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rich experimentation and machine-assisted
process development†
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The field of reaction engineering is in a constant state of evolution, adapting to new technologies and the

changing demands of process development on accelerated timelines. Recent advancements in laboratory

automation, data-rich experimentation, and machine learning have revolutionized chemical synthesis

research, bringing significant enhancements to reaction engineering. To showcase these advantages, this

study introduces a machine-assisted process development workflow that uses data-rich experimentation

to optimize reaction conditions for drug substance manufacturing. The workflow adopts a scientist-in-the-

loop approach, ensuring valuable contributions and informed decision-making throughout the entire

procedure. Two case studies are presented: a copper-catalyzed methoxylation of an aryl bromide and the

global bromination of primary alcohols in gamma-cyclodextrin. In addition to identifying the optimal

reaction conditions, the workflow emphasizes the importance of process knowledge. Data-driven reaction

models are constructed for both case studies, showcasing how early-stage reaction data can inform late-

stage process characterization and control strategies. The speed and efficiency offered by the machine-

assisted approach enabled complete reaction optimization and reaction modeling in one week,

approximately. This reaction data, along with other process knowledge obtained throughout development,

highlight the future prospects for reaction engineering in drug substance development. As the field

continues to embrace innovative technologies and methodologies, there is vast potential for further

advancements in reaction engineering practices, leading to more streamlined and efficient process

development and accelerating the discovery and optimization of chemical manufacturing processes.

Introduction

In drug substance process development, identifying the optimal
reaction conditions is of paramount importance. The search for
safe, scalable operating conditions that maximize product yield
and ensure quality active pharmaceutical ingredient (API) in
manufacturing demands a substantial investment of time and
resources. Recently, the breadth of reaction optimization has
expanded beyond standard reaction metrics and encompasses
other manufacturing objectives, such as sustainability, raw
material cost reduction, and process cycle time minimization.
Striking a suitable balance among these diverse goals is a core
responsibility of process chemists and chemical engineers, but
remains challenging for numerous reasons. Beyond the

technical complexities of nonlinear reaction responses,
identifying the optimal conditions is further exacerbated by
constraints in resources, accelerated timelines, and competing
process development objectives. The confluence of these factors
has spurred considerable investment in new tools and
methodologies to streamline process optimization in drug
substance development.

Automation and data-rich experimentation (DRE) have
revolutionized process development by offering enhanced
capabilities at the lab benchtop.1 The integration of process
analytical tools, such as on-line HPLC2,3 and in situ
spectroscopy,4–7 increases the data density in each
experiment, providing information on both the reaction
kinetics and the overall reaction performance. Enhancements
to throughput can be achieved through the utilization of
parallel reactor technology, integrated with automated
sampling strategies, allowing for collection of comprehensive
reaction profiles.8 This enables a deeper understanding of the
correlation between reaction inputs and process dynamics.9

Moreover, advancements in analytical equipment along with
data analytics enable a higher throughput of off-line samples
with a more straightforward visualization of results.
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In recent years, the application of feedback optimization
algorithms to guide experiments towards desired conditions
has proven to be an effective and efficient approach to process
development.10–14 This is particularly evident in scenarios with
complex syntheses with multiple reaction variables. Initially
implemented in flow reactor systems, where sequential
experiments can be easily modified by adjusting flow rates, early
examples identified local solutions to simple optimization
problems.15–22 However, more recent demonstrations have
showcased the use of sophisticated operations, algorithms, and
multifaceted objective functions.12,23–33 To further expand this
methodology in chemical synthesis research, similar
approaches are required for reactions where batch operations
are preferred.

When selecting a batch reaction optimization platform,
careful consideration of various features is essential to ensure
that the experimental hardware and chosen algorithm align
with the goals of drug substance development. The choice of
reactor technology should be made based on factors such as
desired throughput, the physical properties of the reaction,
and the required data density. Plate-based reactors may be
appropriate when there is limited starting material and the
aim is to optimize reaction performance across multiple
solvents, bases, and catalysts.34,35 Larger reactors with
overhead stirring may be more appropriate when the goal is
to study the reaction with scale-up considerations. When it
comes to the optimization approach, selecting an algorithm
that is reputable for its experimental efficiency is obviously
important.36,37 However, equally important is choosing an
algorithm that aligns with the process uncertainties and the
experimental workflow. Consideration should be given to size
of the reaction design space, the algorithm's ability to
effectively handle experimental noise, its ability to update the
objective function and experimental constraints, and the
suggested number of experiments with each iteration (e.g.,
single sequential or multiple parallel experiments). These
features can be especially valuable during early process
development, when flexibility and overall experimental speed
are crucial.

