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Local infrared spectral measurement system for
the inspection of independent nano-plastic
particles in water-based solutions†

Ikuna Kanehara, *a Tatsuhiro Nagasaka,‡b Hirofumi Seki,‡b Sho Fujii,‡c

Tsuyoshi Kimura, ‡d Masaya Yamamoto ‡e and Tadao Tanabea

This study proposes a new method of bubble accumulation that enables the capture of individual

nanoparticles diluted in water-based solvent and the evaluation of the shape and local infrared spectra of

each independent nanoparticle. We have demonstrated this system using nanoparticles of defined size

generated by nano-second laser ablation. Following a process of concentration of microbubbles, we have

been able to analyze the material properties of individual nanoparticles by AFM-IR. The AFM images and IR

spectra results indicate the presence of independent nanoparticles, and the IR spectra showed that the

particle size is considered to decrease as the oxidation reaction progresses. This system approach for the

concentration and analysis of nanoparticles can particularly contribute to bio adaptation research, since the

identification of the physical properties of nanoparticles can provide a better understanding of the

environmental/biological effects and relationships, the mechanism of nanoparticle aggregation and the

interatomic forces between particles.

1 Introduction

Currently, methods for the identification of micro-plastics
(MPs, 1 μm–5 mm in size)1,2 floating in the ocean can

misidentify these as phytoplankton or seaweed. When
ingested by sea-life, such MPs can bioaccumulate through
the food chain, with the potential for chronic health
effects on apex predators.1–29 Whilst a great deal of
research around the world has studied the interaction of
MPs with biological systems, their toxicity, the formation
mechanisms, and an understanding of the biological
effects and nano-physical properties of nano-plastics (NPs,
1 nm–1 μm in size),2,14–16 which are much smaller in size
than MPs, are not fully understood. Further research on
NPs needs to be conducted as soon as possible. However,
it is difficult to collect NPs dispersed in nature, and to
measure and analyze their morphology and material
properties. Therefore, in order to advance our
understanding of biological effects in NPs, it is necessary
not only to artificially create model samples of dispersed
NPs,3–6 but also to clarify the physical and chemical
properties of individual artificially created NPs.
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Environmental significance

Currently, micro-plastics floating in the ocean are misidentified as phytoplankton or seaweed and bioaccumulated through the food chain, potentially
causing chronic health effects on apex predators. The biological effects and nanophysical properties of nano-plastics, which are much smaller in size than
micro-plastics, are not well understood. It is also difficult to measure and analyze the morphology and physical properties of nano-plastics collected from
nature. For low molecular weight polyethylene with nano-sized particles whose size is defined by laser ablation, this study reports on the analytical
processing design to provide the accumulation of nano-plastics diluted in water-based solvents and evaluation of their individual IR spectral properties.
Identifying the physical properties of nanoparticles could be one means of solving environmental problems through a better understanding of
environmental and nanotoxicology and relationships, aggregation mechanisms, and interatomic forces between particles.
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i) Preparation of nanoparticles: many studies have used
polystyrene nano-plastics (PS-NPs, monodisperse, smooth and
spherical in morphology) for applied studies of interactions with
biological systems and toxicity.4,17,18 However, because of their
different properties from other polymers, and because they
differ significantly from the rough surfaces and irregular shapes
of their natural counterparts, these PS-NPs lack relevance to the
environment and cannot represent realistic NPs in the
environment.4,17,18 In addition, the presence of solvent residues,
surfactants, and impurities make it inappropriate to use NPs
produced by liquid-phase synthesis or pulverization for applied
studies of interactions with biological systems and toxicity.3 In
contrast, it is becoming possible to use laser ablation to produce
model samples of NPs that are artificially dispersed in nature,
free of solvent residues, surfactants, and impurities. Magrì
(2018) et al. performed nano-second laser ablation (irradiation
wavelength 248 nm, pulse duration 20 ns, repetition frequency
20 Hz, Coherent-CompexPro 110) on a commercial PET film
(Goodfellow Cambridge Ltd) in Milli-Q water under an
irradiation fluence of 4.5 J cm−2 and with an ablation area of 4
cm2. The average particle size of the generated PET-NPs was
26.7 ± 14.2 nm.6 It is also becoming clear that the conditions
under which laser ablation is performed can control the particle
size.3 Kanehara (2023) et al. performed nano-second laser
ablation (irradiation wavelength 266 nm, pulse duration 12–15
ns, repetition frequency 10 Hz, Lotis Tii LS-2134D) on a reagent
LDPE film (Sigma-Aldrich Co. LLC) in ultra-pure water under an
irradiation fluence of 8.0 mJ cm−2 for 0.5–1.5 h on a 0.023 cm2

