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on the experiment: computer
vision for real-time monitoring and control†
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Sebastien Monfette *b and Jason E. Hein *acd

This work presents a generalizable computer vision (CV) and machine learning model that is used for

automated real-time monitoring and control of a diverse array of workup processes. Our system

simultaneously monitors multiple physical outputs (e.g., liquid level, homogeneity, turbidity, solid,

residue, and color), offering a method for rapid data acquisition and deeper analysis from multiple visual

cues. We demonstrate a single platform (consisting of CV, machine learning, real-time monitoring

techniques, and flexible hardware) to monitor and control vision-based experimental techniques,

including solvent exchange distillation, antisolvent crystallization, evaporative crystallization, cooling

crystallization, solid–liquid mixing, and liquid–liquid extraction. Both qualitative (video capturing) and

quantitative data (visual outputs measurement) were obtained which provided a method for data cross-

validation. Our CV model's ease of use, generalizability, and non-invasiveness make it an appealing

complementary option to in situ and real-time analytical monitoring tools and mathematical modeling.

Additionally, our platform is integrated with Mettler-Toledo's iControl software, which acts as

a centralized system for real-time data collection, visualization, and storage. With consistent data

representation and infrastructure, we were able to efficiently transfer the technology and reproduce

results between different labs. This ability to easily monitor and respond to the dynamic situational

changes of the experiments is pivotal to enabling future flexible automation workflows.
Introduction

Automation is revolutionizing laboratory experimentation,
liberating scientists from performing tedious tasks while
simultaneously accelerating the pace of research and discovery.1

Recent advancements have given rise to the concept of Self-
Driving Labs (SDLs), which combine articial intelligence (AI)
with automated robotic platforms, enabling autonomous reac-
tion planning, execution, and analysis.2,3 SDLs go beyond
standard automation by addressing specic problems (e.g.,
dosing solvent when volume is below a threshold) rather than
being limited to executing predetermined tasks (e.g., dosing
10 mL of solvent every 20 minutes). This approach allows for
a shi frommere automation towards autonomy. To date, SDLs
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have primarily been applied in the realm of small organic
molecules4,5 and materials synthesis.6,7

Workup processes aim to isolate a pure, desired product
through selective separation from other reaction components,
including co-product(s), excess reagent(s), impurities, and
solvent. An effective workup is essential for ensuring product
consistency, improving manufacturing efficiency, and main-
taining cost-effectiveness, especially in large-scale synthesis and
process development. The automation of workup processes
poses challenges due to its specicity to the composition and
physical properties of the product.8 Recently, SDLs have begun
automating separation processes, with a particular focus on
liquid–liquid separation.9–12 Despite these advancements,
a universal automated purication system does not yet exist.13

Consequently, many workup processes continue to be carried
out manually, presenting a signicant opportunity for auto-
mation development. The goal is to expand SDL capabilities to
encompass a broader range of workup tasks, moving towards
the realization of a universal automated workup system.

The manual execution of reaction workups can be attributed
to the specialized equipment, intricate procedures, and the
high degree of accuracy and precision required (e.g., achieving
perfect phase splits, identifying distillation end points, etc.).
Moreover, workup procedures entail a series of dynamic and
Chem. Sci., 2024, 15, 1271–1282 | 1271
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complex steps (e.g., extraction and distillation) that, ideally, are
monitored in real-time using process analytical technology
(PAT), such as ReactIR, NMR, and HPLC. These techniques
provide microscopic-level process understanding and facilitate
on-the-y adjustments although their wide-spread deployment
can be space and cost prohibitive. As a result, such real-time
monitoring techniques are rarely incorporated in current
SDLs employed in chemical procedures. Going further, workup
procedures inherently rely on macroscopic visual observations
such as color changes, liquid levels, crystal formation, etc. These
visual cues play a pivotal role in contextualizing experimental
outcomes, aiding decision-making (e.g., determining when to
proceed with the next step), and detecting outliers or defects.
Current automation approaches, however, rarely utilize visual
cues for decision-making. These ‘blind’ automation approaches
lead to the loss of valuable data which can increase experi-
mentation time. Therefore, it is imperative to incorporate visual
observations into automating workup processes to enhance
efficiency and precision within these procedures, ultimately
optimizing the overall workow in SDLs.

Computer vision (CV) allows for capturing, processing, and
analyzing visual inputs (i.e., digital images). This cost-effective
and non-invasive technique can be seamlessly integrated into
experimental workows, providing spatially and temporally
resolved data. Traditional CV algorithms have predominantly
relied on image analysis techniques based on color, grayscale,
Fig. 1 (a) Universal vision-based outputs in workups monitored by He
classification outputs (from CNN), quantification outputs (from image
applications of HeinSight2.0 CV system.

