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Full automation of point defect detection in
transition metal dichalcogenides through
a dual mode deep learning algorithm†
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Point defects often appear in two-dimensional (2D) materials and

are mostly correlated with physical phenomena. The direct visua-

lisation of point defects, followed by statistical inspection, is the

most promising way to harness structure-modulated 2D materials.

Here, we introduce a deep learning-based platform to identify the

point defects in 2H-MoTe2: synergy of unit cell detection and defect

classification. These processes demonstrate that segmenting the

detected hexagonal cell into two unit cells elaborately cropped the

unit cells: further separating a unit cell input into the Te2/Mo

column part remarkably increased the defect classification accura-

cies. The concentrations of identified point defects were 7.16 �
1020 cm2 of Te monovacancies, 4.38 � 1019 cm2 of Te divacancies

and 1.46 � 1019 cm2 of Mo monovacancies generated during an

exfoliation process for TEM sample-preparation. These revealed

defects correspond to the n-type character mainly originating from

Te monovacancies, statistically. Our deep learning-oriented plat-

form combined with atomic structural imaging provides the most

intuitive and precise way to analyse point defects and, conse-

quently, insight into the defect-property correlation based on deep

learning in 2D materials.

Introduction

Atomic-level defects such as vacancies, edges, and grain bound-
aries often appear in two-dimensional (2D) materials. Given

that the specific surface area of 2D materials is large, the
physical properties become more sensitive to defects.1 Therefore,
there have been many efforts to harness defects as a key para-
meter to manipulate various properties, such as electric,2–15
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New concepts
We demonstrated a convolutional neural network (CNN)-based deep
learning platform to examine the point defects in monolayer 2H-MoTe2,
and associate the ‘‘point defects’’-‘‘origin of electric properties
exhibition’’ in statistical manners. To achieve these goals, we designed
dual mode strategies to improve the accuracy for point defect
examination; (i) unit cell detection and (ii) point defect classification in
the ‘‘unit cell-level’’. Recently, a fully convolutional network (FCN) was
adopted to define point defects in the ‘‘pixel-level’’; however, based on
our demonstration, the FCN confuses the defect type even in one-species.
Moreover, further determination of the point defect type should be
conducted by an analyst. We trained one CNN-model to detect a
‘‘hexagonal cell’’ followed by ‘‘unit cell-cropping’’ and the other CNN-
model to classify defect types in a unit cell; by comparing classification
competence for ‘‘a unit cell-input’’ and ‘‘separated unit cell-input into
two-parts’’. Our approach remarkably increased the unit cell detection
and defect classification accuracies, by ‘‘dividing analysis process or
target-elements’’ in each step with limited image features of the unit
cell. Moreover, we suggested solutions for current limitation to apply
deep learning to materials science, mimicking the experimental
conditions with simulated training images and accumulation of ground
truth within the lack of ground truth in microscopic research fields.
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magnetic,16–25 or thermoelectric.26–29 Specifically, sulfur vacan-
cies in 2H-MoS2 generated during sample preparation by cleavage
from bulk 2H-MoS2 act as electron donors: electrons are captured
close to the vacancy sites. It was revealed that electrons localised
near vacancies govern electric hopping by transport measure-
ments.5 Furthermore, it was reported that a hydrogen (H) atom
doped on graphene removes a single pz orbital from two opposite
pz orbitals, that is, from sp2 to sp3 orbital states. This polarised
orbital system leads to spin-polarised electron states, where a net
magnetic moment appears near the H atom.23 For higher defect-
dimensions, graphene/hexagonal boron nitride (h-BN) defective
interfaces generated during chemical vapour deposition (CVD)
relieve the lattice mismatch strain. These defective interfaces
(non-hexagonal connections between graphene and h-BN) pro-
mote phonons and consequently improve thermoelectric trans-
port, whereas perfect hexagonal interfaces are clamped by
residual strain.26

These imperfections often guide us to comprehend and,
thereby, modulate new functionalities of 2D materials.30,31

Such properties can be predominantly influenced by localised
defects;30–33 therefore, in-depth exploration of local atomic
defects suggest insights for defect-engineering.30,31 Point
defects are the most frequently studied among defect struc-
tures, because other types of defects are, in fact, composed of
various point defects, serving a key role in correlating defect-
structural units.32,33 Besides, point defects, such as vacancies,
interstitials, and adatoms on the surface of 2D materials, can
be readily generated. Especially in transition metal dichalco-
genides (TMDCs), electric properties by point defects can be
feasibly modulated due to their high level of structural com-
plexity and relatively weak bonding between transition metals
and chalcogens, compared with graphene or h-BN.2,4,34 For
instance, n-type pristine 2H-MoTe2 can be manifested to p-type
semiconductors by illuminating with a specific laser
wavelength.35 These controllable electric properties dominantly
originated from vacancies and adatoms adsorbed at vacancy
sites.36–38

Atomic-level visualisation via scanning transmission elec-
tron microscopy (STEM) is the most-promising strategy to
comprehend point defects in 2D materials.39–41 To date, point
defects have been visualised and then analysed by recognising
the difference between the (i) experimental and (ii) ideal
atomic-contrast generated by image simulations.42,43 However,
this manual point defect identification represents a labour-
intensive burden on analysts. In the field of image recognition
e.g. image classification/segmentation and object detection,
a convolutional neural network (CNN)-based deep learning
analysis platform has been actively adopted and shows high
performance.44–46 Recently, a fully convolutional network
(FCN)-based encoder-decoder was employed to identify point
defect species.47,48 Using the FCN, the recognition process can
proceed in two steps: (i) an input image is convoluted by a
series of kernels to extract image features i.e., background, host
atoms, or defect sites, and (ii) based on the extracted features,
the image is deconvoluted to reconstruct the image to the
identical size as the input. By applying the FCN to point defect

analysis of TMDCs,49,50 the different atomic contrasts/config-
urations of transition metals or chalcogens are explored to
identify point defects.