This work presents one methodology for machine-assisted
batch reaction optimization with data-rich experimentation,
emphasizing important considerations in the process. To
illustrate the approach, two case studies are provided: the first
involves the copper-catalyzed methoxylation of an aryl
bromide38 (Scheme 1), while the second focuses on the global
bromination of primary alcohols in gamma cyclodextrin
(Scheme 2).39 In both cases, a “scientist-in-the-loop” approach

was employed to contribute valuable insights and filter the data
effectively. The experimental design and algorithmic operations
were carefully selected to ensure that iterations of
experimentation, data acquisition, and analysis could be
completed within one week, aligning with common drug
substance development timelines. Furthermore, post-run data-
driven reaction modeling was conducted, highlighting how the
optimization process can be further utilized to extract kinetic
information and provide design space details for formal process
characterization.

Experimental
Automated reactor technology

All experiments were performed in an Integrity 10 reaction
block that was equipped with an AmigoChem workstation for
automated reaction sampling. These combined technology
platforms enable 10 reactions to be operated simultaneously,
independently, and with custom sampling strategies.
Reactions were performed in 25 mm diameter glass tubes
(Kimble, 150 mm height) with magnetic stir bar agitation
and jacket control temperature. Reactions were performed
under a nitrogen blanket to maintain inert conditions. The
reaction jacket temperature in each experiment was
determined by the optimization algorithm and manually
entered in the AmigoChem operating software. To enable
reaction profiling, automated sampling technology and a
liquid handling arm were utilized to collect reaction samples,
which were subsequently analyzed using off-line UPLC (ultra-
performance liquid chromatography). Samples withdrawn
from each reactor were charged to 2 mL UPLC vials that were
pre-diluted with an appropriate quench and diluent.

The temperature range offered by the AmigoChem
workstation was considered suitable for conducting
optimization investigations, and the Teflon coated stir bar
ensured adequate mixing for the methoxylation's thin slurry
nature and the homogeneous bromination. These cursory
suitability checks instilled confidence that the optimization
results would translate well to other equipment and scales.
These features also made the AmigoChem the ideal system
for these specific optimization investigations due the low
starting material consumption per experiment, the parallel
reactor technology enabling the desired experimental
throughput, and the data-rich reaction sampling to enable

Scheme 1 Copper catalyzed methoxylation of aryl bromide (1) to
produce methyoxyphenol (2).

Scheme 2 Bromination of γ-cyclodextrin via Bromo–Vilsmeier reagent
(4) to produce drug substance intermediate Broomdex (5).
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essential kinetic and stability information to support process
modeling.

Methoxylation procedure

All reactions were prepared in a nitrogen inert glove box
using anhydrous solvents and reagents that were degassed in
the nitrogen environment. Reactions were prepared by
charging 3 g of aryl bromide (1) DABCO salt to a Kimble tube,
followed copper bromide (Alfa Aesar), dimethyl formamide
(Sigma Aldrich), and sodium methoxide (25 wt% in
methanol, Sigma Aldrich). The amounts of copper bromide,
DMF, and sodium methoxide in each experiment were
determined by the optimization algorithm. Additional
methanol was charged to bring the total liquid volume of
each reaction to 15 mL. A magnetic stirrer was added to each
reactor before being capped with an Integrity 10 Teflon
reactor lid. Reactors were transported to the Integrity reaction
block and interlocked with a nitrogen manifold to maintain
inertion. Reactions were controlled by jacket temperature on
the Integrity 10 block, each determined by the optimization
algorithm.

During the reaction, 40 μL samples were collected by the
AmigoChem and diluted with 960 μL of a quench solution
(4 : 1 v/v acetonitrile: acetic acid solution) in a 2 mL UPLC
vial. Post experiment, serial dilution (5×) of samples was
performed by combining 200 μL sample with 800 μL quench.
Analysis of reaction results was performed on Agilent 1200
series UPLC, using an Acquity UPLC BEH C18 column (1.7
μm × 2.1 mm × 100 mm, P/N: 186002352) with detection at
210 nm. Reaction results were reported as liquid
chromatography area percentage (LCAP). See the ESI† for
additional analytical information.

