field of
ammonia decomposition at present.

Typical microwave-assisted breakdown of ammonia with
iron-based catalysts becomes analogous to the minimal
degradation  temperatures documented for thermal
catalysis.'® There is a growing interest in utilizing microwave
field conditions to stimulate various catalysts to feed
ammonia decomposition under lower temperatures. Through
continuous refinement of the catalyst support and active
components, a hybrid packing comprising Ni@Al,O3;-carbon
has achieved a remarkable decomposition efficiency of 99%
at 400 °C in a pure ammonia stream.'® Compared with
conventional thermal catalysis, microwave catalysis can
achieve significantly higher decomposition values due to
selective heating and also provides an important basis for
advancing the practical application of ammonia

decomposition. In addition, the photothermal synergistic
catalysts

technology on SA-Co/CeO, showed ammonia
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Fig. 2 Hydrogen diffusion over (a) Ru/MgO(111) and (b) Ru/MgO(100) exhibits distinct characteristics.*® Copyright 2023, Nature Publishing Group.
(c) lllustration of the cooperative action of charge carriers and photo-induced thermal energy in accelerating the removal of ammonia on Ru NPs/

GaN NWs/Si."” Copyright 2024, Nature Publishing Group.

© 2025 The Author(s). Co-published by the Institute of Process Engineering,

Chinese Academy of Sciences and the Royal Society of Chemistry

Ind. Chem. Mater., 2025, 3, 311-331 | 313


http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d4im00112e

Open Access Article. Published on 28 de gener 2025. Downloaded on 11/2/2026 17:38:18.

Thisarticleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

(cc)

Review

decomposition performance with a H, production rate of 29.1
mmol g min™" at 450 °C.*° Li et al. demonstrated that 0.15
mmol ecm™ h™ hydrogen was produced at 270 °C under natural
light irradiation and an external heating system (Fig. 2c)."”
Existing photothermal synergistic technologies use a certain
mass fraction of ammonia solution as the ammonia feedstock,
so there is still much room for development in the estimation of
the actual decomposition rate and subsequent applications.

Ammonia decomposition technologies related to
electrocatalysis are broadly divided into two directions: the
advancement of ammonia decomposition in conjunction
with fuel cells and the development of more efficient low-
temperature catalytic methods. Ammonia-fueled solid oxide
fuel cells (SOFCs) can achieve more than 90% ammonia
decomposition at temperatures above 700 °C.>' The NHj
decomposition rates of four low-cost metals as SOFC anodes
were investigated by Zheng et al?®> Lim and colleagues
employed Cs enhanced Ru/CNT as a thermal decomposition
catalyst to build CsH,PO, mixed on carbon black into an
electrochemical cell, obtaining a hydrogen generation rate of
1.48 moly, gear - h™' at 0.4 V bias and 250 °C.*> SOFCs
applied to NH; decomposition will facilitate faster
achievement of ammonia-hydrogen hybrid engine goals.
Luczak et al. achieved a hydrogen production rate of 6.2 kgy,
100 kg™' solution at 20 °C by electrocatalytic ammonia
decomposition using a nickel-based catalyst.>* Dzibelova
et al. demonstrated that 2D hexagonal ferrite alloys
impregnated with Ru can absorb visible light and synergize
electrochemical properties to achieve a small amount of
hydrogen production from NH,; decomposition at 24 °C.*®
These results show a trend toward lower temperature and
even room temperature for ammonia decomposition, but
how to maintain an efficient hydrogen production rate at
lower temperature remains a difficulty to address. Because
different catalytic technologies transfer energy in different
ways, their catalyst types and catalytic efficacy are also
different (see Table 1 for a full comparison). Either way, the
advancement will be more favorable to the practical
application of ammonia decomposition.

3 Theoretical studies on ammonia
decomposition

of ammonia
research is

In order to promote
decomposition, relevant

the development
basic theoretical
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indispensable. However, different catalytic technologies and
catalysts have important influences on the catalytic process
of ammonia decomposition, and thus a completely unified
mechanism of ammonia decomposition has yet to be formed.
For photocatalytic and electrocatalytic technologies, the
existing studies have used aqueous ammonia solution as the
ammonia source, and supplemented with NaOH and other
modifiers to participate in the decomposition reaction, which
makes the intermediate process of the reaction more
complicated and the study of the mechanism more difficult.
On the other hand, thermal catalytic technology, as a
relatively stable and mature technology in the field of
ammonia decomposition, involves only a gas—solid reaction
in the reaction process, which also better reflects the reaction
characteristics of NHj;. Therefore, we will focus on the

theoretical study of thermally catalyzed ammonia
decomposition.