1272 | Chem. Sci., 2024, 15, 1271–1282
or edge detection for visual recognition and reasoning. While
these algorithms excel at extracting information from visual
images, they fail when confronted with unideal visual condi-
tions, such as glare, unexpected solid formations, or changes in
lighting.9,14,15 Furthermore, classical CV systems oen focus on
specic tasks, reducing images to one or two quantiable vari-
ables. However, such reductionist approaches limit the “full-
scene” understanding that can be achieved. Recent advance-
ments in CV models have showcased improved utility by
incorporating real-time quantication capabilities.16–20 Addi-
tionally, advancements in machine learning (ML) have facili-
tated the development of more exible CV methods,
overcoming the limitations associated with task-specic
approaches. Convolutional neural networks (CNNs) in partic-
ular can achieve near-human classication accuracy when
trained with large datasets, enabling comprehensive analysis of
diverse objects.21,22 Thus far, CNNs have mainly focused on
identication and classication rather than variable quanti-
cation.23,24 A CV system that combines both image analysis (i.e.,
quantication) and classication capabilities (via CNNs) would
serve as a signicant milestone toward the advancement of
automated systems for chemical Research and Development
(R&D).

Previously, our group has focused on bringing together
exible hardware, data-rich monitoring techniques, and CV for
liquid-level monitoring and control.25 The resulting system was
inSight2.0; (b) overview of interrelated components of HeinSight2.0:
analysis), and process variables from iControl; (c) integrations and

© 2024 The Author(s). Published by the Royal Society of Chemistry
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aptly named HeinSight, reecting its ability to provide valuable
visual insights into the ongoing experiments. HeinSight relied
solely on image analysis (edge detection) to monitor a single
output, liquid level, within a dened region of interest. This
allowed for monitoring and controlling various applications
dependent on liquid level data, such as continuous preferential
crystallization (CPC), continuous ltration, and evaporative
solvent swap. In our ongoing efforts to advance automated
process development, we now introduce HeinSight2.0—a gener-
alized vision system that combines image analysis and classi-
cation to achieve simultaneous monitoring of multiple visual
cues across the entire reactor viewing window, as shown in
Fig. 1a. Operating in tandem with a exible hardware platform,
our system can monitor and, if necessary, respond in real-time
to visual cues. These fundamental vision-based targets hold
universal relevance across various chemical experiments,
making our system adaptable to a wide range of tasks. The
strength of our model lies in its exibility, achieved through the
concurrent monitoring of all visual outputs, with a sub-
selection being subjected to analysis based on the experi-
mental requirements. This approach enables the utilization of
a single model for diverse experiments, with the results further
bolstered by cross-validation using secondary data, thereby
providing deeper experimental insights.

The core automated lab reactor (ALR) module utilized in this
study was the EasyMax™ 102, manufactured by Mettler
Toledo.26 This hardware platform incorporates iControl so-
ware (version 6.1) control with an integrated data environment,
enabling the monitoring, recording, and controlling of various
process variables.27 By aggregating real-time data from the ALR
(e.g., reactor temperature, stir rate, dosed solvent volume, etc.)
and the HeinSight2.0model (e.g., reactor volume, turbidity, etc.),
comprehensive data streams are simultaneously generated for
immediate decision-making (Fig. 1b). Furthermore, the ALR's
viewing window allows for simultaneous image capture,
providing qualitative measurements that cross-validate the
quantiable trends being monitored. Overall, the integration of
HeinSight2.0 with iControl enables unsupervised automation
through visual feedback control.

Within HeinSight2.0, CNN is employed for object boundary
determination to enable classication and yield the following
outputs: homogeneity, solid formation, and the presence of
solid residue above the liquid level. Subsequently, image anal-
ysis techniques are utilized to derive additional visual outputs
from the identied bounding boxes and segments, including
volume, color, and turbidity (refer to the ESI† for further
details). By combining iControl and computer vision analysis,
our approach offers a macroscopic complementary analysis to
microscopic in situ PAT tools andmathematical models, thereby
increasing data richness from each experiment. This integra-
tion of visual data reporting within iControl also represents
a crucial step towards standardized data collection, sharing,
and repositories, as demonstrated by the facile technology
transfer between the Hein Lab and Pzer (Fig. 1c).

Throughout this paper, multiple visual cues were analyzed
over time during each of our case studies. We have selected
a single visual output depending on each specic application (the
© 2024 The Author(s). Published by the Royal Society of Chemistry
“primary output”) and corroborated its results with other
collected outputs (“secondary outputs”). Liquid level monitoring
was used to monitor an evaporative solvent exchange distillation
and an antisolvent crystallization, employing automated feed-
back to maintain constant reactor volumes. The importance of
monitoring multiple outputs was then demonstrated by moni-
toring an evaporative crystallization. Automated feedback was
again demonstrated by performing a cooling crystallization while
monitoring the solution homogeneity to inform heating/cooling
changes. Turbidity was used to measure solid–liquid settling
kinetics, while the presence of a precipitate (“solid”) was used to
determine the agitation speed necessary for uniform suspension
of solid. Lastly, multi-phase liquid detection was demonstrated
by measuring the settling time in liquid–liquid extraction.