Bromination procedure

All reactions were prepared in a nitrogen inert glove box
using anhydrous solvents and reagents that were degassed in
the nitrogen environment. A starting material stock solution
was prepared by adding 600 ml DMF (Sigma Aldrich) to 56.4
g (88.6 wt%, 50.0 g assay) of wet γ-cyclodextrin. This solution
was then dried by constant volume distillation to <200 ppm
water. A magnetic stirrer bar was added to each reactor and
then the Bromo–Vilsmeier reagent (Millipore Sigma) was
added followed by 10.6 mL of the cyclodextrin solution (1 g
basis of cyclodextrin). Additional DMF was then added to
arrive at the necessary concentration and the reactor capped
with an Integrity 10 Teflon reactor lid. The amounts of the
Bromo–Vilsmeier reagent and addition DMF in each
experiment were determined by the optimization algorithm.
Reactors were transported to the Integrity reaction block and
interlocked with a nitrogen manifold to maintain inertion.
Reactions were controlled by jacket temperature on the
Integrity 10 block, each determined by the optimization
algorithm.

During the reaction, 250 μL samples were collected by the
Amigochem and added to 2 mL HPLC vials containing 50 μL

of water. Upon reaction completion, the samples were
removed, 15 μL of 48% HBr (Thermo Scientific) added, stir
bars added and placed on a tumble stirrer heated to 40 °C
for 5.5 h. The samples were then cooled to room
temperature, 1.5 mL of 50% DMSO (Sigma Aldrich)/
Acetonitrile (Sigma Aldrich) was added and then analyzed by
UPLC. See the ESI† for additional analytical information.

Scientist-in-the-loop optimization methodology

Self-optimizing systems are characterized by their ability to
function autonomously, which, in theory, offers high
efficiency. However, in practice, relying solely on such
systems can pose unnecessary risks in reaction development,
particularly when development time and material resources
are limited. Experimental nuances, including sampling
inaccuracies or unexpected shifts in chromatograms, may be
challenging for an algorithm to independently detect. As
iterative data becomes available, it may be necessary to
modify the objective function for reaction optimization to
address unforeseen issues, such as the emergence of a new
concerning impurity. Fully automated systems, devoid of
human involvement, cannot anticipate the evolving needs
and judgment of a scientist, especially when there is
uncertainty in the reaction and analytical outcomes. For
these reasons, an optimization strategy that incorporates the
scientist-in-the-loop was implemented in this work.

The stable noisy optimization by Branch and Fit
(SNOBFIT) algorithm developed by Huyer and Neumaier40

was implemented in this machine-assisted reaction
optimization demonstration, although numerous alternative
algorithms could have been considered. Because it is a black-
box approach, mechanistic information is not required. The
algorithm accounts for noisy measurement responses, which
is a common occurrence in experimental settings, and allows
the user to specify the resolution in optimization variables.
Each call to the algorithm is considered an iteration, and the
number of experiments reported per iteration can be tailored
to suit the specific capabilities of the experimental
technology employed. For instance, in the present work, 10
experiments were executed per call to the algorithm,
coinciding with the parallelizability of the system, enabling
10 reactions to be conducted simultaneously per iteration.
The experimental throughput played an important role in
selecting the SNOBFIT algorithm as it can parallelize search
experiments. In contrast, traditional Bayesian optimization
approaches are typically sequential in nature, although
ongoing research is addressing this limitation.41,42 Specific
SNOBFIT algorithm details for both case studies, including
parameter settings and implementation specifics, can be
found in the ESI.†

Results and data analysis
Methoxylation optimization and analysis (case study 1)

The first demonstration focused on optimizing the reaction
performance of the copper-catalyzed methoxylation reaction
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outlined in Scheme 1. This straightforward reaction was
chosen as a means to refine the experimental workflow
associated with the multi-variable optimization approach
utilizing parallel reactors. While historical laboratory data
was not employed to initiate the SNOBFIT algorithm, prior
knowledge was utilized to determine suitable reaction
variables and their corresponding lower and upper bounds.
Prior to commencing the experimental phase, a maximum of
40 experiments was predetermined to enable three active
rounds of optimization. This threshold was carefully selected
to align with the allocation of starting materials for the
optimization investigations and to ensure that the duration
of the optimization process remained within the targeted
timeframe of approximately one week.