3.1 Mechanism of ammonia decomposition

Thermally catalyzed NH; decomposition for hydrogen

generation exemplifies the reaction characteristics associated
with ammonia decomposition, which is a relatively simple
reaction system with weak overall heat uptake and volume
increase. Recent research indicates an amount of H,
suppresses the process. Hence, the reactivity rate is
contingent upon the concentrations of ammonia and
hydrogen.>® However, since the kinetics of the single-step
reaction varies with the reaction factors, including reaction
temperature, reactant coverage across the catalyst surface,
and overall catalyst itself, the rate-controlling step of the
reaction also varies with the reaction conditions.”” At present,
two primary mechanistic models, Tamaru and Temkin-
Pyzhev, developed for ammonia decomposition
processes.

The Tamaru mechanism was obtained under the
assumption that NH; adsorption and N, desorption are
jointly the rate-controlling steps of the reaction, and the
reaction rate equation was obtained as:*®

were

r = kpg, kpt, kpk, (1)

where «, f and y represent the numbers of reaction stages («
>0,  and y <0), k is the reaction rate constant, and Py, Py,
and Py, are the partial pressures of NH; H, and N,
respectively. Normally the reaction is a zero-level reaction for

Table 1 Summary of different technologies and ammonia decomposition performance

Catalysis technology Catalyst Reaction temperature ~ NH; conversion
type Catalyst support (°C) (%) H, production Ref.
Thermal Ni-based catalysts Zeolite Y 600 98 — 13
Ru-based catalyst CeO, 450 91 — 15
MgO 450 100 — 16
Microwave Ni@Al,O4 Carbon 400 99 — 19
Photothermal Ru NPs/GaN NWs/Si 270 — 0.15 mmol cm ™ h™* 17
Electrochemical Ni-Cu catalyst Nickel felt 20 — 6.2 kgyy, 100 kg " solution 24
Photoelectrochemical =~ RuO, nanoparticles 2D hematene 24 — ~28 mmol H, mg™" 25
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N, and H,, so the reaction rate is related only to the partial
pressure of ammonia and the reaction rate equation can be
written as:

1= kpyu, (2)
The Temkin-Pyzhev mechanism posits that nitrogen atom

binding desorption is the controlling step, and the resulting
kinetic expression for the reaction rate is:*

. PIZ\IH3 ! Pn, p?—IZ 7
r==k 3 - 5 (3)
Ph, kep P,

The reaction constant k can be estimated using the Arrhenius
equation:
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k= ko x e /KT (4)

where r is the reaction rate, k is the reaction rate
constant, Py, Py, and Py, are the partial pressures of
NH;, H,, and N,, respectively; f is a constant related to
the surface of the catalyst, k, and E, are the pre-finger
factor and the activation energy, respectively; R is the gas
constant (8.314 kJ mol™" K'), and T is the reaction
temperature.

The first term in eqn (3) is the rate of the NHj
decomposition reaction, with N, exerting no influence on the
reaction, so the effect of N, partial pressure can be ignored;
the subsequent term denotes the rate of ammonia synthesis,
which occurs minimally and thus may be neglected.
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Fig. 3 Determining the exact order of reaction for (a) N5, (b) NHz, and (c) H, using kinetics graphs.®* Copyright 2023, Elsevier. (d) Results from a
mathematical model of ammonia decomposition on 2.5Ni0.5Ru/CeQ, under different temperatures and interaction periods with dry ammonia.*?

Copyright 2021, Elsevier.
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Consequently, the Temkin-Pyzhev model is able simplified
toward the following equation:*°

-E, "
= ko exp( e i (@ > 0.5 < 0) 5)

where a and f are the reaction levels of NH; and H,,
respectively, where the reaction level of H, is negative,
indicating that H, inhibits the ammonia decomposition
reaction.