Since FCN predicts defective sites at pixel-by-pixel, the final
defect-type-determination should be verified by humans; this is
because one atomic-defect site contains several-pixels in an
atomic-structural image. The accurate unit cell detection is the
first-phase of point defect analysis in a material, to categorise
the defect species. When a human identifies point defects, one
may scan it either (i) atom-by-atom or (ii) (extended to) unit cell-
by-unit cell, not pixel-by-pixel. Then, one may determine the
point defect species by recognising atomic contrast in a unit
cell i.e., both chalcogenide (Ch) on-site and transition metal
(TM) on-site atomic contrasts. Furthermore, only Ch-on site
defect consideration may not discern the VCh (Ch-vacancy) or
VCh + VTM, (Ch-vacancy with TM-vacancy), if excluding TM sites
in a unit cell. Therefore, our strategy is to analyse point defects
by (i) detecting each unit cell, followed by (ii) classifying point
defect type in each unit cell, regarding both TM and Ch sites.

In this paper, we present a CNN-based deep learning plat-
form as nominated by 2DIP-Net, to inspect the point defects in
monolayer (ML) pristine 2H-MoTe2. To this end, we adopted
dual types of supervised deep learning approaches. First, faster
region-based (R)-CNN51 (hereinafter referred to as CNN-1) was
utilised to detect hexagonal cells, which is widely used for
object detection to predict specific object locations. This archi-
tecture largely consists of a feature extractor and a region
proposal network suitable for hexagonal cell detection. Second,
a residual network (ResNet)-1852 (hereinafter referred to as
CNN-2) was utilised to categorise the defect species in each
detected unit cell. This architecture incorporates residual blocks
for the first time and is frequently used in CNN architectures,53–57

classifying point defects in unit cells detected by CNN-1.
By combining CNN-1 and CNN-2, we realised a full automated
analysis to identify point defects throughout the STEM data
obtained from pristine 2H-MoTe2. Furthermore, we could sta-
tistically associate the point defects and corresponding elec-
trical properties with high accuracy.

Results

Due to the innate structural characteristic of 2D materials,
i.e. high surface-to-volume ratio, feasible defect engineering is
achievable for tuning the physical properties.1 It is possible to
achieve simultaneous site-specific defect generation and recog-
nition in a crystal matrix (top panel in Fig. 1a). Conventionally,
point defect identification involves categorising Ch- or TM-
related defects (left-middle and left-bottom panels in Fig. 1a).
However, to achieve a comprehensive analysis of defect gen-
eration and recognition, (i) detecting every periodic unit cells
i.e. basal components in a material is prerequisite (centre-
middle and right-middle panels in Fig. 1a). Then, (ii) further
classification of characteristic defect types should be succeeded
(centre-bottom and right bottom panels in Fig. 1a), as denoted
by the ‘‘Proposed approach’’. The red box incorporated with
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VCh (brown dotted circle) exhibits n-type by electrons. While
the blue and yellow boxes with VTM (turquoise dotted circle)
and oxygen adsorption/chemisorption at VCh exhibit p-type by
holes, respectively. To realise synergy of (i) object (unit cell)
detection and (ii) (point defect) classification, we designed a
defect examination workflow (Fig. 1b). This process involves
(i) detecting green hexagonal cells followed by cropping unit
cells (marked with green rectangles), and (ii) classifying point
defect types with red and yellow rectangles indicating chalco-
gen monovacancy (VCh1

) and chalcogen divacancies (VCh2
),

respectively.
Fig. 1c illustrates representative point defects in ML 2H-

MoTe2; (i) Perfect (non-defective, grey), (ii) VTe1
(Te mono-

vacancy, red), (iii) VTe2
(Te divacancies, yellow), (iv) VMo

(Mo monovacancy, blue), (v) VTe1
+ VMo (Te monovacancy with

Mo monovacancy, olive), and (vi) VTe2
+ VMo (Te divacancies

with Mo monovacancy, purple) in colour-coded rectangles.
Conventionally, defect types e.g. Perfect, VTe2

, and VTe1
are

defined by matching simulation and experimental HAADF-
STEM images through intensity profiling (see Fig. S1 and
supplementary text 1 for details in the ESI†). This manual
intensity profiling to define point defects inspires the defect

examination process by deep learning with the construction of
a simulation dataset. Furthermore, the basal repetition compo-
nents in materials are unit cells, and we focused on the
different contrasts in each unit cell shown in the colour-
coded rectangles in the top and bottom panels of Fig. 1c.
Obviously, we designed a CNN-based analytic platform (2DIP-Net)
by utilising these various simulation datasets.

