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The research found that after doping with rare earth elements, a large number of electrons and holes
will be produced on the surface of AIN, which makes the material have the characteristics of
spontaneous polarization. A new type of ferroelectric material has made a new breakthrough in the
application of nitride-materials in the field of integrated devices. In this paper, the application prospects
and development trends of ferroelectric material SCAIN in memristors are reviewed. Firstly, various
fabrication processes and structures of the current SCAIN thin films are described in detail to explore the
implementation of their applications in synaptic devices. Secondly, a series of electrical properties of
ScAIN films, such as the current switching ratio and long-term cycle durability, were tested to explore
whether their electrical properties could meet the basic needs of memristor device materials. Finally, a
series of summaries on the current research studies of SCAIN thin films in the synaptic simulation are
made, and the working state of ScAIN thin films as a synaptic device is observed. The results show that
the ScAIN ferroelectric material has high residual polarization, no wake-up function, excellent stability
and obvious STDP behavior, which indicates that the modified material has wide application prospects in
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Wider impact

We report a new ferroelectric material ScAIN. The doping of rare earth element Sc leads to very high remnant polarization, and an excellent switching ratio and
cycle stability. In this paper, we review the application prospects and development trends of ferroelectric ScAIN in memristors, discuss its resistive switching
characteristics and synaptic performance, and report the related applications of the material in convolutional neural networks (CNN) and hardware arrays.
Nitride memristors have a more stable structure and cycle performance compared with conventional oxide memristors. If nitride materials can be used in
memristors on a large scale in the future, it can effectively extend the service life of memristors and reduce the cost of memristors. At present, the performance
of oxide-based memristors encounters a bottleneck (due to the continuous change of oxygen vacancies under long-term switching cycles, the device structure is
unstable), and nitride-based memristors are undoubtedly a reliable choice for the new generation of memory computing devices because of the more stable
nature of nitrogen vacancies.

1. Introduction
1.1. Background and significance of ferroelectric materials

Ferroelectric materials are a kind of special functional material
with the ferroelectric effect, and their research has important
theoretical and application value. Ferroelectric materials can
undergo reversible polarization transition under the action of
an electric field, and have the characteristics of spontaneous
polarization, piezoelectricity and pyroelectricity. They are
widely used in the fields of microelectronics, optoelectronics,
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sensing, energy storage and electronic information. With the
development of science and technology, the research and
application of ferroelectric materials have made new break-
throughs. In recent years, new ferroelectric materials such as
perovskite ferroelectrics, rare earth doped ferroelectrics and
two-dimensional ferroelectrics have been continuously emer-
ging, which has injected new vitality into the research of
ferroelectric materials. In the future, ferroelectric materials
are expected to play an important role in the fields of electronic
information, new energy and aerospace. Therefore, studying
the background and significance of ferroelectric materials not
only helps to understand the physical mechanism of ferro-
electric effects, but also provides theoretical support and tech-
nical guidance for the application of ferroelectric materials,
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which is of great significance in promoting the development of
related fields.

1.2. Overview of ScAIN as an emerging ferroelectric material

III-N semiconductors have received significant attention in the
research and development of new generation semiconductor
device materials, due to their wide and tunable band gap, high
electron mobility and chemical stability."” In order to further
explore the properties of III-N semiconductors to meet the
requirements of large capacity and high speed of current
micro-devices, people doped rare earth elements on the basis
of 1II-N semiconductors, such as Nb, Sc, B and so on.*™! III-N
semiconductors have a large spontaneous polarization prop-
erty, which produces a large number of electrons and holes on
the surface of the material after doping with rare earth ele-
ments, which undoubtedly improves the ferroelectricity
and superconductivity of the material.”>"® According to
Wang et al. research studies, SCAIN can be completely epitaxi-
ally grown on metal electrodes to achieve an ideal single
crystal heterostructure.’®'” It should be pointed out that
ScAIN is compatible with CMOS technology even in harsh
environments.'®>°

1.3. Importance of memristor technology in advanced
electronics

In 1971, on the basis of the capacitor (1745), the resistor (1828)
and the inductor (1831), Pro. Chua first proposed the fourth
passive device memory resistance, which is defined by the
constitutive relationship between electric charge g and mag-
netic flux ¢.2*72° With the development of memristor research,
it has been found that the device transmits and processes data
in a way similar to human nerve information transmission, and
can respond to pulse voltage with a highly similar pulse-
dependent plasticity (STDP) mechanism to the biological
brain.*®*> Memristor devices consist of a top electrode, a
bottom electrode and an insulating layer, which correspond
to the presynaptic membrane, postsynaptic membrane and
neurotransmitter of human synapses, respectively. The char-
acteristics of low power consumption and high scalability of
memristors are considered to subvert the traditional key com-
ponents of the Neumann computing architecture.*®™*°

1.4. Obijectives of the review

In this paper, we introduce the application of ScAIN in mem-
ristors with three aspects: firstly, we report and summarize the
preparation methods of ScAIN thin films in recent years, mainly
focusing on molecular beam epitaxy and magnetron sputtering.
The structures of the thin films fabricated by the two different
methods and the methods used to make them compatible with
CMOS are reported. Secondly, the electrical properties of SCAIN
were tested. Firstly, it is reported that Sc-doped AIN materials
exhibit ferroelectricity, and the effects of different Sc doping
concentrations on the ferroelectric properties of SCAIN materi-
als are further compared. Secondly, the visualization of switch-
ing and durability of ScAIN ferroelectric materials are reported,
and the C-V test results of the materials are studied; thirdly, the
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electrical test results of ScAIN are compared with those of
traditional oxide materials. Furthermore, we report that SCAIN
exhibits STDP (spike timing dependent plasticity) behavior
similar to human synapses in recent years. An artificial synapse
device based on ScAIN is simulated and tested in the image
recognition system, and its weight distribution and image
recognition rate are reported. Finally, we summarize and pro-
spect the application of ScAIN in memristors in recent years.