Experimental setup

Experiments were performed in a Mettler-Toledo EasyMax™
102 using a 100 mL glass reactor equipped with an overhead
stirrer, temperature probe, and SP-50 dosing unit, as shown in
Fig. 2. Execution of experimental events (e.g., dose solvent, stir
reaction, change temperature) and recoding of process vari-
ables (e.g., reaction temperature, rate of solvent dose) are
handled via iControl running on an adjacent laptop. The Razer
Kiyo Streaming Webcam was chosen for its affordability and
commercial availability. It offers high-quality 1080p resolution
at a rapid image acquisition of 30 FPS and features a built-in
adjustable brightness ring light for illumination. This specic
camera model was consistently used for all data collection,
including training, testing, and model inference to prevent any
potential domain shi that could degrade model's perfor-
mance. The webcam was placed inside a 3D-printed enclosure
that served to hold the camera in a xed location, align the
camera with the reactor window and block peripheral light to
provide consistent illumination during experimental operation
(see ESI† for enclosure 3D-print les and assembly guide). This
measure was crucial because CV systems can be signicantly
impacted by changes in lighting conditions. While data
augmentation techniques can help to some extent by intro-
ducing variety into the training data (e.g., by adjusting bright-
ness levels), they might not cover all possible lighting scenarios.
Additionally, lighting changes can create shadows, highlights,
glare, and other variations that are oen challenging for
computer vision algorithms to interpret accurately. A such,
standardizing lighting conditions, achieved through the enclo-
sure and webcam, was essential for accurate system perfor-
mance. The HeinSight2.0 model was run to provide real-time
image analysis and data extraction. Data acquired by our model
was imported live into iControl via an ExcelSheet (iC Data Share
conguration) for trend visualization and, where necessary,
real-time feedback for workow control.

Model development
Model choice and structure

There are two methods for identifying and classifying regions of
interest in images (e.g., solids, solution, residue): instance
Chem. Sci., 2024, 15, 1271–1282 | 1273
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Fig. 2 Experimental workflow setup ofHeinSight 2.0, illustrating the integration of EasyMax hardware components (dosing unit, overhead stirrer,
temperature probe, and reaction vessel), webcam (within an enclosure), and software components ((CVmodel and iControl) with real-time trend
visualization).
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segmentation and semantic segmentation. We chose to use an
instance segmentation CNNmodel due to its superior capability
to distinguish regions of the same class (e.g., recognizing
different homogenous liquid layers as would be present in
liquid–liquid extraction). By utilizing an instance segmentation
approach, we can effectively separate the tasks of segmentation
(identifying object regions) from classication (categorizing
objects), thereby enabling segmentation for objects beyond the
training set. To achieve this instance segmentation, we imple-
mented a Mask Region-based CNN28 (Mask R-CNN) architec-
ture, the leading method for object instance segmentation,29

using a pre-trained model (R101-FPN) from the detectron2
library.30

Model training

The model was trained on the COCO (Common Objects in
Context) dataset,31 a vast resource for object detection and
segmentation. While it provided a general understanding of
visual elements, it however lacked contextualized images of
chemical reactions. To address this gap, we ne-tuned the
model using images from our setup, capturing various chemical
and physical processes in videos. These images were manually
annotated through the SuperAnnotate online tool.32 See ESI† for
further details on model development and training.

We provide the HeinSight2.0 pre-trained model along with
a step-by-step guide for easy use in the SI. The open-access
HeinSight2.0 Python package enables users, even those
without coding experience, to leverage the model for both single
and multi-outputs tasks outlined in this study. It also offers
a seamless entry point for transfer learning, making it ideal for
exploring other applications within the chemistry domain by
starting with lower initial data thresholds.

Results and discussion

Our focus was to enable the autonomous execution of crucial
synthetic steps, particularly emphasizing workup, and isolation
methods such as distillation, crystallization, and liquid–liquid
1274 | Chem. Sci., 2024, 15, 1271–1282
extraction. Aside from column chromatography, which is
undesirable in process chemistry, the above-mentioned
methods encompass the primary unit operations involved in
compound isolation aer a synthetic operation. However, their
automation is hindered by the aforementioned challenges dis-
cussed in the introduction. To showcase the performance and
adaptability of HeinSight2.0, we have chosen a series of
progressively challenging case studies for each of these key
isolation strategies.
Case study #1: liquid level (solvent exchange distillation)

Distillation is commonly used to concentrate a reaction by
removing volatile solvents or reagents.33 Usually, operators
visually check the vessel's ll level to determine the endpoints
of distillation. Stopping the process too early can impact
subsequent purication due to high levels of remaining volatile
components, while allowing it to continue for too long poses
safety risks of overheating the vessel and decomposing the
target compounds. As such, accurate control of the vessel level
and heating would be highly benecial.

A more complex, but related unit operation involves distil-
lation paired with the addition of a new working solvent to
achieve solvent exchange,34 as shown in Fig. 3a. This process is
deployed when subsequent processing steps require a different
solvent, either to carry out a new synthetic transformation or to
drive crystallization and isolation of the target molecule. Proper
management of distillation and solvent dosing rates is crucial
to avoid overlling or underlling the vessel.