Here, we generated a simulation dataset using ‘‘Dr Probe’’,
which is widely used for STEM image simulation, mirroring the
atomic-structural imaging conditions: (i) camera length of 6 cm
(HAADF imaging condition); inner-outer angle of 70.0–
277.9 mrad, (ii) condenser aperture radius of 27 mrad. For
the CNN-1, Poisson/Gaussian noise was added to a total of
500 training data and 50 validation data. For the simulation
data set of the CNN-2, Poisson/Gaussian noise was added using
one each of the six types of simulation data set. By adding
noise, a total of 4800 training data (800 data for each defect
type) and 1200 validation data (200 data for each defect type)
were created (see more details in Fig. S2 to generate the
simulation dataset and supplementary text 2 in the ESI†).

It is prerequisite to detect the accurate unit cell location as
the first-phase of point defect analysis. However, for a defect

Fig. 1 Synergy of object (unit cell) detection and (point defect) classification expressing workflow to analyse point defects. (a) (Top) Schematic of pristine
and defect-controlled TMDCs. (Left-middle)-(Left-bottom) Conventional point defect identification of chalcogenide (Ch) or transition metal (TM) sites.
(Centre-middle)-(Right-middle) Detections of unit cells (green boxes) of pristine and defect-controlled TMDCs. Since the periodic-basal components are
unit cells, the detection of every unit cell is a prerequisite as the enumeration manner. (Centre-bottom)-(Right-bottom) Classifications of distinctive
defects in unit cell-level (colour-coded boxes) as denoted by the ‘‘Proposed approach’’. The identification of characteristic defects is essential to
correlate (i) defect structures and (ii) their physical impacts on TMDCs. The red box incorporated with chalcogenide vacancy (VCh) exhibits an n-type
characteristic by electrons, while the blue (yellow) box with a transition metal vacancy (VTM) (oxygen chemisorption at VCh) exhibits a p-type characteristic
by holes. (b) Workflow to examine point defects. From the input, green hexagonal cells are detected; then further unit cell (green) cropping is conducted.
Eventually, the point defect types are classified at the unit cell level: chalcogen monovacancy (VCh1

, red rectangle) or chalcogen divacancies (VCh2
, yellow

rectangle). (c) (Top) Atomic models with (i) Perfect (grey), (ii) VTe1
(red), (iii) VTe2

(yellow), (iv) VMo (blue), (v) VTe1
+ VMo (olive), and (vi) VTe2

+ VMo (purple) for
ML 2H-MoTe2 in each unit cell. (Bottom) Simulated HAADF-STEM images corresponding to the top panels. The colour-coded rectangles are adopted as
the simulation data set for the ‘‘Proposed approach’’.
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type with weak contrast, such as VTe2
+ VMo, the position

(boundary) of the unit cell is ambiguous. Therefore, we trained
the CNN-1 to detect hexagonal cells from an input followed by a
post-process to extract the unit cell from the hexagonal cell.
We nominated these two procedures as a ‘‘hexagonal net-
casting process’’. This approach is expected to tightly crop
the unit cell, even with weak contrast e.g. VTe1

+ VMo or VTe2
+

VMo in a material.
Fig. 2a describes the CNN-1 architecture illustrating analysis

workflow. By combining the simulation dataset in Fig. 1c to
create a CNN-1 input, a series of convolution i.e. ‘‘Conv Block’’-
‘‘Inverted Residual block’’-‘‘Feature map’’ is through by Mobi-
leNet V2. Then, with the combination of the (i) Region Proposal
Network and (ii) Fast RCNN, the final location of hexagonal
cells is predicted. Here, the CNN-1 is trained to accurately
predict the size and location of hexagonal cells (referred to as
‘‘Predicted bbox’’ in ‘‘CNN-1 Output’’), compared to the ground
truth of the hexagonal cell (red) (see more details in Fig. S3a
and S4a and supplementary text 3 in the ESI† for the training
process and the training/validation loss curves of CNN-1).
To eventually crop the unit cell from the hexagonal cell, the
crop-ratio is defined of (i) a = WU/WH (width of unit cell/width of
hexagonal cell) and (ii) b = HU/HH (height of unit cell/height of
hexagonal cell). Then, the coordinates of ‘‘A’’, ‘‘B’’, ‘‘C’’, and
‘‘D’’ are defined as follows: A (xmin, ymin); B (xmin + a � WH, ymin +
b � HH); C (xmax � a � WH, ymax � b � HH); D (xmax, ymax).

These coordinates are utilised to extract two green unit cells,
which are post-processed from one green hexagonal cell in Fig. 2b.

To assess the performance of the hexagonal-net casting
process, we estimated the Intersection over Union (IoU). The
left panel in Fig. 2c calculates the IoUs obtained by varying a
from 0.55 to 0.70 (0.05 increment) and b from 0.45 to 0.60
(0.05 increment). Through the entire examinations, a (b) of 0.65
(0.5) displayed the highest IoU of 0.691 (red dotted circle)
i.e. high accuracies for unit cell detection). Here, the IoU is
defined by ‘‘Intersection area of ground truth (red) and
detected unit cell (green)’’ divided by ‘‘area of ground truth
and detected unit cell’’ (right panel in Fig. 2c). For our evalua-
tion, we tested simulation HAADF-STEM images since the unit
cell boundary in experimental images is uncertain.