2. Doping-induced spontaneous
polarization in SCAIN
2.1. Mechanism of spontaneous polarization in ScAIN

As a ferroelectric material, SCAIN has spontaneous polarization
properties, that is, the orientation of electric dipoles without an
external electric field. The spontaneous polarization properties
of ScAIN are closely related to the crystal structure and electro-
nic structure of the material.*™** In the crystal structure
of ScAIN, Sc and Al are located on separate lattice sites.
The greater atomic radius of Sc results in a more noticeable
ionic shift in the Sc-N bond, which increases the spontaneous
polarization. The electrical configuration of ScAIN significantly
affects its spontaneous polarization. The hybridization
of 3d and 4s orbitals of Sc and Al with the 2p orbitals of
N causes electron redistribution, increasing spontaneous
polarization.*®™°

The spontaneous polarization of ScAIN is determined by the
optimization of its crystal and the electronic structure.’'?
ScAIN exhibits spontaneous polarization as a ferroelectric
material, which means that it possesses oriented electric
dipoles in the absence of an external electric field. ScAIN’s
spontaneous polarization characteristics are intricately linked
to its crystal and electrical structures.>™>°

2.2. Rare earth element doping of AIN and its effects

The doping of rare earth metals can significantly improve the
application potential of AIN as a device material, which is
embodied in the following aspects:

Firstly, the doping of Sc can significantly increase the Curie
temperature of AIN, which is because the introduction of Sc can
change the lattice constant and lattice structure of AIN, thus
affecting its ferroelectric phase transition temperature.’”° At
the same time, the doping of Sc can also increase the saturation
polarization and coercive field strength of AIN, which is due to
the hybridization between the 3d electrons of Sc and the 2p
electrons of N to enhance the spontaneous polarization. Sec-
ondly, the doping of Sc can improve the leakage current
performance of AIN. This is because the introduction of Sc
makes the structure of AIN more complete and reduces the
formation of leakage current channels. In addition, the doping
of metal Sc can also improve the stability and rigidity of AIN
material structure, so that it can maintain good ferroelectric
properties at high temperature and harsh environment.***'

In conclusion, the effects of Sc doping on the ferroelectric
properties of AIN are mainly manifested in increasing the Curie
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temperature, enhancing spontaneous polarization, improving
leakage current performance and enhancing stability. These
effects make Sc AIN of importance in application in the field of
ferroelectric materials.

2.3. Generation of electrons and holes on the surface of AIN

AIN is a wide band gap semiconductor with a band structure
consisting of a conduction band, valence band, and band gap.62
When AIN is exposed to external energy, such light or an
electric field, the electrons in the valence band can absorb
energy and go to the conduction band, creating free electrons.
Simultaneously, vacancies will be created in the valence band,
known as holes. This mechanism is known as the photoelectric
effect.*?"%

Additionally, there is a surface state layer present on the
surface of AIN. The surface states result from the Al and N
atoms being incompletely arranged, leading to the creation of
extra energy levels inside the band gap.®®®” These surface states
can capture part of the electrons or holes to form surface state
electrons or holes. These surface state electrons and holes can
affect the surface properties and photoelectric properties of
AIN.*

Apart from the photoelectric effect, other processes includ-
ing heat stimulation and chemical reactions can also produce
electrons and holes.

2.4. Differentiating characteristics of ScAIN in comparison to
conventional ferroelectric materials

The distinctions between ScAIN and conventional ferroelectric
materials are as outlined:

ScAIN is a nitride, whereas typical ferroelectric materials are
mostly oxides. Nitrides are more durable and structurally stable
than oxides, making nitride devices more trustworthy in diffi-
cult operating situations over the long run.*®%7°

Secondly, the ferroelectric properties of ScAIN are unique
compared with traditional ferroelectric materials. The ferro-
electric phase transition temperature of ScAIN can be
above room temperature, which means that it can exhibit
ferroelectricity at room temperature.”"”> However, traditional
ferroelectric materials like PbTiO; and BaTiO; often have a
ferroelectric phase transition temperature below room tem-
perature, requiring them to display ferroelectric properties at
low temperatures.” ">

Furthermore, the physical properties of ScAIN are also
different from those of traditional ferroelectric materials. SCAIN
has the characteristics of high hardness, high elastic modulus
and high resistivity. These characteristics endow ScAIN with
broad application prospects in the development of hard coat-
ings, functional ceramics and electronic devices.”®””

In addition, the acoustic properties of ScAIN are also worthy
of attention. ScAIN has excellent acoustic properties, such as
high sound velocity and large sound attenuation.”®®' 1t is
commonly utilized in ultrasound, surface acoustic waves, and
several other applications. ScAIN also offers notable benefits in
terms of high temperature stability, chemical stability, mechan-
ical strength, and other aspects.
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3. Fabrication processes and structural
considerations
3.1. Various fabrication processes for ScAIN thin films

At present, the main fabrication processes of ScAIN films
include pulsed laser deposition (PLD), electron beam physical
vapor deposition (EBPVD), metal organic chemical vapor
deposition (MOCVD) and atomic layer deposition (ALD). These
processes can prepare high-quality ScAIN films with their own
characteristics and advantages.*”®® For example, PLD and
EBPVD techniques can prepare large-area, high-quality ScAIN
films, while MOCVD and ALD techniques can achieve better
doping and thickness control.

In practical applications, the preparation process of ScAIN
films should be selected according to specific needs. For
example, PLD and EBPVD are suitable choices for large-area
and high-quality ScAIN films. For scenarios that require higher
doping and thickness control, MOCVD and ALD technologies
can be considered.?*®°

3.2. Structural designs employed in ScAIN thin film
production

In the previous section, we introduce several fabrication pro-
cesses of ScAIN thin films, and then we report several typical
structures based on these fabrication methods. At present, the
thin film production process of ScAIN is mainly achieved by
sputter deposition.*™*° Lu et al. deposited Sc,Al,_,N thin films
in a pulsed DC physical vapor deposition system (Evatec Cluster
Line ®200 II) by separated 4-inch co-sputtering.’* Al and Sc aim
for a gas flow rate of 20 SCCM in a pure N, environment at
350 °C. The bulk Sc,Al; N was deposited perpendicular to the
basement in the C-axis direction, with a total thickness of
500 nm. SEM images of its cross-section are shown in the
Fig. 1(A).

As the CMOS compatibility of Pt is not high and Pt is
expensive, other metal-doped thin film structures are reported.
Wang et al. reported an Al (30 nm)/Scy 3,Aly 6N (45 nm)/Al
(80 nm)/Scy0AlpgoN (85 nm)/Si thin film by sputter
deposition.”® Its intersecting section SEM was shown in the
Fig. 1(B). An atomically sharp interface at the intersection of the
ScAIN film and the Al top electrode, while a thicker interface
layer is observed at the (Al, Sc) N/bottom Al boundary, which
may be related to partial vacuum rupture of the material and
exposure of the Al bottom electrode to air before deposition.