We selected two process examples that present realistic
scenarios requiring visual control and posing challenges to our
CV system due to additional visual elements. The rst example
was the slurry solvent exchange distillation (Fig. 3b), which
involved solid residue formation and adherence to the reactor
wall. The second example was constant volume antisolvent
crystallization (Fig. 3c), which included the transformation
from a homogeneous to a heterogeneous system, solid precip-
itating out of solution, and residue adhering to the reactor wall.
Earlier CV systems, which are oen based on image analysis by
© 2024 The Author(s). Published by the Royal Society of Chemistry
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Fig. 3 (a) Illustration of the experimental setup of solvent exchange distillation. (b) Solvent exchange distillation for a reaction slurry containing
a mixture of EDCI–HCl, and triethylamine in acetone, charging 10 mL of butanone when the threshold volume is reached. (c) Constant volume
antisolvent crystallization via solvent exchange distillation of acetaminophen in MeCN. For both (b) and (c), the internal temperature of the
reactor (red) was captured via the EasyMax temperature probe, while the reactor volume (purple) was returned from the CV system. The apparent
spread in volume recorded by the CV system was due to variations in the liquid height due to fluctuation from mechanical agitation and boiling,
which both changed the 2D cross sections presented to the camera; see ESI† for detailedmeasurement and control workflow. The volume trend
data were visually emphasized by adding manual markers to guide the eye.
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edge detection, fail to accurately capture the reactor liquid level
in the presence of complex and changing image elements (e.g.,
glare and partial obstruction of view caused by solid residue
buildup). Therefore, these tests were conducted to demonstrate
HeinSight2.0's ability to adapt to complex dynamic changes in
the experiment.

Initially, we honed the system's ability to maintain
a minimum reactor volume for simple solvent exchange
conditions without complex visual elements (see ESI† for
details). Our rst challenge involved a solvent exchange distil-
lation from a slurry of EDCI$HCl and triethylamine in acetone,
mimicking a typical endpoint in a carbodiimide-promoted
amide coupling reaction (Fig. 3b). Acetone was distilled from
the slurry, and butanone was added to enable solvent exchange
for product isolation. The CV system recorded the volume and
automatically introduced butanone when the reactor volume
dropped below a specied threshold, ensuring the maintenance
of a minimum reactor volume.

This example demonstrated that HeinSight2.0 could serve as
a visual PAT for monitoring and controlling distillation without
human oversight. Both the primary output (volume) and the
secondary output (temperature) provided valuable information.
The goal of maintaining a threshold volume was successfully
achieved, as evidenced by the visual record and reactor volume
trend. The rate of distillation was determined from the slope of
the volume trend, which progressively decreased as the
© 2024 The Author(s). Published by the Royal Society of Chemistry
composition shied in favor of the higher boiling butanone.
HeinSight2.0 was also able to adapt to dynamic changes,
adjusting to the non-linear dosing times required as the
composition of the solvent system changed. Adapting to such
nonlinear events is challenging without real-time feedback,
usually resulting in overlling or drying of the reactor.

We next attempted another challenging example by coupling
distillation with antisolvent crystallization, as illustrated in
Fig. 3c. This workow is closely related to solvent exchange
distillation and is commonly used to isolate products at the end
of a synthetic sequence.35 Here, the addition of the makeup
solvent led to supersaturation, resulting in nucleation and
crystallization as the distillation progressed. This posed
a complex visual challenge for the CV system due to deposition
of solid residue and solid precipitating. Once again, our primary
output (volume) and secondary output (temperature) provided
the main factors for reactor control and integration. Addition-
ally, solid formation was critical to inform the onset of
nucleation.

A solution of 0.17 M of Acetaminophen in 50 mL acetonitrile
(MeCN) was heated to begin distillation (Fig. 3c). A charge of
toluene via the dosing pump was added when HeinSight2.0
detected that the threshold volume was reached. Unlike the
previous example, the rate of distillation did not appear to
change as signicantly during the rst few solvent recharges.
Throughout, HeinSight2.0 effectively monitored the reactor
Chem. Sci., 2024, 15, 1271–1282 | 1275
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volume even though solid and residue began to form and
obstruct the viewing window. A dramatic change in the rate of
distillation occurred at the h dose of toluene, leading to rapid
crystallization of acetaminophen. Assuming the distillate likely
contained mostly MeCN, this point also corresponded to when
the solvents had mostly exchanged and the solution became
toluene-rich, thus driving crystallization due to the reduced
solubility of acetaminophen in toluene. HeinSight2.0 correctly
detected the onset of crystallization at the h dose through the
appearance of “solid” class, as shown in image 4 of Fig. 3c. For
clarity the solid trend was not shown in the gure and replaced
with a pink shade. The increase in temperature rate at the h
dose further supported the point of nearly complete solvent
exchange.

Through these tests, our non-invasive, exible CV system has
proven its ability to provide autonomous oversight for solvent
exchange distillation processes. HeinSight2.0 represents a signi-
cant advancement over its predecessor (HeinSight), integrating
image analysis and classication technology. This integration
expands its capabilities beyond liquid level monitoring to include
variables like solution homogeneity, solid presence, and residue
formation. It also enhances accuracy, allowing it to determine
liquid levels even in the presence of additional visual cues like
solids and residues, which posed challenges for the previous
model. While we demonstrated our system ability via a solvent
exchange distillation, however, the underlying principle of
controlling the liquid level can be exploited in other unit opera-
tions requiring liquid level oversight.
Fig. 4 (a) Illustration of the experimental setup for evaporative crystalliza
over time to observe acetaminophen nucleation. The reactor volume (pur
(c) Illustration of the experimental setup for cooling crystallization case st
MSZW of acetaminophen in MeCN. The internal temperature of the rea
turbidity (orange) and homogeneity (purple and yellow) were returned f

1276 | Chem. Sci., 2024, 15, 1271–1282
Case study #2: homogeneity and turbidity (crystallization)

Crystallization stands as one of the most extensively employed
techniques for achieving purication and isolation of target
compounds. To successfully carry out a crystallization, it is
crucial to have detailed knowledge of key phase behavior and
physical properties, including solubility and the primary
nucleation limit. Determining the metastable zone width
(MSZW), which denotes the point at which the free energy
barrier for crystal nucleation is surpassed, can prove to be
a challenging and time-consuming task. While solubility
measurements and modelling can offer some estimations, even
slight variations in process variables such as stirring rate,
reactor geometry, or impurity prole can signicantly impact
the likelihood of primary nucleation. Hence, prior to embarking
on compound isolation through crystallization, it is oen
necessary to directly investigate the MSZW within the intended
reactor system to ascertain the reliability of the crystallization
process.