area. As a result, it was found that the longer the laser
irradiation time, the smaller the particle size of NPs in the
generated LDPE.3 Typical concentrations of micro/nano plastics
in the environment range from a few dozen of particles m−3 30 to
more than 1000 particles m−3,31,32 but the concentration of the
model nanoparticles produced is only 108 particles per ml,3

which is not sufficient for the particle concentration needed to
measure biotoxicity and bio immunity.33,34

ii) Collection: concentration by centrifugation methods is
not applicable due to the possibility of condensation,
transformation, and non-dispersibility of the fine particles. In
addition to centrifugation methods, other NP collection
methods include membrane filtration, field flow fractionation,
cloud point extraction, pressurized fluid extraction, alkali-
assisted thermal hydrolysis,18 and emulsions,19 but none of
these methods are suitable for NPs extraction because of the
difficulty of separating and identifying NPs from sand and
organic contaminants20 (see the ESI† for the advantages and
disadvantages of each method for collecting nanoscale plastic
particles (Table S1†)). Although the dilute state is not suitable
for measurement, the dilute state makes it possible to evaluate
a single particle. It is expected that Marangoni convection
created by bubbles could be used to properly analyze fine
particles.35–37 The study has reported that marine nano-samples
are actually concentrated and accumulated at the microbubble
interface by inducing Marangoni convection through the
generation of microbubbles by focused laser heating at the
interface between the substrate and the sample solution.38

iii) Physical and chemical analysis: for the evaluation of NPs,
a standard physical property evaluation such as shape
observation by electron microscopy, average particle size
evaluation by DLS, chemical characterization by Raman
spectroscopy, and acquisition of infrared spectra of aggregated
nanoparticles by FTIR are mainly studied.19–21 However, these
physical and chemical analysis methods are limited in their
ability to characterize the presence of such particles in liquid
samples22–26 (see the ESI† for the advantages and disadvantages
of each method for visual and spectral analyzing nanoscale
plastic particles (Table S2 and S3†)). Ecological studies using
micro- and nanoparticles of polystyrene (PS), which are easy to
fabricate with uniform particle size and shape, have been
conducted worldwide,26–29 and PET-NPs, a crystalline plastic
other than PS, has only been found to pass through intestinal
epithelial cells.6 Thus, studies on the aggregate and standard
physical properties of particles and their biological effects have
been initiated, but the physical properties of individual NPs
themselves remain unexplored. Although IR spectroscopy has
been widely used to evaluate the physical properties of
polymers, it is difficult to evaluate the chemical properties of
nanoparticles due to the limitation of spatial resolution, which
only provides an average IR spectrum for many particles with a
spatial resolution of several micrometers or more. Recently,
however, AFM-IR has been developed as a nano IR spectroscopy
method by Dazzi et al.39–43 AFM-IR is a technique in which light
from a tunable infrared laser is irradiated onto a localized
region of a sample and the resulting amplitude change in
photothermal expansion of the sample is measured using the
cantilever of an atomic force microscope to obtain IR
absorption spectra and absorption images of individual
independent particles with a spatial resolution on the 50–100
nm scale.39–45 Although the concentration of NPs produced by
laser ablation is highly dilute and needs to be concentrated, the
physical properties of individual NPs can be potentially
evaluated by allowing independent particles to accumulate
without aggregation on the prism used in AFM-IR.

As yet, the processes involved in this study have been
developed independently and have not been optimised as a
complete method. This study proposes and demonstrates a
new method to evaluate NPs to measure the shape and local
infrared properties of concentrated nanoparticles by adapting
bubble accumulation, as shown in Fig. 1. Our method realizes
the capture of individual nanoparticles diluted in solvent and
will be available for the study of biological effects. Once the
physical properties of the nanoparticles themselves are
clarified, a better understanding of the environmental and
biological effects and relationships, the mechanism of NP
aggregation, and the interatomic forces between particles can
be promoted based on the correct nanoparticle properties.