We further compared our (i) hexagonal-net casting process
(Fig. 2d) and (ii) conventional unit cell detection (Fig. 2e, here,
CNN-1 is trained to directly detect unit cells). The top panels in
Fig. 2d and e are unit cell detection results in noised-simulation
HAADF-STEM images. In a wide field-of-view, it seems that both
processes are not very different. However, in enlarged micro-
graphs (left-bottom and right-bottom panels), the conventional
approach shows (i) either deviated unit cell detection compared
to ground truth (white rectangles (i) in Fig. 2d and e) and more
critically, (ii) mis-detected unit cell (false positive, white
rectangles (ii) in Fig. 2d and e as indicated by the white arrow).
The overall unit cell cropping accuracies of the hexagonal-net

Fig. 2 Unit cell detection performance evaluation by CNN-1. (a) The architecture of CNN-1 to detect the hexagonal cell from the input. The MobileNet
V2 convolute the input through ‘‘Conv block’’-‘‘Inverted Residual block’’-‘‘Feature map’’. The (i) region proposal network and (ii) fast RCNN finally predict
the size and location of the hexagonal cell (as indicated by the green ‘‘Predicted bbox’’ in the ‘‘CNN-1 Output’’) compared to the red ‘‘Ground truth’’.
(b) Enlarged hexagonal cell and post-process to crop the unit cell. The coordinates of ‘‘A’’, ‘‘B’’, ‘‘C’’, and ‘‘D’’ are extracted as follows; A (xmin, ymin), B
(xmin + a�WH, ymin + b�HH), C (xmax – a�WH, ymax� b�HH), and D (xmax, ymax). Here, for the post-process, crop-ratios are defined by two parameters:
(i) a = WU/WH (width of unit cell/width of hexagonal cell) and (ii) b = HU/HH (height of unit cell/height of hexagonal cell). (c) (Left) Estimation of
Intersection over Union (IoU), accordingly with a from 0.55 to 0.70 (0.05 increment) and b from 0.45 to 0.60 (0.05 increment). (Right) Definition of IoU:
‘‘Intersection of ground truth (green box) and final unit cell (red box)’’ divided by ‘‘Union of ground truth and final unit cell’’. Through all crop-ratio values, a
(b) of 0.65 (0.5) exhibited the most IoU of 0.691. (d) and (e) (Top) The competence of the ‘‘hexagonal-net casting process’’ and conventional unit cell
detection process, respectively. The green (red) boxes indicate the size and location of predicted unit cell (ground truth). (Bottom-left) ((Bottom-right))
Enlarged unit cell detection results of (i) ((ii)) in the white boxes in (e) ((f)). Scale bars; 0.2 nm. The averaged unit cell detection accuracies are 0.990 (0.953)
for hexagonal-net casting (conventional unit cell detection), calculated with the ratio of the ‘‘number of unit cells with an IoU greater than 0.5’’ to the
‘‘total number of examined unit cells (1691)’’.
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casting process (conventional approach) for 0.990 (0.953). The
accuracies were estimated by calculating the ratio of ‘‘number
of unit cells with an IoU greater than 0.5’’ to the ‘‘total number
of examined unit cells (1691)’’. Through Fig. 2, by varying the
crop-ratio of a (b) to extract the unit cell from the hexagonal
cell, we found that an a (b) of 0.65 (0.5) was optimal for the post-
process step.

During STEM imaging, contamination (or polymer residue)
on a sample falsifies the image contrast/brightness in either the
Mo- or Te2-column site. Additionally, the two atomic columns
in each unit cell do not all have the same tendency of contrast/
brightness variations during experiment. Inspired by point
defect determination with manual intensity profiling (Fig. S1,
ESI†), we estimated the point defect classification compe-
tence of CNN-2 using two-types of input. These types include
(i) 1-channel (1 ch-) input; the whole unit cell and (ii) 2-channel
(2 ch-) input; separated Mo/Te2-column parts from the unit cell,
and then paired together (Fig. 3a). We anticipate that point
defect classification comparison of CNN-2 between 1 ch- and
2 ch-input types will provide new insight to improve the
accuracies of point defect analysis through deep learning.

Fig. 3a describes the CNN-2 architecture illustrating the
analysis workflow. From two-types of input (1 ch- or 2 ch-input),
a series of processes i.e. ‘‘Conv Block’’-‘‘Residual block’’-
‘‘Feature map’’-‘‘Global average pooling’’-‘‘FC-layer’’ is through
by ResNet-18. Subsequently, each point defect species is pre-
dicted as one of the six simulation datasets (see more details in
Fig. S3b and S4b and supplementary text 3 in the ESI† for the
training processes and the training/validation loss curves of
CNN-2). We examined point defects in experimental HAADF-
STEM images of ML 2H-MoTe2; Fig. 3b(c) for 1 ch- (2 ch-) input-
type and Fig. 3d for ground truth, from the identical CNN-1
output (see more details to examine point defect for simulation
images in Fig. S5–S9 and Supplementary text 4 in the ESI†). The
grey (red) arrows in Fig. 3b are mis-classified to Perfect (VTe1

);
ground truth of VTe1

(VTe2
). Likewise, the red arrow in Fig. 3c

is mis-classified to VTe1
; ground truth of Perfect. Although not

explicitly indicated for clarity, Perfect unit cells were also
classified. The analytical accuracies of (i) Perfect, (ii) VTe1

,
(iii) VTe2

, and (iv) VMo of 1 ch-input for light blue (2ch-input
for light pink) were (i) 100% (100%), (ii) 52.48% (97.87%),
(iii) 35.71% (100%), and (iv) 33.33% (100%) (more analytic
results are presented in Fig. S10–S13 to examine point defects
in experimental images, ESI†).