One simple method to determine the metastability limit at
a constant temperature, which can be below the boiling point of
the solvent, involves driving supersaturation through the
evaporation of solvent with a gas purge of the reactor head-
space. Unlike the previous examples involving distillation, real-
time feedback was not necessary to perform the evaporative
crystallization of acetaminophen, as data extraction could be
completed at the experiment's completion. However, the
nucleation of solids within the solution, deposition of residue
tion of acetaminophen in MeCN. (b) Monitoring evaporation of MeCN
ple), turbidity (yellow), and solid (pink) were captured by the CV system.
udy. (d) Feedback loop using real-time data to determine solubility and
ctor (red) was captured via the EasyMax temperature probe, while the
rom the HeinSight2.0 model.

© 2024 The Author(s). Published by the Royal Society of Chemistry
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on ask walls, and changing reactor volume all poses a chal-
lenging test case for HeinSight2.0 with multiple changing visual
elements, as shown in Fig. 4a.

In this experiment, the jacket temperature was maintained
at 30 °C while a stream of compressed air was blown overhead
of a solution of 0.13 M of acetaminophen in 50 mL MeCN. As
the ow of compressed air was kept constant, we anticipated
that the rate of evaporation would be invariant over most of the
process. The CV system initially indicated a steady evaporation
rate of 0.77 mL min−1, as evidenced by the volume trend shown
in Fig. 4b. However, once the volume decreased below 23.5 mL,
there was a signicant increase in the evaporation rate, reach-
ing a constant 6.75 mL min−1 until the solvent was completely
evaporated. In addition, the formation of a solid residue on the
reactor walls (“residue”) and a solid precipitate in the solution
(“solid”) was captured qualitatively (via images) and quantita-
tively (via trends) by the CV system. The precipitate formation,
indicated by an increase in the “solid” trend, was observed at 50
minutes when the reactor volume dropped below 26 mL, cor-
responding to the nucleation point at a constant temperature.

Furthermore, the total dryness was observed at 69 min when
the volume of the solution and its turbidity value dropped to
zero. Repeating the experiment resulted in a similar evapora-
tion rate and volume for the onset of precipitation, supporting
the estimation of the metastable limit for our system (see ESI†
for details). More interestingly, HeinSight2.0 was able to
discriminate between the crystals formed in the supernatant
solution (i.e., solid) vs. the solids building up on the side of the
ask (i.e., residue). This was possible due to the non-maximum
suppression (NMS) applied to the CNN algorithm.36 In cases
where there are multiple overlapping instances in the same
region of interest, NMS enables the label with the highest
condence value to receive the score while the remaining
instances are suppressed, see ESI† for details. By ensuring that
only the most condent label is retained for each region of
interest, labelling accuracy is improved.

The dynamic variations in these visual elements serve to
highlight the capability of HeinSight2.0 to simultaneously
monitor multiple outputs. These changes in visual character-
istics offer valuable insights into the experiment, shedding light
on the underlying physical properties directly from the inten-
ded reactor system. This demonstrates the effectiveness of our
simple and inexpensive approach to process monitoring.

We next applied HeinSight2.0 to monitor and control a cool-
ing crystallization. This technique is by far the most applied
means of driving supersaturation to isolate puried crystalline
products. MSZW measurements on the actual process reactor
are usually performed using PAT tools such as spectroscopic
(FTIR,37 Raman38), or imaging (FBRM,39 PVM40). While these
tools provide accurate in situ microscopic measurements of the
solution and/or solid phase of crystallizations, they are oen
invasive, expensive, and specialized. Our non-invasive and cost-
effective CV system has the potential to provide complementary
macroscopic measurements by simply visually interrogating
any reactor of interest, serving a broad range of applications.

By combining our feedback control based on visual cues with
the temperature control of an EasyMax, we sought to perform
© 2024 The Author(s). Published by the Royal Society of Chemistry
temperature cycles on a solution of acetaminophen in MeCN to
measure its solubility and MSZW, as depicted in Fig. 4c. The
binary homogeneity determination was the primary output
used by HeinSight2.0 to detect the onset of nucleation and
dissolution (via cloud point and clear point determination,
respectively). The quantitative turbidity trend served as
a secondary output to corroborate the data. The results of the
cooling crystallization are demonstrated in Fig. 4d.