2 Experimental

In order to develop a new method that can evaluate the local
infrared spectral properties of nanoparticles by adapting
bubble collection, three processes need to be optimised.
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Firstly, appropriate nanoparticles need to be produced by
nano-second laser ablation. The conditions we have used are
shown in Table 1. A double pulsed Q-switched Nd:YAG laser
(Irradiation wavelength 266 nm, Pulse duration of 12–15 ns,
Repetition rate of 10 Hz, Lotis Tii LS-2134D) is used. It
consists of two independent Nd:YAG lasers pumped by a
single flash lamp. A 500 μm thick LDPE film sample (Aldrich
LDPE (melt index 25 g/10 min (190 °C/2.16 kg)), Sigma-
Aldrich Co. LLC) is fixed inside a quartz glass cell filled with
ultrapure water (18.2 MΩ cm, Simplicity UV). There, a laser

beam with a UV wavelength of 266 nm is irradiated for 1 h
on the LDPE film sample, and NPs are produced.

In the second process, the NPs produced by nano-second
laser ablation in the above are concentrated to analyze the local
chemical properties of one particle using microbubbles and
placed one particle at a time on a zinc selenide (ZnSe)
substrate.46 Normally, ITO substrates are applied. The laser-
induced microbubbles on the Au film (10 nm) or ITO substrate
were formed with 1064 nm irradiation because the substrates
absorb the wavelength of 1064 nm and provide photothermal
effect.35–37 However, in this study, ZnSe prisms were chosen to
avoid the influence of infrared absorption in the AFM-IR
measurements. For ZnSe, absorption of light occurs at less
than 600 nm. In addition, thermal conductivity of ZnSe (18
Wm−1 K−1) is similar to that of the Au film (38.5 Wm−1 K−1) and
ITO (50 Wm−1 K−1). Therefore, irradiation with a 450 nm laser
(∼45 mW) leads to the formation of the bubble.

Fig. 2 shows a model diagram of the enrichment method
using microbubbles. Two pieces of extended Parafilm
(thickness: ∼40 μm) as spacers placed on a cover glass, and a
ZnSe prism (Nihon Thermal Consulting. Co) was placed on
the spacers with its surface to be measured by AFM-IR facing
inward. Then, the chamber constructed with the prism was
placed on the stage of an inverted optical microscope (IX 71,
Olympus), equipped with an oil-immersion objective lens
(×100/1.30 NA, Olympus). The solution containing LDPE-NPs
by nano-second laser ablation was introduced into the
chamber by capillary action. A continuous wave (CW) light
beam (450 nm) from a diode laser (Civil Laser) was focused
on the ZnSe prism surface through the objective lens of the
microscope. The laser intensity at 450 nm was monitored
before passing the beam through the objective lens. The
focus point of the laser beam was controlled by x–y stage
movement of the microscope. Microscopy images were
recorded on a CMOS camera (WRAYCAM-VEX120,
WRAYMER) mounted on the microscope.

Fig. 1 Schematic of our system designed to evaluate the local infrared spectral properties of nanoparticles by adapting bubble accumulation to
capture individual nanoparticles diluted in solvent.

Table 1 The Nano-second laser ablation conditions for producing
suitable nanoparticles

Material Aldrich LDPE (melt index 25 g/10
min (190 °C/2.16 kg))

Shape of the material 500 μm film
Laser A double pulsed Q-switched Nd:YAG

laser (Lotis Tii LS-2134D)
Specifications
of laser

Pulse duration 12–15 ns
Repetition rate 10 Hz
Irradiation
wavelength

266 nm

Output energy 0.91 mJ
Shooting area 0.023 cm2

Energy density 40 mJ cm−2

Irradiation
time

1.0 h

Cell Type Full-sided clear
Optical path
length

10 mm

Capacity 3.5 ml
Size 12.5 × 12.5 × 56 mm
Material Quartz glass
Model number SC10104
Transmittance
at 266 nm

90%

Fluence on sample surface 36 mJ cm−2

Dispersing
solvent

Water Ultra-pure water
Electrical
resistivity

18.2 MΩ cm

Environmental Science: Nano Paper
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Finally, nanoIR (Anasys Instruments)47 AFM-IR is used to
obtain the infrared spectra of the individual nanoparticles.
The nanoIR system uses a pulsed, wavelength-variable IR
source to analyze the individual pumped molecular
vibrations within the LDPE-NPs. As in conventional ATR
spectroscopy, the IR beam is irradiated onto the LDPE-NPs by
total internal reflection, and rapid thermal expansion occurs
as the LDPE-NPs absorb the energy. The cantilever vibrations
induced by the thermal expansion are damped by a
characteristic ring down, and the amplitude and frequency of
the vibrations are extracted by Fourier transform.47 Next, the
local IR absorption spectrum of LDPE-NPs is obtained by
measuring the amplitude of the cantilever vibration while
sweeping the wavelength of the irradiating IR laser.