In order to make the ferroelectric ScAIN heterostructure
compatible with mature CMOS technology, it is necessary to
achieve the growth of single crystal ScAIN on metal electrodes.
Among the commonly used CMOS-compatible metals, molyb-
denum has a high melting point (about 2160 °C), low coeffi-
cient of thermal expansion (5 x 107° °C™" at 20 °C), and low
resistivity (5 x 10~® Q m), making it an ideal metal for CMOS
manufacturing processes. Wang et al. report that the epitaxial
growth of III-N heterostructures on molybdenum will provide a
viable path to achieving CMOS-compatible ferroelectric nitride
and total nitride based complementary circuits, as well as

This journal is © The Royal Society of Chemistry 2024
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Fig. 1 (A) SCAIN-Pt thin film structure grown on Ti—Pt substrates.®* (B) Film structure with Al and SCAIN mutually superposed.*® (C) Structure of ScAIN-

Mo thin films grown on Mo.*®

opening up new avenues for integrated, ultra-low loss and UHF
acoustic electronic devices (Fig. 1(C)).>

Molecular beam epitaxy (MBE) has several key advantages
over traditional sputter deposition for the epitaxy growth of
ferroelectric ScAIN, including superior control over crystallinity,
stoichiometry, thickness, doping, interface, and uniformity,
which are critical for the performance, stability, and yield of
memory cells and arrays.'”** Wang et al. used RF plasma to
assist MBE to grow a silicon-doped gallium nitride bottom
electrode layer of ~120 nm and a carrier concentration of
~1 x 1019 cm ™, and to grow a single crystal ScAIN film with a
thickness of ~100 nm. Ti/Au metal columns of different

A

Ti/Au

1x10"%cm?
Sapphire

diameters (3-50 pm) are then deposited as top electrodes, as
shown in Fig. 2(A).>> In addition, the results shown are from
samples with a gallium nitride electrode carrier concentration
of ~1 x 10" em > and a top electrode diameter of 20 um. The
Sc content of the ScAIN layer is set to value ~18% to match the
lattice of gallium nitride to reduce mismatch defects and
dislocations.”® Fig. 2(B) depicts the XRD test results on a
ScAIN/n-GaN sample. The characteristic diffraction peak of
ScAIN (0002) can be clearly observed, which further confirms
the wurtzite structure of ScAIN thin films.">®” On the other
hand, we can observe that the full width half maximum
(FWHM) of the (0002) plane rocking curve of the ScAIN film

B

GaN (0002) — ScAIN/GaN
GaN template

Sc, ,,/Al, ,,N (0002)

Intensity (a.u.)

i

33 34 35 36 37 38
2 theta(®)

Fig. 2 (A) ScAIN-GaN thin film structure grown on GaN.%® (B) XRD results of SCAIN/GaN films.®®

This journal is © The Royal Society of Chemistry 2024
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is not more than 400 arcsec, which is much smaller than that of
the conventional magnetron sputtered ScAIN film, further
confirming its good structural performance.

3.3 Compatibility of ScAIN with memristor technology

Firstly, the excellent photoelectric properties of ScAIN bring
higher storage density and faster reading and writing speed to
the memristor. The band gap of ScAIN is large, which can
absorb visible light and near-infrared light, making it highly
sensitive in photoelectric conversion.’® The ScAIN memristor
can efficiently perform read and write operations in low light
settings, enhancing storage density and reliability.”®

Secondly, the stable chemical properties of ScAIN provide
longer service life and lower power consumption for memris-
tors. ScAIN has stable chemical properties, is not easily affected
by environmental factors, and can maintain stable performance
in various harsh environments. This makes the ScAIN memris-
tor have a longer service life and reduces maintenance costs. At
the same time, due to the low power consumption of ScAIN, the
energy consumption of the memristor can be further reduced,
making it more in line with the requirements of green environ-
mental protection.

Moreover, the memristor’'s dependability is ensured by
ScAIN’s very high thermal stability. SCAIN memristors are more
adaptable and reliable since they can keep performing consis-

tently even when exposed to high temperatures.'*~'>

4. Electrical properties of SCAIN thin
films

4.1. The change of electrical properties of AIN doped with rare
earth elements

In the study of AIN ferroelectric properties, the doping of rare
earth metals is worthy of our attention. Liu et al. made two
models of AIN/MoS, FETs and ScAIN/MoS, FE-FETs of the same
thickness and size to test and compare the electrical
characteristics.”® In the test results, we can find that the
transmission curve of SCAIN/MoS, FE-FETs shows a hysteresis
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loop from clockwise to counterclockwise, indicating the exis-
tence of polarization switching(Fig. 3(A)). In contrast, AIN/MoS,
FETs show hysteresis loops only in the clockwise direction,
indicating the presence of charge traps but no ferroelectricity
(Fig. 3(B)). Fig. 3(C) shows the comparative transfer character-
istics of the forward and reverse sweeps of the two models of
AIN/MoS, FETs and ScAIN/MoS, FE-FETs in the range of £50 V.
Clear and opposite indications of the threshold voltage shift
between ScAIN/MoS, FE-FET and AIN/MoS, FET for forward
(red) and reverse (blue) scans are shown. We can find that the
switching current density in ScAIN/MoS, FE-FETs is signifi-
cantly higher than that in AIN/MoS, FETs.'*>'** In addition,
the threshold voltage shifts of the two types of FETs are also
different, indicating the existence of ferroelectric polarization
in ScAIN/MoS, FE-FETs. In summary, the doping of Sc can
significantly improve the ferroelectric properties of AIN, which
makes it possible for its application in memristors.