Starting with a 0.31 M acetaminophen solution in 40 mL of
MeCN at 50 °C, the EasyMax jacket was cooled at a constant rate
(10 °C min−1) until a heterogeneous solution was detected via
the homogeneity variable. Aer waiting for 5 min, the jacket was
then heated at the same rate until dissolution was detected.
Aer waiting another 5 min, the cycle was then repeated to
verify the solubility and MSZW measurements. The results
showed that the clear point of the solution remained constant at
30 °C regardless of the cycling event, consistent with the fact
that it is a thermodynamic property. However, the cloud point,
which is a kinetic property, slightly changed with cycling at 13 °
C for the rst cycle and 15 °C for the second cycle. This obser-
vation was further supported by the changes in the steady
turbidity trend following each nucleation event. Additionally,
qualitative analysis (images 3 and 7) demonstrated disparities
in the brightness of the crystals, further emphasizing the
differences in the turbidity measurements. The reported
turbidity value was calculated from the 2D cross section
captured by the camera, so the perceived opacity of the solution
affected the numerical result. Stochastic factors like number of
nucleation events and material sticking to the camera's sight
region could also inuence the absolute value. Thus, binary
delineation of homogeneity served as the primary output for
feedback control during the transition between clear and cloudy
states.

When the experiment was repeated at a different cooling rate
(3 °C min−1), the cloud point changed as a function of the
cooling rate (13 °C at 10 °Cmin−1 and 21 °C at 3 °Cmin−1) while
the clear point remained constant (30 °C at both 10 °C min−1

and 3 °C min−1), supporting the idea that the clear point is
deterministic while the cloud point is stochastic,41–43 see ESI†
for details. The automated feedback control employed in this
experiment allowed for rapid, autonomous solubility and
MSZW measurements like existing clear point/cloud point
approaches (e.g., Crystal16®). We envision that by adding
a dosing unit to the existing workow, automated solubility and
MSZW curves could be obtained across a range of concentra-
tions and temperatures.
Case study #3: solid and turbidity (solid–liquid mixing)

Solid–liquid mixing plays a crucial role in various industrial
processes, including crystallization, heterogeneous reactions,
and suspension polymerization.44 Understanding mechanical
mixing behavior can be critical for either maintaining uniform
mixing (“effective agitation”) or settling solids to remove them
from a liquid suspension (“setting kinetics”), as shown in
Fig. 5a. It is key to understand the sensitivity of mixing perfor-
mance on the process to assure successful transfer across
Chem. Sci., 2024, 15, 1271–1282 | 1277
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different scale-up vessels. Assessing solid–liquid mixing
through experimental means, such as measuring cloud
height,45 axial concentration gradient,46 or particle velocity,47

can be time-consuming, costly, and impractical for large reac-
tors. In industrial settings, computational tools like VisiMix and
Dynochem are utilized, employing mathematical equations
derived from reactor databases to evaluate mixing performance
at different scales. However, these simulations require extensive
input data, including geometry details, boundary conditions,
and material properties, making data collection a time-
consuming and resource-intensive process. For specic mix-
ing challenges, Computational Fluid Dynamics (CFD) model-
ling offers a more in-depth understanding of the process.48

Given the inherently visual nature of determining solution
homogeneity, we sought to demonstrate howHeinSight2.0 could
readily inform mechanical mixing studies.

We selected solid detection and turbidity measurements as
our system's primary outputs for evaluating mixing efficiency
with mechanical agitation. As a rst test, a supersaturated
solution of acetaminophen (0.46 M) was prepared in 50 mL
MeCN at room temperature without stirring (Fig. 5b). The stir
rate was increased by 20 rpm every three min to nd the
minimum effective agitation speed while monitoring turbidity
and the presence of solids at the bottom of the reactor. While no
solid suspension could be observed below 160 rpm, the onset of
solid suspension was visible from 160 to 200 rpm (shown in the
turbidity trend). Interestingly, although turbidity reached its
maximum value upon stirring at 200 rpm, solids were still
detected at the bottom of the ask which did not disappear
until 220 rpm, highlighting the importance of analyzing
multiple outputs. Other secondary outputs supported this
Fig. 5 (a) Illustration of the experimental setup for agitation case studies.
speed for effective agitation of a slurry of acetaminophen in MeCN. The
stirrer, while the turbidity (orange) and solid (pink) were returned from th
a slurry of acetaminophen in MeCN.

1278 | Chem. Sci., 2024, 15, 1271–1282
analysis, including homogeneous solution identication and
solution color (see ESI† for details).

The opposite experiment was carried out to determine
settling time, with a stirred slurry of 0.48 M acetaminophen in
50 mL MeCN at room temperature being monitored for the
change in turbidity (Fig. 5c). The effect of various stir rates (800,
600, and 400 rpm) on the time to reach complete solid settling
was investigated. As expected, lower stir rates gave shorter
settling times, and our system was able to detect this change
mainly from the turbidity output and was supported by other
indices (presence of solid and homogeneity – see ESI† for
details). The success of our system's multi-outputs monitoring
illustrates its ease of plug-and-play implementation, capturing
the global solution behavior in a non-invasive means while
remaining simple to implement.
Case study #4: multiple-phase detection (liquid–liquid
extraction)

Liquid–liquid extraction (LLE) is a common unit operation in
synthetic isolation owing to its scalability and cost-effectiveness
that arises from the preferential solubility of target compounds
in two immiscible liquid phases. However, automated LLE is
challenging due to complex mixtures and potential issues such
as emulsions formation, stable dispersions, and rag layers that
increase separation times and slow process scale-up. As such,
designing and optimizing LLE is a labor-intensive trial-and-
error process, requiring extensive experimentation to deter-
mine conditions selections (e.g., solvent identity).