The optimization of the reaction conditions involved
adjusting several key variables, including the reaction
temperature, copper bromide loading, DMF equivalents,
sodium methoxide solution equivalents, and reaction time.
The lower and upper bounds for each variable can be found
in Table 1. In the first call to the SNOBFIT algorithm, 10
space-filling points were generated to provide essential
information for subsequent search experiments. During these
initial experiments, the objective function was not formally
defined yet, as the reaction outcomes under the diverse range
of conditions would determine which reaction properties to
exploit and which to avoid. While the SNOBFIT algorithm
requested a single time measurement for each experiment,
multiple measurements were taken throughout the course of
each reaction. This time-series information was used to
assess whether kinetic phenomena, such as reaction stalling
or product degradation, should be incorporated into the
objective function. Moreover, a subset of these reaction
results that were of interest to the scientist were added to the
optimization routine.

The reaction results of the initial call to the algorithm are
provided in the ESI,† and revealed several noteworthy trends
that influenced the subsequent optimization process. In
general, all experiments resulted in incomplete conversion
and only several experiments resulted in modest product
yield. Considering this observation, the upper bounds for
both temperature and reaction time were extended to explore
conditions with faster kinetics and complete conversion (see
Table 1 footnote). Concerning the reaction performance, the
profiles did not unveil any significant issues regarding
impurity generation or product degradation. Therefore, the
reaction optimization procedure presented an opportunity to
maximize yield and process efficiency. The ability to analyze
preliminary reaction data, formulate informed objectives,
and update the feasible design space are key advantages of
the scientist-in-the-loop optimization method. This increased
flexibility leads to more significant improvements in
subsequent rounds of reaction optimization.

For this methoxylation, the optimizer aimed to maximize
a two-term objective function, as outlined in Table 1. The
first term represented product yield, while the second term
served as an incentive to minimize catalyst usage, aligning

with a common goal in reaction development. The round 1
reaction results were converted to objective function values,
and are provided in Fig. 1a.

Following the initial round of experiments, subsequent
iterations using the SNOBFIT algorithm actively searched for
the optimal reaction conditions. Each iteration involved
conducting 10 experiments with reaction temperatures,
charge amounts, and reaction times specified by the
algorithm. Within each iteration, seven of the 10
experiments were dedicated to searching for the local
optimum, while the remaining three searched unexplored
regions to better ensure that the best conditions
corresponded to a global optimum. In each experiment, the
requested SNOBFIT sample time was either collected or
substituted with a similar time point already present in the
reaction profile. Once the round of experimentation was
completed, the entire reaction profile data was collected,
analyzed, and utilized to calculate the objective function
values. However, only the objective function value for the
SNOBFIT time point and other user-selected points were
inputted into the algorithm. This approach capitalized on
the nearest-neighbor algorithm utilized by SNOBFIT to
construct surrogate models and to perform iterative searches
for optimal conditions, allowing for a more comprehensive
exploration of experimental conditions and preventing bias
of the sample time. Utilizing more data in the algorithm may
be possible in future works through appropriate scaling of
reaction variables.

The reaction results from rounds 2 to 4 of the optimization
process are depicted in Fig. 1b–d, respectively. To effectively
summarize the reaction performance (y-axis) over time (x-axis),
the data markers are encoded with various properties, such as
type, size, interior color, and outline color, to represent the
multidimensional inputs of the reaction. Compared to the
initial search experiments, shown in Fig. 1a, the algorithm
rapidly identified an ensemble of reaction conditions during
the round 2 search (Fig. 1b) that collectively exhibited faster
reaction rates and higher conversions. This trend of
performance improvement continued in rounds 3 and 4
(Fig. 1c and d), except for experiments intentionally targeting
unexplored regions. Reaction conditions for SNOBFIT points
with the maximum objective function and those yielding the

Table 1 Objective function and constraints applied in the case study 1
optimization

Reaction Scheme 1 – methoxylation

Objective function f 1 ¼ LCAP2 þ 10· 1 − CuBr½ �
10%

� �
Lower bound Upper bound

Temperature (deg. C) 60 (80)a 85
CuBr (mol%) 1 10
DMF (eq.) 0 3
NaOMe (eq.) 2.5 5.0
Time (h) 2 (24)a 30

a Initial bound on variable before adjusting after round 1 results.
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highest product yield are detailed in Table 2. Furthermore, all
reaction conditions and their corresponding product profiles
from each experiment can be found in the (ESI†).