3 Results and discussion

Fig. 3(a) shows the particle size distribution of LDPE-NPs
generated from nano-second laser ablation against the

dynamic light scattering (DLS) intensity for 1.0 h (3.6 × 104

pulses) laser exposure time. Fig. 3(b) shows the graph of the
autocorrelation function. The autocorrelated polystyrene latex
particles (100.5 ± 2.6 nm, monodispersed) at a concentration
of 10 mg ml−1 are shown as a black line as a reference in the
DLS measurement.

The particle size distribution against the scattering
intensity in Fig. 3(a) shows that the particle size of LDPE-NPs
generated by nano-second laser ablation is distributed in the
range of 50–500 nm, and that LDPE-NPs with a diameter of
200 nm are particularly abundant. However, the graph of the
autocorrelation function in Fig. 3(b) shows that the value of
the autocorrelation function is smaller than that of the
polystyrene latex particles in the reference, suggesting that
the number of generated LDPE-NPs particles is still rather
small. This strongly indicates the need for microbubble
accumulation in this study.

Fig. 4(a) shows an optical image of the bubble generation
by 450 nm laser irradiation on the ZnSe prism surface. The

Fig. 2 Schematic of the collection method of LDPE-NPs using microbubbles. The diameter of microbubbles obtained was 5–10 μm.

Fig. 3 Particle size evaluation of LDPE-NPs by DLS measurement. Polystyrene latex particles (100.5 ± 2.6 nm, monodisperse) at a concentration
of 10 mg mL−1 are shown as a black line as a reference. (a) Particle size distribution by scattering intensity versus laser irradiation time of 1.0 h (3.6
× 104 pulses) and (b) graph of the autocorrelation function.

Environmental Science: NanoPaper
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ZnSe prism was irradiated with a 450 nm laser to induce a
photothermal effect, which generated microbubbles in the
solvent with micro- and nano-plastic particles, and the micro-
and nano-plastic particles were collected by Marangoni
convection. After the laser irradiation was stopped and the
bubbles disappeared, the substrate surface was observed, and
no holes or other damage was found on the substrate. For
reference, an aqueous solution in which polyethylene
particles 1–4 μm in diameter (Ref. PE-MPs, CPMS-0.96 1–4
μm–0.2 g, Cospheric) were dispersed and introduced into the
chamber to generate the bubbles, and the Ref. PE-MPs
gathered around the bubbles and accumulated on the surface
of the ZnSe substrate (Fig. 4(b)). These demonstrations on
the ZnSe substrate show that the previously reported bubble
enrichment and collection of micro- and nanoparticles is also
possible on the ZnSe substrate and can be deployed in a
combined AFM-IR measurement system. Unfortunately,
nano-sized plastic particles cannot be observed under an
optical microscope, but they are assumed to have
accumulated, and samples were then prepared for AFM-IR
spectral measurements.

Fig. 5 shows the IR spectra of the LDPE-NPs prepared on
the ZnSe prism, along with AFM images of the micro-
particles that were present in the observation area. The IR
spectrum of Ref. PE-MPs used as a reference is also shown.
PE-MPs were focused on a ZnSe prism, and the IR spectra
were measured from nanoIR.

The AFM image of the nanoparticles and the IR spectra
(Fig. 5) confirm that the LDPE particles are not only
independently spherical and nano-sized (Fig. 5(A)), but also
that some LDPE particles are distorted or agglomerated in
shape or exist in aggregates, as seen in Fig. 5(B) and (C). (see
the ESI† for the height profiles of (A) LDPE-NPs of about 300
nm diameter, (B) LDPE-MPs.1, and (C) LDPE-MPs.2 (Fig.
S1†)). The IR spectra show signals originating from CO
stretching (1735 cm−1), C–O stretching (1240 cm−1, 1165
cm−1), CC stretching (1600 cm−1, 1580 cm−1), and O–H
stretching (3400 cm−1), confirming the progress of the
oxidation reaction.46 In particular, CH2 asymmetric C–H
stretching (2918 cm−1), CH2 symmetric C–H stretching (2848
cm−1), CH3 asymmetric stretching (2960 cm−1), and CH3