In particular, the accuracy of point defect classification for 2
ch-input significantly improved compared to 1 ch-input (Fig. 3e).
These results suggest that the 2 ch-input type is optimal to
examine point defects in experimental images. Given the limited
image features of atomic position and brightness, it can be
challenging to classify six different point defect species (including
the Perfect type). We believe this approach provides more clues to
CNN-2 to classify different point defects species to determine (i)
‘‘Te-on site’’ defects primarily i.e. VTe1

, VTe2
, or non-defective, and

(ii) ‘‘Mo-on site defects’’ secondarily i.e. VMo or non-defective.
With the combination of the Te-on site and Mo-on site defect
determination, CNN-2 could decide the eventual defect types.

So far, we designed a dual-mode CNN-platform i.e. 2DIP-Net
to examine point defects in 2H-MoTe2 (Fig. 4a). Through Fig. 2
and 3, we inspected the (i) unit cell detection and (ii) point
defect classification with the simulation dataset. The CNN-1
(CNN-2) performed elaborate unit cell detection (accurate point
defect classification). Still, there is an urge for systematic noise-
added exploration to simulation dataset to ensure reliable point
defect analysis in experimental images. Noise is the main
simulation dataset construction factor in our study since it is
the primary bottle-neck and challenge to identify accurate point
defects. However, a quantitative noise estimation in the elec-
tron microscopic image has not been developed.47,49,50 There-
fore, we estimated the point defect analysis accuracies of 2DIP-
Net, by varying Poisson or Gaussian noise during simulation

Fig. 3 Point defect classification performance evaluation by CNN-2.
(a) The architecture of CNN-2 to classify point defects from 1 ch- (a whole
unit cell) and 2 ch-inputs (atomic-column separated). By ResNet-18, the
inputs are through ‘‘Conv Block’’-‘‘Residual block’’-‘‘Feature map’’-‘‘Global
average pooling’’-‘‘FC-layer’’ to classify point defect types as one of the
simulated dataset in each unit cell. (b) and (c) Point defect classification
results with experimental images with 1 ch- and 2 ch-input of CNN-2 from
the identical CNN-1 output. The grey (red) arrows in (b) are misclassified to
Perfect (VTe1

); ground truth of VTe1
(VTe2

). Likewise, the red arrow in (c) is
misclassified to VTe1

; ground truth of Perfect. The colour-codes are the
same as in Fig. 1. (d) Corresponding ground truth of (b) and (c). Scale bars,
0.5 nm. (e) Accuracies for point defect classification performance of total
11 input experimental images (3037 unit cells examined) of 1 ch-input (light
blue) and 2 ch-input (light pink), respectively. The accuracies for Perfect,
VTe1

, VTe2
and VMo for 1ch-(2ch-) input are 100% (100%), 52.48% (97.87%),

35.71% (100%), and 33.33% (100%), respectively.
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dataset construction. We anticipated that we could propose the
appropriate amount of noise to analyse point defects in experi-
mental images with a simulation dataset.

Since Poisson is the dominant noise type during STEM
imaging,58,59 we ranged the Poisson noise parameter l to cover
various experimental STEM images: (i) l = 0 (non-Poisson),
(ii) 5 r l r 20, (iii) 20 r l r 40, and (iv) 40 r l r 80, while
the Gaussian noise parameter m was fixed: (i) m = 0 (non-
Gaussian), (ii) m = 10, (iii) m = 20, (iv) m = 20, and (v) m = 40.
The histograms in Fig. 4b show the overall point defect classi-
fication accuracies for ‘‘experimental’’ HAADF-STEM images,
corresponding to the Poisson noise-added (left) and Gaussian
noise-added (right) dataset, respectively. Based on our exami-
nation, 5 r lr 20 (m = 20) was the most efficient towards point
defect analysis reaching 95.93% (95.93%) accuracy (see more
details in Fig. S14 and supplementary text 5 in the ESI† for
training results of 5 r l r 20 and m = 20).

We proceeded to compare point defect classification
competence between 2DIP-Net (with 2 ch-input type) and the
FCN-based approaches as reported in previous studies47–50 (see
more details about FCN in Fig. S15 and supplementary text 6 in
the ESI†). Fig. 5a illustrates the 2DIP-Net (top) and FCN-based
(bottom) point defect classification results for experimental
images. Here, the Perfect types were classified though they
are not indicated for clarity. In the enlarged HAADF-STEM
images of Fig. 5b and c top (2DIP-Net) and bottom (FCN) panels

from the colour-coded rectangles in Fig. 5a, it becomes evident
that the FCN model is often confused about distinguishing
between VTe1

(green) or VTe2
(dark-red), as indicated by red

arrows. The 2DIP-Net identified the point defect type in the unit
cell accommodating VTe1