He et al. developed a bimetallic Ni,Co;,-,/CeO, ammonia
decomposition catalyst suitable for medium temperatures
(700 °C), and their kinetic studies showed that the ammonia
decomposition reaction on the catalyst's surface followed the
Temkin-Pyzhev mechanism, and the related kinetic
calculations are shown in Fig. 3a-c.*"

However, the actual reaction mechanism during NH;
decomposition for hydrogen production still cannot be fully
elucidated by a particular mechanism. Oyama®? investigated
the kinetic mechanism of the ammonia decomposition
reaction on vanadium nitride, noting that the kinetic
variations were attributed to the switch of the Temkin-Pyzhev
mechanism to the Tamar mechanism with increasing
temperature. Lucentini showed that the adsorbed ammonia
dehydrogenation reaction constituted the rate-controlling
step of the ammonia decomposition process on Ni-Ru/CeO,
by using a kinetic model for evaluating the hydrogen
generation rate across various operating conditions (the
corresponding calculations correspond to Fig. 3d).>* A lot of
literature explores the influence of various ammonia
decomposition catalysts (including supports and promoters)
and reaction factors (such as temperature and pressure) on
reaction kinetics®>*® and indicates that the decomposition is
influenced by reaction temperature and reactant surface
species, which poses a challenge to the development of
related catalysts and reactors.
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3.2 Theoretical calculations reveal ammonia decomposition

Ammonia synthesis catalysts are often referenced in the
design of NH; decomposition materials. However, highly
active ammonia decomposition catalysts are not correlated to
the best ammonia synthesis catalysts. Consequently, the
creation of high-performance ammonia decomposition
catalysts is inevitably dependent on the theoretical
calculations that shed light on the reaction mechanism.
Logadottir and others proposed a methodology to explain the
movement between ammonia synthesis catalysts' ability and
transition metal catalysts.>” Because the equilibrium state for
its primary surface components and the activation energy of
the rate-controlling step are determined by the free
chemisorption energy, which has a linear relation via the
Brgnsted-Evans-Polanyi connection, the metal's activity in
ammonia synthesis is determined by this energy. Since the
model is in line with the microscopic reversibility principle,
it might have been utilized to analyze the ammonia
decomposition trend at concentrations higher than the
equilibrium value. For ammonia production and ammonia
decomposition circumstances, Fig. 4a shows the trend
forecasts (volcano curves) based on this model.*® To further
demonstrate the model's applicability to ammonia
decomposition reactions, kinetic checks were performed
experimentally and theoretically by calculating the kinetics of
the reaction in combination with different ammonia
decomposition catalysts. These findings obtained from
calculations based on density functional theory (DFT) are
presented in Fig. 4b. The results obtained from DFT
calculations were plotted as a function of ammonia
decomposition rate and nitrogen binding energy for different
monometallics.*® The volcano plots show that ruthenium
metal has the best performance. In contrast to the volcano
curves used for ammonia synthesis, the best decomposition
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(a) The ammonia decomposition turnover frequency is depicted as a function of the free N, adsorption reaction energy at 0.02, 20 (dashed

line), and 99% decomposition at circumstances of 773 K, 1 bar, and a 3:1 H,/N; ratio. (b) Rates of ammonia decomposition were experimentally
determined for different catalysts at a temperature of 773 K, with a pressure of 1 bar, a hydrogen-to-nitrogen ratio of 3:1, and an ammonia
concentration set at 20%.>® Copyright 2005, Elsevier. (c) An arbitrary metal catalyst's Fermi level in relation to the ammonia decomposition
reaction rate. On each side of the rate maximum are the antibonding LUMOs of ammonia and nitrogen species that have been adsorbed. The rate-
limiting step is RLS.** Re-drawing from ref. 41. Copyright 2020, American Chemical Society.
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catalysts are those with weaker nitrogen binding, and
similarly, the optimal position for the volcano curves in NH;
decomposition is significantly influenced by the reaction
circumstances. In addition, it can be seen that it is necessary
to employ catalysts of different nitrogen binding energies
toward optimum ammonia decomposition.*® The theoretical
and computational studies establish a foundation for
continued in-depth investigation of NH; decomposition
reactions and the design of their corresponding catalysts.