The end-of-reaction product LCAP and the corresponding
conditions requested by the SNOBFIT algorithm are displayed
in Fig. 1e. The clear background data points represent

experiments directed by the algorithm, leading toward the
optimal reaction conditions. In contrast, the shaded regions
denote experiments selected by the algorithm for the initial
space-filling design or in unexplored areas of the design space,
providing comprehensive search coverage. This plot explains
how the algorithm converged towards conditions at the upper

Fig. 1 Optimization results for methoxylation investigation with objective function and experimental conditions denoted for a) the first round, b)
the second round, c) the third round, and d) the fourth round, along with e) a strip chart correlating experimental coded conditions (see ESI†) with
end of reaction (EOR) 2 LCAP for all runs, with grey background denoting experiments selected for space-filling design or targeted in unexplored
regions.

Table 2 Reaction optimization outcome for methoxylation, reporting SNOBFIT conditions that maximized the objective function value and the SNOBFIT
conditions that resulted in the highest observed product LCAP

Experiment Maximum Temperature (deg. C) CuBr (mol%) NaOMe (eq.) DMF (eq.) Time (h) Obj. Fun. LCAP 2

14 Objective Function 83 6.0 5.0 2.88 25.2 97.2 92.8
34 LCAP 2 76 8.0 5.0 2.88 28 96.9 95.0
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ranges of temperature, DMF equivalents, and NaOMe
equivalents, while identifying an appropriate CuBr loading to
achieve higher conversion under these conditions. The
alignment between expected trends and the performance of the
algorithm in penalizing experiments with elevated CuBr levels
showcases the logical nature of the operating conditions. This
congruence between expectations and algorithm output is an
important step in validating machine-assisted process
workflows into drug substance development.

While the optimization results are directly impactful to
process development, leveraging the data to build process
knowledge that transcends development life cycle is just as
important. One such approach is presented below by
interrogating the data through machine learning practices and
data-driven modeling, though alternative approaches to extract
similar knowledge exist.43–48

To gain a better understanding of the reaction performance,
a clustering algorithm was used to identify experimental data in
the vicinity of the highest yielding run, experiment 34. From the
SNOBFIT reaction dataset, 15 experiments were identified as
being reasonably close to the optimal conditions using the
Mahalanobis distance as a metric (see ESI† for approach and
corresponding experiments). The reaction results from the set
of local experiments were then modelled using functional
principal component analysis (FPCA).49–53 FPCA is a branch of
functional data analysis (FDA), an applied statistics discipline
that involves the analysis and regression of data objects, curves,
or functions rather than individual points.49 In this work, the
FPCA methodology utilized the principal analysis by conditional
estimation (PACE) algorithm, allowing its application to

datasets with sparse or dense sampling strategies.50–52 For the
sake of brevity, the discussion below is streamlined to provide a
basic understanding of the modeling framework applied to the
reaction results. A more detailed description of the methodology
is provided in the ESI† and supported by the referenced
literature.

Similar to principal component analysis (PCA), FPCA
effectively reduces the dimensionality of the data by
identifying functional principal components that account for
longitudinal (time) variations, along with the corresponding
FPC scores that elucidate the variation across experiments.
Mathematically, this is provided by eqn (1), where ŷ(t) is the
FPCA prediction for the reaction response time profile, μ(t) is
the functional mean, ϕk(t) is a set of k eigenfunctions, also
referred to as the functional principal components (FPC),
and ξik is the corresponding FPC score in experiment i. To
move from a descriptive model to a predictive model, the
FPC scores can be treated as a separate response and
regressed against the experimental input factors, as in eqn
(2), where β terms are regressed coefficients, xp and xq
represent indexed input factors, and NF is the number of
factors.54 See ESI† for more information.