. In the same region, though, the FCN
predicted the point defect species of VTe1

(green) vs. VTe2
(red) at

the pixel level within one VTe1
site. In this case, human inter-

vention may be necessary to determine the defect types between
VTe1

and VTe2
. Based on Fig. 5d, these confusions of FCN were

confirmed by estimating the proportion of confidence (POC) of
VTe1

vs. VTe2
; 40.6% vs. 59.4% and 59.6% vs. 40.4%. In contrast,

2DIP-Net exhibited much higher POCs for VTe1
vs. VTe2

; 89.6%
vs. 10.4% and 87.2% vs. 12.8%. Furthermore, we stretched out
to examine the classification competence between Perfect and
Te-on site defects; VTe1

and VTe2
for simplicity, as presented in

the top (2DIP-Net with 2 ch-input) and bottom panels (FCN) in
Fig. 5e. From a total of 3034 unit cells examined, the FCN was
confused when determining the defect type of VTe1

vs. Perfect: 6
mis-classified to Perfect while ground truth of VTe1

(up to 95.7%
accuracy). In contrast, our 2DIP-Net is more accurate; 3 mis-
classified to Perfect with a ground truth of VTe1

(up to 97.9%
accuracy).

To advance our approach and create a comprehensive
database for diverse point defect classification, we developed
a Graphic User Interface (GUI)-based point defect examination
tool (Fig. 6a). By loading an input STEM image, the results are
presented of classified point defect types. Here, Perfect (grey)
and other colour-coded defect types are identified, and the
results can be cross-validated by profiling atomic-intensities.
Neither limited to mechanically exfoliated 2D materials nor
other species of materials, our approach can cover various types
of defect-susceptible and atomic contrast sensitive materials
exhibiting fascinating physical properties. Using this GUI, we
statistically defined point defect species in pristine 2H-MoTe2

experimental images. After examining a total of 3037 unit cells
(including Perfect types), it was confirmed the extant point
defect species are (i) VTe1

(red), (ii) VTe2
(yellow), and (iii) VMo

(blue), respectively (left and middle panels in Fig. 6b). Enlarged
hexagonal cells (right panels in Fig. 6b) labelled (i), (ii), and
(iii) representatively visualise the enlarged hexagonal cells.
In Fig. 6c left panel, we specified the defect-concentrations in
pristine 2H-MoTe2: the concentration of VTe1

(red) was 7.16 �
1020 cm�2, followed by VTe2

(yellow) of 4.38 � 1019 cm�2 and
VMo (blue) of 1.4 � 1019 cm�2 (total analysed area of 2.053 �
1019 cm2 (205.3 nm2). Note that the VTe1

+ VMo or VTe2
+ VMo

(referred to as multiple defect types) confirmed undetected in
our estimation (see more details in Fig. S13, ESI†). These
multiple defect types are less likely to transpire by minimal
external stimuli.59 However, the extant point defects may be
generated during transmission electron microscopy (TEM)
sample preparation by mechanical exfoliation.59,60

To further correlate defect-electrical properties, we fabri-
cated a back-gated field effect transistor (FET), with the iden-
tical exfoliation method as in TEM sample preparation.
As illustrated in Fig. 6c right panel, we verified that the n-type
character dominantly originated from Te-vacancies. Here, our

Fig. 4 (a) Overall point defect classification procedure of 2DIP-Net.
(b) (Left)((Right)) Overall point defect classification accuracies for experi-
mental images by varying l (m) values to the simulation dataset. The l is
ranged: (i) l = 0 (non-Poisson), (ii) 5 r l r 20, (iii) 20 r l r 40, and
(iv) 40 r lr 80; while m is fixed: (i) m = 0 (non-Gaussian), (ii) m = 10, (iii) m =
20, (iv) m = 30, and (v) m = 40. Here, 5 r l r 20 (m = 20) was the most
efficient for point defect classification accuracies up to 95.93% (95.93%).
Note that classification accuracy for Perfect types are not considered to
only suggest for the defects.
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full-automated and statistical approaches to analyse point defects
could contribute to minimize the gap that should be correlated by
(i) preparing a TEM sample and (ii) fabricating a device to
correlate (i) an atomic defect structure-(ii) electric property unit.

Discussions

To achieve atomic-structural analysis in automated and statical
fashions, unit cell detection is the first-phase, as mentioned
in Fig. 2. In the HAADF-STEM image at a magnification of
20 million (20 M), the size of (i) the unit cell and (ii) the
hexagonal cell for 2H-MoTe2 is about (i) 75 pixels (WU) �
65 pixels (HU) and (ii) 120 pixels (WH) � 130 pixels (HH),
respectively. At magnifications lower than 20 M, cropping unit
cells becomes more challenging due to degraded image resolu-
tions. Our hexagonal-net casting can set boundaries in atomic-
structural images even for multiple defect types and this
efficiency was demonstrated by deciding unit cell crop-ratio a
(WU/WH) and b (HU/HH). We found that a = 0.65 (b = 0.5)
exhibited the highest efficiency with an IOU of 0.691. Furthermore,
due to the limited image features of the unit cell; only two atomic-
columns with different contrast (brightness), the CNN-1 may
insufficiently learn image features to accurately crop unit cells.
By training CNN-1 to recognise ‘‘hexagonal cells’’, (i) six atomic
columns with (ii) different contrast (brightness) and (iii) hexa-
gonal atomic-arrangement of Mo- and Te2-columns could

provide additional image features to increase the possibility
of unit cell detection.