Furthermore, we investigated the effect of the Sc doping
ratio on the ferroelectric properties of Sc,Al; ,N. Based on the
study of Simon Fichtner et al., the residual polarization (P,) of
ScAIN can be very high (80-115 pC cm™?) when the proportion
of Sc doping exceeds 27%."°>'%® significantly higher than the
theoretical predictions for the spontaneous polarization of pure
AIN (10 pC em™?) and 30 pC em ™~ (X = 0.5) with the zinc-blende
structure as a reference (Fig. 4(A)).'®” The key advantage of the
high residual polarization is that the instability caused by
charge trapping and leakage current through the ferroelectric
insulator has no significant effect on the performance of the
FE-FET device. It is pointed out in the report that the large
stress field (E.) and residual polarization (P;) of ScAIN may be
related to the large energy barrier of the material itself, the
good uniformity of the internal composition and the wurtzite
structure. As the Sc content increases, the switching barrier
(u =1) gradually decreases, resulting in a linear decrease in the
stress field from more than 4 MV cm ™" (Alg ,3S¢o,N) to less
than 2 MV em™* (Aly 5,Sco.43N), and the test results are shown in
Fig. 4(B). On the other hand, the partial pressure of the
sputtering gas and the stress field (E.) of Sc,Al; ,N vary linearly,
similar to those reported for pure AIN.'%%*%°
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Fig. 3 Comparison of the SCAIN/MoS, FE-FET with the reference AIN/MoS, FET.*® (A), (B) Transport characteristics of representative SCAIN/MoS, FE-FET
and AIN/MoS; FE-FET in semilogarithmic scale at room temperature with larger gate voltage sweep range (solid blue line) and smaller gate voltage sweep
range (gray dashed line). Film thickness is 100 nm and the channel length is about 3.75 pm. (C) Comparison of the transfer characteristics of SCAIN and
AIN dielectric molybdenum disulfide FET during forward and reverse ward scans in the 50 V range.

2806 | Mater. Horiz., 2024, 11, 2802-2819

This journal is © The Royal Society of Chemistry 2024


https://doi.org/10.1039/d3mh01942j

Published on 25 de mar¢ 2024. Downloaded on 8/1/2026 10:31:40.

Review
200 metal-polar
A —x=0.27 —x=0.32 B
150 —x=036 —x=040 H 7| og”
—x =043 —PZT 52/48 <
=100 F (—"‘" ] i
9 layered hexagonal =
Q i 1 2= Do o
ERs d4=F >
/o ] ,,I"'O TilE 2
8 o 15 I ~
g Mclal@ A
73 3 4 Nitrogen ty”
&
=50 - - N-polar 1 I'\,
-100 l : l 1 %y b ‘I'
3 L s L L 19
-4 -2 0 2 4 & d

Electric Field [MV/cm] .

View Article Online

Materials Horizons

7. [GPa]
10 05 00 0.5 10
5 e \I\ 'i T T T =]
Ll .\\\\ ‘\*‘co .
: .. |
3 i -~ ]
® 0<7<02GPa o ]
2l e x=027 S e
025 0.30 035 0.40 045
xinAl, Sc N

Fig. 4 (A) Ferroelectric Sc,Al;_N with Sc contents of 0.27, 0.32, 0.36, 0.46, 0.43 and 0.43 and PZT is the P—E ring of Sc,Al;_N.1°° (B) Dependence of the
average stress field on the residual stress Tr and Sc content of Al;_,Sc,N films. Sc content and Tr content vary independently.*°

In conclusion, we found that the expected switching voltage
can be obtained by changing the Sc doping ratio and the
mechanical stress of the film. It is further demonstrated that
ScAIN can achieve low switching voltages in the range (<10 V)
relevant for memory applications.

4.2. Long-term cycle durability and C-V test of ScAIN

Through the previous experiments, we can find that the ScAIN
material has the characteristics of large current switching ratio,
high residual polarization, adjustable internal voltage and so
on. In order to further explore the possibility of its application
in memristors, we further explore its durability. Liu et al. tested
the switching durability of a ferroelectric switch of the
Aly 6sSco 3N material, whose material structure as well as
TEM images are shown in Fig. 5(A) and (B)."'° The PUND
results for Al ¢gSc32N show a residual polarization value of

A

120 uC em™2, as shown in Fig. 5(C), which is similar to the
previous experimental results and confirms the reliability of the
experimental data. In Fig. 5(D), the material is subjected to a
durability test for switching between the positive and negative
polarization states. Both the positive and negative polarization
states are stable and rewritable over 20000 PUND cycles,
demonstrating the durability of the material. In Fig. 5(E), the
bottom of the material is grounded, and the top is repeatedly
applied with a positive/negative voltage to observe the change
in the switching of the material in the high/low configuration.
In the long-term voltage switching test, the device shows ultra-
low operating current and self-rectifying behavior, which makes
it possible for the memristor based on ScAIN without additional
transistors or selectors. Fig. 5(F) shows the distribution of LRS
and HRS resistance of the device. It can be seen that the high
and low resistance states of Aly gsSco 3,N are closely distributed
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Fig. 5 Room temperature electrical properties of SCAIN.™* (A), (B) Three-dimensional schematic of SCAIN FeD device and cross-sectional TEM image
of ScAIN FeD showing 45 nm ScAIN as ferroelectric switching layer. (C) PUND results. PUND test shows that the saturated residual polarization is
150 uC cm2. (D) Residual polarization extracted from PUND measurements in a durability test using an ScAIN film with 1.5 s pulse width and 26 V amplitude.
(E) 100 cycles of program and erase measurements on a 45 nm ScAIN based fed. (F) Distribution of HRS and LRS resistance during the measurement.
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pristine SCAIN capacitors to visualize the as-grown polarization state. Scan direction is marked by an arrow in (A), (B)

in the long-term test, which avoids the misreading of the device
and ensures the recognition rate of device switches. To sum up,
the long-term stable high-low resistance state switching of
ScAIN material in electrical testing ensures its durability in
memristor devices.

To further visualize the switching of the polarization state of
ScAIN, Wang et al. performed CV tests on ScAIN-Mo hetero-
structures of single crystals.”® Fig. 6(A) shows the positive
(#1, first sweep) and bipolar (# 2, second sweep) C-V measure-
ments on the two original ScAIN capacitors with an AC signal
voltage of 100 mV at 1 MHz, Fig. 6(B) shows the negative #1 test,
and the rest of the test parameters are the same as Fig. 6(B). We
can observe in the bipolar scan (#2) in both figures that the
sudden decrease of capacitance during the scan, thus forming a
butterfly-shaped test loop (bipolar switchable polarization of
ScAIN), indicates that the ferroelectric switching behavior of
ScAIN occurs in the scan switch. The difference between the two
figures is that in the positive test (#1) of Fig. 6(A), the capaci-
tance scan is completely overlapped, while in the negative test
(#1) of Fig. 6(B), there is a significant capacitance drop, thus
forming a complete loop. Based on the above phenomenon, we
can infer that ScAIN has a uniform downward polarization
state, that is, we need a negative voltage to achieve the polar-
ization switching of ScAIN. The capacitance fluctuation of
ScAIN can be ignored in the CV test, which shows that ScAIN
is a wake-up free ferroelectric nitride semiconductor and has
great application potential in ferroelectric memristors, filters
and so on.”>™"