symmetric stretching (2870 cm−1) can be also found following

the oxidation reaction. This is thought to be due to the
formation of the terminal methyl group.48–51 In addition, the
methyl group shows a peak at a higher wavenumber than the
methylene group in the IR spectra of polypropylene with both
methyl and methylene groups.48–51 Furthermore, in LDPE-
NPs with a diameter of about 300 nm (Fig. 5(A)), the peak
intensity of the CC bond increased compared to that of the
CO bond, and a lower wavenumber shift was observed
compared to the CC bond of mono-olefins, suggesting the
formation of relatively long conjugated systems. It is thought
that the photo-oxidation first occurs on the surface of micro-
and nano-plastics (MNPs) and produces highly reactive
organic radicals and ROS that are involved in the radical
reactions.52 Typically, along with the generation of alcohols,
ketones, olefins, and aldehydes, carboxylic acids and eaters,
vinyl groups and O-containing functional groups, such as
carbonyl, carboxyl, and hydroxyl groups can be formed
during the photo-oxidation of MNPs.52 In addition, new
peaks in the carbonyl (1500–1800 cm−1) and hydroxyl (3000–
3800 cm−1) regions were observed in UV-irradiated
polypropylene-microplastics (PP-MPs) in ultrapure water,
indicating the formation of oxygen related functional groups
on the surface of PP-MPs during the aging process from ATR-
FTIR analysis.53 Please refer to the ESI† for an example of a
possible decomposition reaction scheme (Fig. S2†). Note that
for Ref. PE-MPs, standard PE absorption spectra are
obtained. This suggests that the oxidation was promoted by
nano-second laser ablation at ultraviolet wavelengths or in
ultrapure water, and not by laser-induced oxidation at the
time of accumulation.54–60 From the above, we confirmed the
relation between the size and state of the nanoparticles. One
of the most possible explanations is that greater oxidation
produces smaller particles.

4 Conclusions

This study proposes and demonstrates a new method to
evaluate the shape and local infrared properties of
nanoparticles by adapting bubble accumulation, which
achieves the capture of individual nanoparticles diluted in
solvent. Three steps are completed: first, nano-second laser
ablation is utilized to fabricate nanoparticles to fabricate a

Fig. 4 Optical images of the interface between the ZnSe prism surfaces and solution under a microscope. (a) Generation of a microbubble by 450
nm laser irradiation and (b) ref. PE-MPs (1–4 μm) deposited by the bubble. Black arrows indicate some of the particle locations.
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defined model sample that is artificially dispersed in nature
without solvent residues, surfactants, or impurities. The
specific conditions were as follows: nano-second laser
ablation (irradiation wavelength of 266 nm, pulse duration of
12–15 ns, repetition rate of 10 Hz, an irradiation fluence of
36 mJ cm−2, and an ablation area of 0.023 cm2) for a 500 μm
thick LDPE film sample was performed; second, LDPE-NPs
were concentrated and prepared to analyze the local chemical
properties of single particles. Using Marangoni convection of
microbubbles, LDPE-NPs were placed one particle at a time
on the ZnSe substrate surface. Thirdly, AFM-IR of nanoIR
(Anasys Instruments)47 was used to analyze the chemical
properties of nanoparticles as well as shape observations for
individual nanoparticles. AFM observations confirmed the
presence of independent nanoparticles. For these, infrared
resonance peaks attributed to CO stretching, C–O
stretching, CC stretching, O–H stretching, etc. were
observed, confirming the progress of the oxidation reaction.
For nanoparticles with a diameter of about 300 nm, the
intensity of the CC bond increased compared to the CO
bond, and a red shift was observed compared to the CC
bond of mono-olefins, suggesting the formation of relatively
long conjugated systems.

Based on these results, whilst the formation mechanism,
understanding of biological effects, and nano-physical
properties in NPs dispersed in natural solutions have not
been clarified, this study significantly advances the processes
of NP generation, preparation, and analysis. This system
design approach, as proposed in Fig. 1, can contribute to NP
research as a system for rapid generation, concentration, and
analysis. The clarification of the physical properties of the

nanoparticles will help to better understand their
environmental and biological effects and relationships, the
mechanism of NP aggregation, and the interatomic forces
between particles.
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