From a material-perspective, usually, the unit cell of 2D
materials is a parallelogram; lattice parameter of a = b a c, and
angles of a = b = 901, g = 1201. However, from an image process-
perspective, it is difficult to deal with a parallelogram unit cell,
since the rectangular region of interest (ROI) is common.
Therefore, the hexagonal-net casting process can interconnect
the materials (analysis) and image-process through a deep
learning technique. This can be achieved by substituting the
analysis dimension with parallelograms (for materials) and
rectangles (for image-process). We also discovered that the
a = 0.65 (b = 0.5) coincide with experimental HAADF-STEM
images at a magnification of 20 M: WU/WH (HU/HH) of 0.63 (0.5).
We systematically explored the unit cell cropping performance
of CNN-1, to our best knowledge, which hereto unaddressed
subjects.

We examined point defect classification competence by
comparing a 1 ch-input and 2 ch-input in Fig. 3. The confusion
of Perfect vs. VTe1

was revealed in a 1 ch-input type, since not all
the two atomic columns have the same tendency of contrast/
brightness variations during STEM experiment. With the lim-
ited image features-atomic position and brightness, it can be
challenging to classify six different point defect species (including
the Perfect type). We believe that separating the atomic columns
(2 ch-input) provides additional clues to CNN-2, enhancing the
accuracy of point defect classification. These additional image

Fig. 5 (a) (Top)-(Bottom) Point defect classification results by 2DIP-Net (with 2 ch-input) and FCN, respectively. Scale bars: 0.5 nm. (b) and (c) (Top)-
(Bottom) Enlarged HAADF-STEM micrographs as marked light blue and light orange in (a) and (b), respectively. Scale bars: 0.2 nm. (d) (Top)-(Bottom)
Proportions of confidence (POC) of VTe1 (green) vs. VTe2 (dark-red) as denoted by red arrows in the top panels in (b) and (c), respectively. The 2DIP-Net
exhibited much higher POCs than FCN for VTe1 vs. VTe2; 89.6% vs. 10.4% and 87.2% vs. 12.8% by 2DIP-Net and 40.6% vs. 59.4% and 59.6% vs. 40.4%
by FCN. (e) (Top)-(Bottom) Confusion matrices for Perfect and Te-on site defects of 11 total input experimental images (3034 unit cells examined) by
2DIP-Net and FCN, respectively. The 2DIP-Net (FCN) performed 97.9% (95.7%) classification accuracies for VTe1.
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features aid the CNN-2 in primarily determining ‘‘Te-on site’’
defects, i.e., VTe1

, VTe2
, or non-defective, and secondarily deter-

mining ‘‘Mo-on site defects,’’ i.e., VMo or non-defective.
The noise-added values of ls and ms to the simulation

dataset achieved minimal loss during training (Fig. S14, ESI†).
However, in Fig. 4b, the accuracies of point defect classification
in experimental images showed significant deviations:
(i) 95.93% (5 r l r 20) followed by 63.07% (40 r l r 80),
62.8% (20 r lr 40) and (ii) 40.43% (non-Poisson), and 95.93%
(m = 20), 77.64% (m = 30), 59.87% (m = 40), 40.74% (m = 10) and
1.83% (non-Gaussian). These results give us the two instruc-
tions for deep learning-based point defect analysis. Frist, point
defect classification should be cross-validated by examining
experimental images, though the training process seemingly
goes well. Second, these explorations provide us with insights
into the optimal degree-of-noise levels utilising simulation
datasets towards point defect identification in experimental
STEM images. Note that we trained both CNN-1 and CNN-2
using the optimal noise values as revealed in Fig. 4.

As depicted in Fig. 6, the identification of point defects
in pristine 2H-MoTe2 is an essential study to further explore
defect-engineered 2H-MoTe2. Previous study revealed a point
defect concentration of pristine 2H-MoTe2 of 5.8 � 1011 nm2;61

however, this report neither differentiated Te-on site nor Mo-on
site defects. The properties of crystal systems, in relation to the

contribution of defect species, have not been thoroughly
explored, necessitating further investigation. In our study, we
identified three types of point defects in pristine 2H-MoTe2.
While VMo acts as a p-type dopant to the 2H-MoTe2 crystal,35 the
large concentration of the n-type characteristics of VTe1

and VTe2

counteracted the p-type behaviour of VMo. Furthermore, the use
of mild STEM imaging conditions made it possible to apply
deep learning techniques to atomic-structural images with
minimal significant degradations (see more details in the
methods section).