4.3. Assessment of electrical properties for memristor device
suitability
As a wide band gap semiconductor material, the electrical
properties of ScAIN have attracted much attention in the field
of memristors. ScAIN has high electron mobility and high
conductivity, which makes ScAIN memristors have great
potential in achieving high-speed and low-power storage.
Firstly, the high electron mobility of ScAIN means that it
has high conductivity. When the current passes through the
ScAIN material, the electron moves faster, thereby improving
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the response speed of the memristor. This makes the ScAIN
memristor have advantages in processing high-speed signals
and achieving high-speed storage.

Secondly, the high conductivity of ScAIN makes it advanta-
geous in achieving low power consumption. Compared with
other semiconductor materials, SCAIN has a lower resistance,
which means that at the same voltage, the current through the
ScAIN material is larger, thereby reducing power consumption.
This is of great significance for achieving low-power electronic
products and extending the life of the device.

In addition, the electrical properties of ScAIN also show
good stability and repeatability. Through appropriate process
control and technical optimization, ScAIN memristors with
stable performance and good repeatability can be obtained.
This provides a guarantee for ScAIN in applications with long-
term storage and high reliability requirements.

In summary, the ScAIN thin film shows very good electrical
properties. In order to more intuitively measure the potential of
ScAIN as a memristor switching device, Liu et al. compared the
electrical test results of Scy 36Alg 64N thin film and traditional
oxide materials (Table 1). We can see that ScAIN materials have
better CMOS compatibility, while exhibiting larger switching
ratios and thinner thicknesses. This report demonstrates that
oxide layers are not necessary or important to demonstrate the
iron diode effect, and that nitride materials are also one of the
directions for switching devices.

Table 1 Comparison of CMOS compatibility, on/off ratio and film thick-
ness of various materials

Ferroelectric CMOS compatibility =~ On/off ratio  Thickness (nm)
BFO'"? Low 20 90000

BFO'** Low 20000 3

PbTiO,;** Low 2 200

PzT'"® Low 300 30

BTO'® Low 12000 3.2

BTO'"® Low 6 x 10° 1.6

HfO," 7118 Medium 10-100 10

HfO,'*° High 10 000 10
Scos6AlpesN*'  High 50 000 20
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5. Synaptic device simulation and
working state of ScAIN thin films

5.1. Overview of current research on ScAIN in synaptic device
simulation

In the traditional oxide-based ferroelectric memristor, the oxy-
gen vacancies on the contact surface of the electrode will
continue to migrate and accumulate under long-term switching
action, which makes the material structure unable to maintain
a stable state, which hinders the long-term use of the oxide-
based ferroelectric memristor."*>'*" The high residual polar-
ization (70-120 pC cm™?), non-wake-up, non-volatile state, and
low nitrogen vacancy formation energy of ScAIN-based memris-
tors allow them to exhibit higher durability potential than
oxide-based ferroelectric memristors."**'*

Recently, ScAIN has achieved a significant advancement in
artificial synaptic devices. This semiconductor material, pos-
sessing exceptional physical features, offers new opportunities
for replicating biological synaptic functions.

Researchers have created novel artificial synaptic devices by
utilizing the high electron mobility and stable chemical char-
acteristics of ScAIN in structural design. The performance of
ScAIN artificial synapses has been greatly enhanced by imple-
menting a unique multi-layer structure, nanowire technology,
and heterojunction design."**” These structural improve-
ments not only improve the response speed and memory
capacity of artificial synapses, but also enhance their stability
in complex environments.

Secondly, the progress of preparation technology is another
key aspect of the research progress of ScAIN. With the devel-
opment of thin film preparation technology, such as pulsed
laser deposition and magnetron sputtering technology, high
quality ScAIN thin films have been successfully prepared.'?®
This laid the foundation for the large-scale production and
integration of artificial synaptic devices. At the same time,
advanced nanofabrication technology has also been applied
to the fine processing of ScAIN artificial synapses, further
improving the performance and reliability of the device.

Furthermore, the utilization of ScAIN artificial synapses in
developing intelligent information processing systems has
advanced significantly. ScAIN artificial synapses have signifi-
cant promise in pattern recognition, image processing, and
speech recognition due to the integration of neural networks
with machine learning techniques. The applications demon-
strate the significant capabilities of ScAIN artificial synapses in
advanced information processing.

5.2. Spike-timing-dependent plasticity (STDP) and switching
behavior in ScAIN as a synaptic device

To investigate the potential application of ScAIN in memristors,
Wang et al. fabricated ferroelectric GaN/ScAIN heterostructure
memristors for synapse simulation. 20 nm thick Si-doped
n-type GaN (electron concentration ~1 x 1018 cm >) was
grown on top of 100 nm thick ScAIN.?® Firstly, Fig. 7(A) shows
the structure of the memristor, with ScAIN and Mo corres-
ponding to the front end of the synapse (sending signals), and
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GaN and Ti/Au/Ti corresponding to the back end of the synapse
(receiving signals). Fig. 7(B) and (C) show the band diagram of
GaN/ScAIN heterostructure. Due to the ferroelectric field effect,
the polarization direction of ScAIN changes with the barrier
height (@) of the interface. The ScAIN is polarized down to
increase the barrier height (®qown) by filling the GaN with
negative charge, corresponding to the OFF state. Correspond-
ingly, the upward polarization of ScAIN accumulates positive
charge in GaN, thereby reducing the barrier height (&),
corresponding to the ON state. Through the analysis of the
band structure of GaN/ScAIN heterostructure, two obviously
different barrier heights (@, and @q,w,) demonstrate the
possibility of realizing resistive switching.

In the previous paper, we demonstrated the possibility of
ScAIN as the memristor material to realize resistance switching,
and we need to further study the electrical properties of
resistance switching behavior. The resistive switching behavior
of the GaN/ScAIN heterostructure was characterized by quasi-
static J-V measurements (Fig. 7(D)), showing clear bipolar
hysteresis. In Fig. 7(D), ScAIN/Mo is shown as comparative data
(gray curve). We can find that the intervention of GaN makes
the on and off currents have more obvious separation (blue
curve). It can be seen that the multilayer heterostructure GaN/
ScAIN has better resistance switching ability than the single
layer ScAIN.