Evaluating phase separation, which encompasses separation
time, emulsion formation, and phase split quality, is typically
a dynamic process requiring visual comparison over
(b) Monitoring the presence of solids to determine theminimum stirring
stir rate of the reactor (grey) was captured via the EasyMax overhead
e CV system. (c) Monitoring turbidity to determine the settling time for

© 2024 The Author(s). Published by the Royal Society of Chemistry
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a timescale. As such, imaging tools have been employed to
classify liquid–liquid biphasic separation. Some researchers
have determined the phase separation by monitoring the posi-
tion of a colored oat.49 However, this approachmay be prone to
issues related to chemical incompatibility of the oat with
particular solvent combinations, or variations in oat buoyancy
over a wide range of solution concentrations. Non-invasive edge
detection has been used to determine biphasic separation but
can fail when the solutions become colored or turbid. Recently,
robust high throughput image analysis algorithms have been
developed to specically automate LLE workow.50

Our CV model's multi-outputs approach can be used to
extract quantitative and qualitative features from multiple
layers in a LLE system, distinguishing between homogeneous
and heterogeneous regions, and accurately measuring the
volume of each layer over time, as shown in Fig. 6a. This
provides critical process information such as separation time,
agitation effectiveness for phasemixing, and phase split quality.

A well-agitated mixture of immiscible liquids comprising
a specic volume of water (20 mL), brine (5 mL), and DCM (35
mL) containing citric acid, was automatically monitored to
observe changes in the volume of each phase as agitation was
halted, as shown in Fig. 6b. The effect of a 1000 rpm stir rate on
the time required for the mixture to reach full separation was
investigated. The separation time of 0.18 min was primarily
determined based on the volume output of each phase, which
was further supported by other secondary outputs, including
color and turbidity (refer to the ESI† for detailed information).
In comparison to mechanical or density-based colored sensors
commonly used for image analysis in LLE, our non-invasive
approach can accommodate various chemical compositions.
Fig. 6 (a) Illustration of settling kinetic behavior of the separation of t
separation time of a mixture of DCM and water. The stir rate of the re
volumes 1 and 2 (purple and pink) were returned from the CV system. (c) S
(d) Monitoring the liquid level to determine the separation time of a mix

© 2024 The Author(s). Published by the Royal Society of Chemistry
A more challenging example was realized by applying our
liquid–liquid extraction protocol to monitor a salt break and
purication of enantiopure tetrabenazine (TBZ) as its amine-
free base. This workow is a critical intermediate step in the
synthesis of Valbenazine drug,51 and follows a crystallization-
induced asymmetric transformation (CIAT) to convert racemic
TBZ to the desired enantiomer, which is isolated as the pure (–)
TBZ(–)CSA salt.52 Advancing the synthesis requires charging
a reactor with isolated crystals, suspension in a mixture of DCM
and water while charging sodium hydroxide to neutralize the
acid, then recovery of the free amine from the organic layer, as
shown in Fig. 6c. However, this seemingly simple procedure
raises several challenges. To optimize the process mass inten-
sity (PMI) of the overall route a minimum volume of working
solvents is desired, forcing the extraction to operate at a very
high concentration. The amphiphilic nature of both cam-
phorsulfonic acid and TBZ increases the micelle forming
potential of the solvents and promotes emulsion. Reducing the
agitation can partially mitigate this effect but compromises
efficient mass transfer leading to very long processing times.
Thus, we need to identify the highest possible agitation rate that
still allows facile phase separation without creating an emul-
sion and effectively neutralize the acid.

The process involves charging (–)TBZ(–)CSA salt into the
reactor (1.557 g) followed by a minimum of DCM to create
a homogenous solution. A NaOH solution (0.5 M) was added
followed by water to give an equivalent volume to the organic
layer. This biphasic mixture was agitated for 10 min, ensuring
both phases are well mixed as demonstrated by having a single
homogenous layer (Fig. 6d). Stirring was then arrested and the
phases were allowed to separate, allowing the separation
wo immiscible solutions. (b) Monitoring liquid level to determine the
actor (grey) was captured via the EasyMax overhead stirrer, while the
cheme of (–)TBZ and (–)CSA sodium salt separation in DCM and water.
ture of (–)TBZ and (–)CSA sodium salt in DCM and water.

Chem. Sci., 2024, 15, 1271–1282 | 1279
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Fig. 7 Conceptual illustration of how multi-outputs monitoring
enables modular automation for diverse workflows.
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kinetics to be resolved. This cycle was repeated, increasing the
rate of stirring, which resulted in progressively longer settling
times with higher agitation rates. Stirring at 250–350 rpm was
found to be optimal as the mixture displayed reliable and rapid
phase split. An agitation rate of 450 rpm led to a longer phase
split time. While agitation 650 rpm and higher had a stable
emulsion that would not separate without intervention.