by tð Þ ¼ μ tð Þ þ
XK
k¼1

ξ i;kϕk tð Þ (1)

bξ ik ¼ β0 þ
XN F

p¼1

βpxp þ
XN F

p¼1

XN F

q¼pþ1

βpqxpxq (2)

Fig. 2 Functional principal component analysis (FPCA) model for a set of methoxylation results in the local neighborhood around the optimal
yield conditions (experiment 34) with experimental data ( ), FPCA model (eqn (1), ), and FPCA model with regressed coefficients (eqn (2), )
overlaid.
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Using the manner described above, a FPCA model with
regressed FPC scores was performed and the results are provided
in Fig. 2. Statistical analysis associated with the FPC score
regression is provided in the ESI.† As the results illustrate, there
is excellent agreement between the experimental data, and the
FPCA model using both the numerically derived FPC scores and
the regressed scores (eqn (2)) for many of the experiments. While
some discrepancies exist at early reaction times (e.g., experiments
16, 17, 32), the agreement improves toward the end of the
reaction where conversion predictions matter most.

Notably, as the objective is to gather this reaction
optimization data in the early stages of development, these
models can be utilized to identify robust operating spaces as
the process matures and development progresses towards
manufacturing. To demonstrate this potential, the developed
FPCA model was used to estimate the product response as a
function of temperature and copper bromide within the design
space used for model development. As the contour profiles in
Fig. 3 suggest, a wide operating space that achieves target

reaction performance can be achieved by tuning the
temperature, CuBr loading, and reaction time.

Bromination optimization and analysis (case study 2)

Using a similar approach to the previous case, the
bromination reaction outlined in Scheme 2 was optimized
using the SNOBFIT algorithm. The algorithm was not seeded
with any prior data and a total of 40 experiments were
allotted for the optimization investigation. The optimization
variables and the corresponding ranges are provided in
Table 3. This particular reaction presented unique challenges
for process development as the detection of partially
brominated reaction intermediates using UPLC was limited.
Additionally, there was a risk of product degradation and
impurity generation due to the strongly acidic reaction
conditions used. These characteristics made it an ideal
candidate for machine-assisted process development as
process decisions would be based on limited reaction
response data.

The assay yield from the initial 10 space filling experiments
performed by the SNOBFIT algorithm are presented in the ESI.†
Notably, these experiments demonstrated the diverse range of
reaction behaviors achievable within the defined design space.
This encompassed conditions with low conversions, those
exhibiting fast kinetics and high conversion, as well as instances
leading to rapid product degradation. Such product instability
poses significant challenges for control strategies that rely on
in-process quality control samples with long turnaround times.
Consequently, the objective was to identify conditions that
would result in high product yield while also ensuring product
stability. To achieve this goal, the objective function to
maximize, as outlined in Table 3 incorporated a penalty
function to discourage experimental conditions in which
notable product degradation was observed. Furthermore, it is
noteworthy to mention the artificially low assay yield in several
data points due to an imperfect sampling protocol. These data
points were removed from consideration for the purposes of
optimization and post-run analysis (see ESI† for specific
samples). This observation emphasizes one of the critical needs
for a scientist-in-the-loop machine assisted development.

Fig. 3 Methoxylation reaction profiles estimated through FPCA model
as function of temperature and CuBr using coded values (see ESI†),
keeping DMF and NaOMe equivalents at optimized values (see
Table 2).

Table 3 Objective function and constraints applied in the case study 2
optimization

Reaction Scheme 2 – bromination

Objective function
f 2 ¼ AY%5 þ h

h ¼ 0 if
ΔAY%5

Δt
> − 0:25%=h

− 20% otherwise

8<
:

Lower bound Upper bound

Temperature (deg. C) 40 90
DMFa (mL g−1) 10 20
4 (eq.) 12 24
Time (h) 2 20

a Basis for solvent charge was mass of 3.
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Objective function values for this first set of experiments are
provided in Fig. 4a.