Fig. 7(E) further plots the measured data for the on and off
currents measured in a small voltage range, and we find
distinct ON and OFF states with an on/off ratio of about 40 at
a read voltage of +10 V. The conductivity of the memory resistor
can be continuously modulated by applying either negative
voltage or positive voltage pulses, demonstrating its conduc-
tance plasticity capability.

Fig. 7(F) shows the J-V measurements of the memristor after
a long switching cycle. The on/off ratio decreases from 40 to
about 10 after 1 x 10? cycles. After 1 x 10 cycles, the switching
period of the ferroelectric polarization induced shift current
peak can still be clearly observed, which indicates that the
fatigue behavior of the memory window is mainly due to the
degradation of the heterointerface rather than the ferroelectric
polarization switching fatigue. Ferroelectric GaN/ScAIN hetero-
structure memristors show potential for synaptic simulation
and artificial neural network applications. ScAIN has better
durability and wake-up free behavior than oxide-based ferro-
electric memristors. Further research is needed to improve the
endurance of memristors and explore their potential in neuro-
morphic computing.

In general, memristor conductance can be regarded as the
strength of a synapse.'>**' Thus, an increase (decrease) in
electrical conductivity corresponds to an enhancement (inhibi-
tion) in the strength of synaptic connections. In the GaN/ScAIN
heterostructure, the conductance of the ScAIN memristor is
gradually adjusted by 64 long-term positive/negative pulse
voltages (Fig. 7(G)), and we can find that the conductance is
linearly enhanced and inhibited, confirming the plasticity of
the conductance (synaptic strength). In order to further observe
the plasticity of the synaptic strength of the ScAIN memristor,
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Fig. 7 Ferroelectric GaN/ScAIN heterostructure memristor for synapse simulation.*® (A) Sketch of a pre-neuron and a post-neuron connected by
synapses, and a resistive memristor based on a ferroelectric GaN/ScAIN heterostructure on Mo. (B) and (C) Band diagram (zero bias) modulation by
ferroelectric polarization switching in GaN/ScAIN structures. (D) Typical J-V loop measured by GaN/ScAIN memristive resistance (blue curve) and ScAIN
capacitor (gray curve) in steps of 0.1 V. The sweep direction is marked by an arrow (+ -0 - — — 0 — +). (E) On/off current density measured in a small
voltage range. (F) On/off current density measured after multiple cycles. (G) Evolution of the GaN/ScAIN memristor conductance as a function of the
same number of pulses, showing enhancement and suppression features. (H) Voltage waveforms used to simulate the voltage peaks of the pre-neuron
(red) and post-neuron (blue) for a total length of 10 ms. (1) Variation of ferroelectric GaN/ScAIN memory-based artificial synapse with respect to delay

time (At).

we applied pulses with different arrival times before and after
the synapse to the device to test whether it had STDP behavior.
The voltage waveforms used to simulate the voltage peaks of the
pre-neuron (red) and the post-neuron (blue) are presented in
Fig. 7(H), with a total length of 10 ms, and we can see two
waveforms with a delay time (At) greater than zero and less
than zero. The results of synaptic weight changes based on
ferroelectric GaN/ScAIN memristors at different delay times (Af)
are shown in Fig. 7(I). It is found that synaptic potentiation
occurs when the presynaptic impulse arrives earlier than the
postsynaptic impulse (A¢ > 0), and synaptic depression occurs
when the postsynaptic impulse arrives earlier than the presy-
naptic impulse (At < 0). That demonstrates that ferroelectric
GaN/ScAIN based memristors possess STDP (spike timing
dependent plasticity)."*>*3

5.3. Simulation calculation of the neural network in ScAIN
devices

To further explore the possibility of practical application of
ScAIN memristors, Wang et al. simulated the memristor
synapse based on the single crystal ScAIN epitaxial on GaN,
and demonstrated its working state and recognition rate in
image recognition and reproduction through convolution
algorithms.'*®

In Fig. 8(A), eight clearly discernible conduction states
are successfully demonstrated in the ScAIN memristor by a
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gradually increasing pulse voltage scheme. The eight conduc-
tance states are linearly and regularly distributed, which shows
the controllability of the internal conductance of the material.
Fig. 8(B) shows that these conduction states can be recovered
after multiple program/reset operations and remain stable
within 200 seconds, demonstrating the reliability of the device
under multiple pulses and cycles. Fig. 8(C) shows a schematic
of a logarithmic drive, where the nonlinear device voltage, Ve,
is extended to a linear drive voltage, Vq4,, by the calculation of
the mapping function for § = —1.75 and C = 3.2. Fig. 8(D) shows
the mapping results, where the linear effective conductance
is reached for all conductance levels. The circuit conversion
of nonlinear to linear data is similar to a real p-n junction or
Schottky barrier diode.'*® Based on the mapping method of
Fig. 8(C) and (E) shows a demonstration of multi-state and
convolution operations using nitride memristors. In this figure,
the input of the grayscale image is encoded as voltage pulses
from —2.05 V to —2.98 V, and the output is weighted according
to eight admittance states. The weighted output for each input
pixel intensity can be viewed as the result of the multiplication
of a1 x 1 vector by a1 x 1 matrix (pixel intensities multiplied
by weights). The demonstration of linear VMM operation can
be simulated by establishing a linear effective admittance on a
nonlinear nitride memristor with the correct choice of fitting
parameters. In Fig. 8(F), the memristor shows the results of
a basic image convolution operation using three different
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Fig. 8 (A) Multi-state operation from —8 V to —8.35 V by incremental pulses in steps of —50 mV with a read voltage of —3 V. Pulse width is 8 ms.”® (B)
Current variation with 8 states retained for 200 5.”® (C) and (D) Schematic of a logarithmic driver that maps a linear input voltage to the nonlinear input of a
nonlinear nitride memory transistor. By choosing the fitting parameters properly, the linear effective conductance of the simulation calculation can be
established.”® (E) Grayscale image input for the convolution operation. Brightness of each pixel is encoded as a voltage pulse from —2.05 V to —2.98 V,
which gives a weighted output based on 8 conductance states.”® (F) Basic image convolution operation for three different kernels using the ferrielectric
nitride memory. A grayscale image with 100 x 100 pixels is used as the input image. Three 3 x 3 kernel operations (average, edge, and sharpen) are
provided as examples.”® (G) Comparison of the accuracy of the two-layer MLP simulation based on the ideal device (black, 128 States, on/off ratio 50,