The literature identifies two potential rate-limiting steps
in ammonia decomposition: NH; adsorption and N,
desorption, both affected by the catalyst's metal composition
and process parameters.** The N, desorption step is the one
that limits the rate at low temperatures.*®> Based on this,
when designing a catalyst for ammonia decomposition, the
right metal-N-binding energy is a crucial factor.** The
equilibrium fraction of the adsorbed material in various
chemisorption states is contingent upon the energy
differential caused by the Fermi level of the catalyst and the
antibonding LUMOs of the adsorbate. The reaction rate
demonstrates the correlation between the Fermi level and the
volcanic profile. The rivalry among the exponential term of
the catalyst Fermi level separation and the antibonding
LUMO of adsorbed NH; and N, is illustrated by the volcano
profile of the Fermi levels across several metals. Fig. 4c
provides a simple illustration; a downward shift of the Fermi
level traversing the antibonding LUMO of ammonia favors
strong adsorption of ammonia molecules, whereas an
upward trend approaching the antibonding LUMO of N,
promotes the desorption of neutral ZN,° species.*' Obviously,
the Fermi energy level alignment of the catalyst is optimal
amid the antibonding LUMO state of NH; and N, adsorbed
species. This location can anticipate the rate-determining
step and the predominant surface species; the left side of the
center leads to the constraint in N, desorption, while the
right side of the center points to the limitation in NH;
adsorption. It aligns with the traditional qualitative Sabatier

Ni(110) §

Adsorption Energy (eV)
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principle and the quantitative theoretical findings about
optimum binding energy suggested by Negrskov and
associates.*

With the continuous improvement of theoretical models,
more and more studies have been conducted to reveal the
reaction mechanism of NH; decomposition on specific
catalysts using theoretical calculations. Duan et al
thoroughly examined the reaction mechanism of NH;
decomposition on the close-packed surfaces of late 3d
transition metals, utilizing DFT as the primary theoretical
tool. This investigation specifically focused on the Fe(110),
Co(111), and Ni(111) surfaces, where they determined the
adsorption geometries and corresponding adsorption
energies of the intermediates involved in the NH;
decomposition process. The precise configuration of these
intermediates and their energetic interactions with the
surfaces are illustrated schematically in Fig. 5a, providing a
clear visual representation of the wunderlying chemical
phenomena.’® Fang et al demonstrated through a
combination of experiments and DFT calculations that Ru on
polar MgO(111) has a strong metal-carrier interaction that
inhibits hydrogen poisoning of the Ru surface during
ammonia decomposition, leading to better heterolytic NH;
activation and facilitating N-N recombination (as shown in
Fig. 5b), with a catalytic activity that is at least four times
higher than that of the (100) and (110) surfaces at a low
temperature of 450 °C."® Notably, this supported surface can
produce atomically dispersed Ru, which outperforms Ru
nanoparticles in NH; decomposition. Pathak and colleagues
thoroughly elucidated the electronic nature of the catalyst
through rigorous first-principles calculations involving Bader
charge, density of state (DOS), and crystal orbital

Hamiltonian population (COHP) calculations. Their findings
revealed that the incorporation of Mo dopants onto the
surface of Fe3N(111) results in a notable transfer of electrons
to the surface, thereby profoundly modifying the overall
catalytic

electronic landscape of the material. This

g
A2

—_—111 =

-18.0

INH,*  2NH,*+2H* 2NH*+4H*  2N*+6H* -N-N-+6H* -N,+6H* 6H*+N,(,

Fig. 5 (a) Fe(110), Co(111) and Ni(111) surfaces exhibit the most stable NH, (x = 0-3) and H adsorption arrangements.*® Re-drawing from ref. 46.
Copyright 2012, Elsevier. (b) At MgO-supported twin Ru single atoms, energy patterns and their related optimized intermediate structures for
ammonia decomposition and N-N recombination routes to generate N, are shown.® Copyright 2023, Nature Publishing Group.
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comprehensive investigation provides a deep understanding
of the electronic interactions and structural modifications
induced by Mo doping, offering valuable insights into the
catalytic performance and potential of the modified Fe;N
system. The activation energy of the intermediate step of NH;
decomposition on the Mo-doped Fe;N surface is greatly
reduced compared with that of the undoped Fe;N."
Combined with theoretical calculations, the effect of the
microscopic changes on the catalyst surface and the rapid
control step on the overall reaction rate of the ammonia
decomposition reaction can be further clarified, which also
provides guidance for the rational and effective design and
development of ammonia decomposition catalysts.