Summary

HeinSight2.0 showcases its agility through multi-outputs
detection. Treating each visual feature as an independent task
enables the seamless mixing and matching of available visual
cues, as illustrated in Fig. 7. This exibility facilitates effortless
reconguration, allowing a single CV system to pivot seamlessly
between diverse applications outlined above. Leveraging
modularity, we establish a versatile CV system for workup
processes, where the primary output forms the backbone, while
other outputs complement results and offer in-depth mecha-
nistic insights.

Conclusions

In summary, HeinSight2.0 represents a signicant advancement
over its predecessor, seamlessly integrating image analysis and
CNN technology to enable the simultaneous detection and
quantication of various events within the EasyMax 102
1280 | Chem. Sci., 2024, 15, 1271–1282
automated lab reactor. Through integration with iControl, this
CV system not only facilitates holistic observations over time
but also enables triggered operations based on visual cues.

Currently, we are enhancing HeinSight2.0's adaptability by
employing transfer learning to extend its capabilities to various
multi-scale reactor types and enable high-throughput experi-
mentation. Our vision is for this system to seamlessly integrate
with PAT tools and mathematical models, enhancing process
intensication technology with visual observations. Looking
ahead, we anticipate integrating HeinSight2.0 CV system with
other AI tools like large language models (e.g., ChatGPT) and
voice activation, creating a framework that combines inputs
from various modalities to solve complex AI problems. This
collaborative ecosystem, facilitated by Hugging Face,47 will
enable the integration of diverse AIs, streamlining the devel-
opment and optimization of chemical processes and leading to
a SDL for workup processes.

Author contributions

Rama El-khawaldeh: conceptualization, methodology, valida-
tion, investigation, data curation, visualization, writing (orig-
inal dra). Mason Guy: investigation, data curation. Finn Bork:
conceptualization, validation, data curation. Nina Taher-
imakhsousi: methodology, data curation. Kris N. Jones: con-
ceptualisation, resources, writing (review and editing). Joel M.
Hawkins: conceptualisation, resources, writing (review and
editing). Lu Han: data curation, validation, writing (review and
editing). Robert P. Pritchard: data curation, validation. Blaine A.
Cole: data curation. Sebastien Monfette: conceptualisation,
supervision, resources, writing (review and editing), project
administration; validation. Jason E. Hein: conceptualisation,
formal analysis, resources, data curation, writing (review and
editing), supervision, project administration, funding
acquisition.

Data availability

HeinSight2.0 code is available at: https://gitlab.com/heingroup/
heinsightv2. HeinSight2.0's model, training/testing data, and
3D enclosure.stl les are found at https://drive.google.com/
drive/folders/1M1zpiaThiVlq9–AjoLQ_K6QHCkjoXjb.

Conflicts of interest

There are no conicts to declare.

Acknowledgements

The authors gratefully acknowledge Ms Paloma Prieto, Dr
Andrew J. Kukor, and Dr Joshua S. Derasp for guidance and
conversation in the preparation of this manuscript. The
following Pzer colleagues are also acknowledged for useful
discussions and assistance with the internalization of the CV
system: Russell Algera, Elvis Eugene, Sheri Hedquist, Nahian
Khan, Carolyn Mastriano, Jason Mustakis, Kakasahed Nandi-
wale, Giselle Reyes, and Chase Salazar. The authors further
© 2024 The Author(s). Published by the Royal Society of Chemistry

https://gitlab.com/heingroup/heinsightv2
https://gitlab.com/heingroup/heinsightv2
https://drive.google.com/drive/folders/1M1zpiaThiVlq9--AjoLQ_K6QHCkjoXjb
https://drive.google.com/drive/folders/1M1zpiaThiVlq9--AjoLQ_K6QHCkjoXjb
http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d3sc05491h


Edge Article Chemical Science

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 2

7 
de

 n
ov

em
br

e 
20

23
. D

ow
nl

oa
de

d 
on

 1
3/

2/
20

26
 1

0:
10

:3
2.

 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n-

N
on

C
om

m
er

ci
al

 3
.0

 U
np

or
te

d 
L

ic
en

ce
.

View Article Online
thank Mettler-Toledo Autochem for their generous donation of
process analytical equipment (Easy Max 102). Student fellow-
ships were provided by the Natural Sciences and Engineering
Research Council of Canada (CGS-M & CGS-D to R. E.; PGS-D
to M. G.) and the University of British Columbia (Killam
Doctoral Scholarship to R. E.). Research support for this work
was provided by Pzer Global Research, the University of British
Columbia, the Canada Foundation for Innovation (CFI-35883)
and the Natural Sciences and Engineering Research Council
of Canada (NSERC; RGPIN-2021-03168, Discovery Accelerator
Supplement).

Notes and references

1 K. Thurow and S. Junginger, Devices and Systems for
Laboratory Automation, Wiley, 1st edn, 2022, DOI: 10.1002/
9783527829446.

2 M. Abolhasani and E. Kumacheva, The Rise of Self-Driving
Labs in Chemical and Materials Sciences, Nat. Synth., 2023,
2(6), 483–492, DOI: 10.1038/s44160-022-00231-0.

3 A. Vriza, H. Chan and J. Xu, Self-Driving Laboratory for
Polymer Electronics, Chem. Mater., 2023, 35(8), 3046–3056,
DOI: 10.1021/acs.chemmater.2c03593.

4 M. Christensen, L. P. E. Yunker, F. Adedeji, F. Häse,
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