perfect linearity) and based on the ScAIN memristor (blue) and further cyclic variations and inter-device variations (green).”®

convolution kernels. Grayscale image of 100 x 100 pixels was
used as the input image, and three 3 x 3 convolution kernel
operations (averaging, edge, and sharpening) were performed.
These results indicate that ScAIN-based memristors can be
used for convolution operations for image processing and
feature extraction. Fig. 8(G) compares the simulation accuracy
of a two-layer MLP based on an ideal device (black, 128
conductance states, on/off ratio of 50, perfect linearity) with
those based on a ScAIN memory with nonlinear properties
(blue) and further considering intra-cycle variations and inter-
device variations (green). (Specific experimental parameters can
be found in ref. 135.) The best recognition accuracy of the
ScAIN memristor with nonlinearity and intra-/inter-device var-
iation is 92.9%, which is still far from the recognition accuracy
of the ideal device (96.2%), but the ScAIN memristor has shown
better performance than most analog salient devices.

5.4. Applications of innovative integrated arrays in ScAIN
devices

The convolutional neural network (CNN) extracts the features of
the learning target by constantly adjusting the weight value, so
as to achieve the purpose of deep learning.'®” Traditional
memristor structures generally require a large number of
inputs, memristors and selectors for multiple convolution
calculations, in which a large amount of data is calculated and
transported.’****! Therefore, how to reduce the cost of mem-
ristor by simplifying the device structure is also a hot research
direction.

Liu et al. studied a transistor-free ScAlN-based ferroelectric
diode array, which realizes data storage, search and neural
network operation on sub-50 nm thick FeDs."'® In this study,

This journal is © The Royal Society of Chemistry 2024

the authors designed a fully BEOL compatible architecture
using two ScAIN field-programmable ferroelectric diodes in
parallel. The purpose of this is to use non-volatile memories
(NVMs) instead of traditional TCAM to save power and reduce
the footprint of the device. The structure is shown in Fig. 9(A).

As shown in Fig. 9(B), we write a logic “1” state into the FeD
TCAM cell by programming the left/right FeD to a low-
resistance/high-resistance state, respectively. During a search
operation, the match lines (MLs) are biased by a read voltage
V.sub. S higher than the turn-on voltage of FeD. Next, logic “1”
is searched by applying high/low voltages to the search lines (SL
and SL), respectively, and vice versa for logic “0”. When the
store data and the search data match (as shown in Fig. 9(B), the
store bit is logic “1” and the search bit is logic “1”’), the FEDs in
both the high and low impedance states are in the off state.
However, when the search data do not match the stored data,
the left side FeD, which has a low resistance state, is turned on
due to the high voltage drop between its anode and cathode.
Therefore, the discharge current is significant and the ML
voltage is low (Fig. 9(C)). Fig. 9(D) also demonstrates the “don’t
care”” statement in two FeD-based TCAMs, switching both FEDs
to a high-resistance state, and the device assumes the “don’t
care” statement regardless of any voltage signal. The dual FED
architecture with all three states can reduce the search delay
compared to conventional TCAM, while also simplifying the
device architecture and reducing material costs.

Next, we focus on the application of the FeD device array in
deep neural network (DNN) inference/training. In deep learn-
ing network computing, more conductance states mean more
power overhead at the architecture level, and the selector-free
dual-FED array can make the best trade-off between these
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indicators."**'*> As shown in Fig. 9(E), a convolutional neural
network (CNN) is first trained on the MNIST data set and the
calculated weight values are extracted. The pre-trained weights
in the CNN are then hierarchically quantized by normalizing
the weights to the FeD conductance range. In order to quantify
the effect of nonlinearity and asymmetry on accuracy loss, a
nonlinear index A was established, and the relationship
between A-factor and measurement accuracy is shown in
Fig. 9(F). We find that sparsely arranged conductance states
with superior linearity can replace a large number of conduc-
tance states, and the high linearity of the weight distribution in
the training phase has a higher recognition rate. In addition,
the memory implementation of on-site training on the FeD
array is simulated in Fig. 9(G). We find that the device has
achieved excellent training accuracy, but the accuracy of field
learning is reduced to varying degrees compared with the
accuracy of floating-point software training, which shows that
there is still room for optimization.

In conclusion, this research realizes the search function by
introducing the innovative structure of double FEDS instead of
transistors, and demonstrates the neural network under this

2812 | Mater. Horiz., 2024, 11, 2802-2819

structure, while the results show that the accuracy is compar-
able to that of the software. The series of experiments were
carried out on FeD devices with a 45 nm thick FE AlScN layer,
further demonstrating the potential of ScAIN ferroelectric
materials for applications in artificial synapses.

6. Future directions and
recommendations
6.1. Summary of key findings

In this paper, the application of ScAIN in memristors is
described from the aspects of material mechanism, preparation
process and structure, ferroelectric properties and simulation
application. Firstly, in the study of material mechanism, the
influence of rare earth metal Sc doping on the semiconductor
material AIN was discussed. Secondly, we focus on the influ-
ence of different preparation processes and structures on the
adaptation of ScAIN in memristor devices. In addition, in the
discussion of ferroelectric properties, the long-term cycle sta-
bility in various electrical tests is mainly concerned. Finally,
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with regard to the simulation application of ScAIN in memris-
tors, the innovative array structure is focused.

6.2. Insights into potential future research directions

Based on the current research summary of ScAIN memristor,
there is still much room for further research on the preparation
process of materials, the study of synaptic mechanism and the
diversification of simulation environment, for which we con-
sider the following prospects

6.2.1. Optimization of preparation process. Firstly, in
terms of the fabrication process, the current fabrication meth-
ods based on ScAIN thin films mainly focus on molecular beam
epitaxy, because this method can realize the epitaxy of single
crystal SCAIN and make better use of its ferroelectric properties.
However, the equipment required for molecular beam epitaxy
(MBE) is expensive, which limits the further study of this
material, so we can explore the electrical properties of ScAIN
thin films in other manufacturing processes (such as sputtering
deposition) and use them in the study of memristors. In the
study of magnetron sputtering, ScAIN, as a ternary compound,
has a variety of magnetron sputtering methods. Whether ScAIN
prepared by different gas atmospheres and different targets has
better electrical properties and synaptic behavior can be further
studied and compared.