Results from optimization rounds 2–4 for the bromination
are illustrated in Fig. 4b–d, respectively. In each round, the
algorithm allocated seven experiments to local optimization
searches and three experiments in unexplored regions to ensure
the identification of the global optimum. The reaction profiles
convincingly demonstrate the algorithm's effectiveness in
rapidly identifying experimental conditions that result in fast
kinetics, high conversion, and good stability as evident in the
first set of search conditions of round 2 (Fig. 4b). Similar
outcomes continued throughout the subsequent optimization
rounds. Conditions corresponding to the optimal objective
function are provided in Table 4. Because the penalty function
was not active in this run, the optimal objective function
corresponds to maximum yield in this result. See the ESI† for
complete bromination optimization data.

In contrast to the previous methoxylation case study, the
optimization investigation in this scenario yielded limited

dynamic data. Nevertheless, this data can still serve as a
valuable source for generating crucial process knowledge in
subsequent development stages. To demonstrate this,
experimental data within a local neighborhood surrounding
the optimal conditions for the assay yield at 8 hours were
utilized to construct a response surface model. Through
stepwise linear regression analysis of 20 experiments, a
statistically significant quadratic model was derived (see
ESI†). The resulting contour plot, depicted in Fig. 5,
illustrates the relationship between temperature and
equivalents of 4 in relation to the assay yield. This plot
emphasizes the sensitive nature of the reaction and the need
to strike a balance between temperature and Bromo–
Vilsmeier reagent equivalents to achieve the desired
conditions. Notably, at higher reaction temperatures, elevated
levels of 4 were found to enhance product stability. These
interesting findings were further validated through detailed
characterization experiments and mechanistic studies
conducted in separate research work.39

Fig. 4 Optimization results for bromination investigation with objective function and experimental conditions denoted for a) the first round, b) the
second round, c) the third round, and d) the fourth round.

Table 4 Reaction optimization outcome for bromination, reporting SNOBFIT conditions that maximized objective in routine

Experiment Temperature (deg. C) Volume (mL g−1) 4 (eq.) Time (h) Obj. Fun.

40 80 17.6 22.6 20 97.8%
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Conclusions

The growth of laboratory automation and data-rich
experimentation technologies, in parallel with the expansion of
data science and machine learning applications into chemical
synthesis, will emphasize the need for reaction engineering
practices to adopt a machine-assisted process development
approach. In this study, the effectiveness of such a methodology
was presented for the reaction optimization of a copper-
catalyzed methoxylation and a multi-substituted bromination
using the SNOBFIT algorithm. A workflow was established to
achieve reaction optimization in approximately one week
through judicious selection of the reaction equipment,
automated sampling technology, and algorithm to fit the
specific reaction properties and optimization needs. The
scientist-in-the-loop approach played a critical role in evaluating
the results, filtering data, and making informed decisions to
define the objective functions and the process constraints. This
highlights the importance of human expertise in
complementing and guiding the optimization process.

Applying similar workflows in early drug substance programs
have the promise to greatly accelerate overall process
development timelines when the optimization data is leveraged
throughout the research lifecycle. In this work, that data bridge
was exemplified by using data-driven modeling methods.
Functional principal component analysis was demonstrated as
a powerful process modeling tool for the methoxylation kinetics;
whereas, in the bromination case study, a more standard
empirical model was established using a nearest neighbor
algorithm and stepwise regression. Though beyond the scope of
this individual work, the greatest gains for this approach are
met when the optimization results are for long-term route
development in early development are retained and leveraged in
late-stage process characterization to streamline quality risk
assessment and control strategy selection.

The outlook for machine-assisted process development
and similar methodologies for reaction engineering are
highly promising. Continued advancements in data

throughput, data-rich experimentation, data engineering and
analytics, as well as optimization methods, will play pivotal
roles in driving significant improvements in these reaction
optimization approaches. Beyond technical growth,
successful implementation and sustainability of machine-
assisted process development approaches require careful
consideration of distribution and adoption of the technology.
One barrier on this front is the initial uncertainty associated
with the resource commitment, including time and material,
as well as the expected gains from the optimization
investigation compared to the current state. To facilitate
widespread adoption, the development of numerical methods
that can confidently establish tight upper and lower bounds
around the expected benefits and so-called costs using
minimal experimental data points will be invaluable.

Overall, with continued advancements and efforts in these
areas, machine-assisted process development will continue to
revolutionize reaction engineering, enabling more efficient
and effective optimization strategies and driving progress in
chemical manufacturing process.
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