4 Design of ammonia decomposition
catalysts

Based on the above characteristics of the NH; decomposition
reaction, how to design and develop efficient ammonia
decomposition catalysts has become one of the urgent
problems. The existing catalysts for ammonia decomposition
are summarized and sorted out, which can be roughly
classified into four main catalyst design strategies: size effect,
alkalinity modulation, metal-support interaction, and alloy
effect (Fig. 6). The following subsections are a detailed
description of each strategy in the context of the existing
literature.

4.1 Particle size effect

It is widely acknowledged that the decomposition of
ammonia is a microstructure-dependent reaction, wherein
extensive experimental and theoretical investigations have

N
Fig. 6 Design strategies for ammonia decomposition catalysts.
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elucidated the pivotal roles played by the particle sizes of
both the metallic active phase and the supporting carrier in
modulating the kinetics and mechanisms of the NH;
decomposition process.*** As the most active metal in the
NH; decomposition process, Ru has been experimentally and
theoretically demonstrated to have a size effect, with the Ru
Bs-type site being the main active site and the Ru size being
no larger than 5 nm (generally 2-3 nm is dominant).>® For
the transition metal Fe, it has also been demonstrated that
smaller particle sizes are favorable for aminolysis.”* For the
transition metal Ni, it has been demonstrated that smaller
particle sizes are favorable for ammonia decomposition, and
DFT calculations have consistently verified the existence of a
close relationship between the particle size and the reactivity
of transition metals (Fig. 7f).>> In addition, there are relevant
theoretical and experimental studies reporting the size effect
of multicomponent nanoparticles of commonly used
transition metals, such as NiCo, FeMo, CoMo, etc.>*

Not only that, the morphology and size of the carrier also
bring significant effects on the overall activity of NH;
decomposition catalysts.”” Specifically, when MgAl,O, is
utilized as the carrier, the reduced particle size of Ru on Ru/
MgAl, O, significantly enhances the exposure of the Bs site of
Ru, thereby favoring catalytic activity (Fig. 7a and b).**
Furthermore, the utilization of the ion exchange method for
depositing nano- and sub-nano-sized Ru particles within
molecular sieves with precisely designed pore size structures
results in size-controlled Ru particles that demonstrate
exceptional catalytic activity (Fig. 7e).>® Additionally,
confining Ru within the 13X zeolite structure further
amplifies its catalytic performance.”® In  parallel,
experimental studies on microencapsulated reactions
involving nanoparticles encapsulated in a Ni-Ru core-shell
structure have also highlighted the influence of carrier
morphology on the size effect, emphasizing the significance
of these factors in optimizing catalytic performance.’® The
same size effect was observed in transition metal oxides
when employed as stand-alone catalysts. For instance,
alumina particles with a size of 1 mm exhibited a larger
surface area, leading to an increased residence time for
ammonia decomposition, thereby enhancing catalytic
performance (Fig. 7c and d).>* The size effect in the design of
ammonia decomposition catalysts converges the two key
strategies of spatially confining domains and crafting
interfaces. Moreover, it offers a pivotal reference point for the
design and innovation of analogous catalysts tailored for the
catalysis of small-molecule gases, thereby advancing the field
towards more efficient and targeted catalysis.

4.2 Adjustment of alkalinity

Alkalinity enhancement of a material's surface can often help
to enhance its ability to donate electrons. Therefore,
increasing the surface alkalinity of catalysts is beneficial to
modulate the electronic states around their reactive centers.
The most typical method for modulating the surface
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Fig. 7 (a) Ru/MgAl,O,4 and (b) Ru/SisN,4 are shown in TEM pictures.>* Copyright 2000, Elsevier. Images of the catalytic reactor featuring alumina:
(c) the particle dimension of Al,O3 is 1 mm, (d) the particle dimension of Al,O3 is 2 mm.>® Copyright 2020, Elsevier. (e) Diagram showing extremely
monodisperse nano- and sub-nano-Ru particles trapped in base-exchanged zeolite \ A Copyright 2021, Elsevier. (f) The Nijg, Nigq, Nigs and Nijge
nanoclusters’ most stable combinations and the stability of those configurations.> Re-drawing from ref. 52. Copyright 2017, Elsevier.

alkalinity of ammonia decomposition catalysts is alkaline
doping. Among them, the most c