6.2.2. Further exploration of the synaptic modulation
mechanism. In the current study of ScAIN with different Sc
doping ratios, the current comparison mainly focused on the
expression of electrical characteristics, lacking the comparison
of synaptic characteristics, which still cannot conclude which
doping ratio material is more suitable for the composition of
artificial synapse. At present, the study of synaptic plasticity
regulation mainly focuses on the maintenance and switching of
excitation or inhibition, as well as the change regularity of
synaptic weight and the processing of nonlinear data. The
biological nervous system needs to process a large amount of
complex information every day, so we need a more intuitive,
flexible and synergistic plastic modulation mechanism to
measure the outstanding performance of the device more
scientifically, and to determine a more appropriate material
preparation process or doping ratio.

6.2.3. More diverse simulation environment. Human
synapses need to process massive amounts of information from
different sources at the same time every day, such as vision,
touch, taste, hearing, smell and so on. For the simple action of
picking up a cup and drinking water, the brain needs to process
vision, taste, touch and other information at the same time. For
the current simulation test of ScAIN memristors, it mainly
focuses on simple image recognition, and the simulation
environment is relatively simple (only focusing on vision), so
we need to consider the conversion and coordination of differ-
ent source signals when designing the memristor. The purpose
of this is to test the performance of memristors more compre-
hensively and to simulate the complex nonlinear events
encountered in our human brain. For example, Saptarshi Das
et al. designed a synapse sensor with both visual and tactile
senses is designed. Its unique spike encoding circuit can
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receive and process electrical signals from photoresistors
(visual) and friction point sensors (tactile) at the same time,
forming a synergistic response of visual and tactile senses.
Thus, we can also explore different signal sensing synergies and
more diverse simulation environments on nitride memristors,
and further explore the application potential of nitride ferro-
electric materials in artificial synapses.

7. Conclusions
7.1. Recapitulation of major points

In this paper, the current research progress of ScAIN in mem-
ristors is introduced in detail. First of all, a variety of processes
and structures to achieve single crystal epitaxial heterojunc-
tions are reported in the fabrication process of ScAIN thin
films. Sputter deposition and molecular beam epitaxy are
mainly used in the current preparation process. The team of
Wang et al. has realized a variety of epitaxial single crystal
heterostructures by molecular number epitaxy. Through the
study of the thin film structures, we found that ScAIN could be
compatible with CMOS, which provides the possibility for its
application in integrated devices. Secondly, we investigated the
electrical properties of ScAIN films. We found that the doping
of Sc can make AIN show superior ferroelectricity, showing a
clear polarization switch. At the same time, the Sc doping ratio
is further reported, and we find that by adjusting the Sc doping
ratio and the pressure of the sputtering gas, the internal stress
field (E.) of ScAIN can achieve the required low switching
voltage of the memory device. PUND and C-V measurements
were used to explore the ferroelectricity of ScAlN, the hetero-
structure has great non-volatile memory potential with superior
on/off ratio, high uniformity, good retention, and moderate
cycling endurance. Finally, we simulate the synapse of the
SCAIN-based device. Based on the band structure analysis of
the material and the quasi-static j-V measurement, ScAIN
shows obvious resistive switching performance and long-term
switching cycle stability. Furthermore, we provide linear simu-
lation calculations and image processing tests to simulate its
operation as a synaptic device. The device shows obvious STDP
and high image recognition rate (92.9%).

7.2. Implications of ScAIN applications in memristors

The excellent physical properties (high dielectric constant,
low leakage current and good thermal stability) of ScAIN
make it an ideal material for memristors."*® The following
points are of great significance for improving the performance
of memristors.

Firstly, by adjusting the composition and structure of ScAIN,
the electrical characteristics may be managed to control the
resistive behavior of the memristor more effectively. This
enhances the potential for adjusting the memristor. Secondly,
enhancing the storage density is achieved by utilizing the high
dielectric constant of ScAIN to decrease the size of the mem-
ristor, thereby boosting the storage density."** It is crucial
for memristors to enable larger-scale, high-density storage
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applications. Thirdly, via lowering energy consumption: the low
leakage current properties of ScAIN aid in decreasing the energy
usage of the memristor, enhancing its energy efficiency. This is
highly important for decreasing the energy usage of electrical
devices and extending their lifespan.

In summary, the emerging ferroelectric material ScAIN has great
potential in the application of memristor devices. In the current
situation that the performance of oxide-based memristors encoun-
ters bottlenecks (the device structure is unstable due to the con-
tinuous change of oxygen vacancies under long-term switching
cycles), nitride-based memristors are undoubtedly a reliable choice
for the new generation of memory computing devices.

7.3. Contribution to advancements in electronic device
development

This paper focuses on the study of ScAIN as a memristor
material. Its main purpose is to explore the possibility of nitride
memristors for design and production. It can make the follow-
ing contributions to the current development of electronic
equipment:

First of all,
volatility."*>'*® Compared with traditional oxide memristors,
they can maintain their storage state even after power failure.
This makes it an ideal choice for modern high-performance
memory, especially in applications that require continuous
data storage, such as embedded systems, mobile devices, and
data centers.

Secondly, due to the different energy levels of nitrogen
vacancies and oxygen vacancies, nitride memristors require
lower energy than oxide memristors when reading and writing
data, which makes them an ideal component for low-power
electronic devices."”™° In today’s increasingly stringent low-
power requirements, this feature is essential for extending the
service life of electronic devices and improving energy efficiency.

Besides, in the era of rapid development of AI models,
electronic devices can maintain high efficiency and accuracy
when processing large amounts of data. The nitride memristor
can maintain good performance stability after multiple read
and write cycles, which makes it highly reliable in electronic
devices. This is of great significance for applications that
require high-speed data processing and long-term stable opera-
tion, such as servers, medical equipment, graphics processing,
and artificial intelligence."> ">

In conclusion, nitride memristors provide strong support for
the development of electronic devices due to their unique
performance advantages. With the continuous advancement
of technology and the expansion of application fields, nitride
memristors are expected to play a greater role in the future and
promote the development of electronic equipment to scale new
heights.

nitride memristors have better non-
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