Still, there remain issues to be resolved for accurate point
defect inspection using deep learning. Frist, we trained 2DIP-
Net using a simulation dataset towards experimental image
analysis. Though we applied (added) Poisson (Gaussian) noise
to the simulation dataset with optimal degree-of-noise values to
mirror experimental HAADF-STEM imaging conditions, a quan-
titative noise estimation method in the field of electron micro-
scopy has not yet been developed.47,49,50 If such a quantifiable
noise approximation technique is established, a more depend-
able point defect investigation can be realised. Second, we
should consider the fact that, in actual HAADF-STEM images,
there is a lack of ground truth for point defects as the training
database.47 This issue also applies to other deep learning-based
point defects studies in atomic-resolution images. Our approach
may contribute to solving this issue by accumulating a database

Fig. 6 (a) GUI-based point defect analysis expendable to accumulate training data base. From the input, the classified point defect types are visualised as
one of the simulation datasets in the unit cell-by-unit cell (in the ‘‘STEM image’’ panel). We can select each defect-classified unit cell in the ‘‘Crop Image’’
panel and compare the intensity in the ‘‘Simulation Image’’ panel by choosing one of the simulation datasets from the ‘‘Defect class’’ panel. (b) (Left)-
(Middle) Point defect classification results by 2DIP-Net (by GUI) in the experimental images. Totally, the classified point defects are categorised into three
types: VTe1

(red), VTe2
(yellow), and VMo (blue). Scale bars: 0.5 nm. (Right) Enlarged point defect identifications in rectangles (i)-(iii) in the left and middle

panels of VTe1
, VTe2

and VMo, respectively. Scale bars: 0.2 nm. (c) (Left) The defect-concentrations of (i) 7.16 � 1020 cm2 (VTe1
), (ii) 4.38 � 1019 cm2 (VTe2

),
and (iii) 1.46 � 1019 cm2 (VMo). The total analysed area of 2.053 � 1019 cm2 (205.3 nm2) corresponding to a total of 3037-examined unit cells. The colour-
codes are the same as in Fig. 1. Scale bars: 0.5 nm. (Right) Transfer (I–Vg) curve of 2H-MoTe2 back-gated FET. The transfer result reveals that the pristine
2H-MoTe2 exhibits n-type characteristics. Inset: Schematic of back-gated FET for transfer measurement.

Communication Materials Horizons

Pu
bl

is
he

d 
on

 2
2 

de
 n

ov
em

br
e 

20
23

. D
ow

nl
oa

de
d 

on
 1

8/
7/

20
24

 9
:3

1:
01

. 
View Article Online

https://doi.org/10.1039/d3mh01500a


This journal is © The Royal Society of Chemistry 2024 Mater. Horiz., 2024, 11, 747–757 |  755

for a defined point defect in experimental images. More authentic
analysis may be guaranteed for future point defect analysis based
on deep learning, and our developed GUI could relieve the
difficulties in building a training database (Fig. 6a).

Conclusions

In this work, we established a deep learning-based platform
i.e. 2DIP-Net to investigate a variety of point defects and their
influence on the electrical properties of pristine 2H-MoTe2 via
atomic-structural imaging. To address the limitations of the
training data e.g., the lack of ground truth for point defect, we
intensively constructed a simulation dataset to reflect the
experimental conditions by adding noise. To enhance the
accuracy of (i) unit cell detection and (ii) point defect classifica-
tion, we (i) segmented detected hexagonal cell into unit cells
and then (ii) separated the 1 ch-input into 2 ch-input. With the
limited image features in HAADF-STEM images, the partition-
ing of the analysis process or target elements in each step can
lead to more accurate results, which have not been addressed
previously. We believe our approach efficiently analyses simple-
featured images by appropriately delimitating periodic bound-
aries within the images. With this approach, we unveiled that
point defects in pristine ML 2H-MoTe2 were classified with
concentrations of (i) VTe1

, (ii) VTe2
, and (iii) VMo was (i) 7.16 �

1020 cm2, (ii) 4.38 � 1019 cm2, and (iii) 1.46 � 1019 cm2. Our
atomistic defect study of pristine 2H-MoTe2 can suggest the
avenue to systematically inspect defect-modulated 2H-MoTe2,
which was explicated neither by theoretical approaches nor
experimentally in statistical manners.36,38,60,62

Methods
TEM sample preparation and STEM imaging

To acquire highly crystalline pristine 2H-MoTe2, we mechani-
cally exfoliated ML 2H-MoTe2 from bulk 2H-MoTe2 as reported
in previous work.63 To minimise the electron beam-induced
point defects in 2H-MoTe2, we used mild STEM imaging con-
ditions with an acceleration voltage of 80 kV. To compensate for
the debased resolution due to the low acceleration voltage, we
employed 5th-order aberration-corrected (Cs-corrected) STEM
(JEOL JEM-ARM200F), at the Materials Imaging & Analysis
Center of POSTECH in South Korea. We acquired atomic-
resolution HAADF-STEM images using Z-contrast to analyse
the point defect concentrations. Recently pre- and post-image
processing techniques of STEM imaging with a high signal-to-
noise ratio and a few picometer resolution have been achieved
via noise filtering,39 rigid registration,40 and non-rigid registration.41

However, these processes manage an image intensity issue
which is a crucial factor for Z-contrast imaging in HAADF-
STEM, and they may leave room for Z-contrast distortion in
an image. Therefore, we acquired a single scanned image (2048
pixels � 2048 pixels) over a short dwell time of 5–6 ms per pixel,
also relieving sample linear drift-related image distortion.

STEM image simulation to construct a dataset

To mimic the experimental conditions of our experimental set-
up, we generate a simulation dataset as follows: (i) acceleration
voltage of 80 kV, (ii) camera length of 6 cm; inner-outer angle of
70.0–277.9 mrad, (iii) condenser apertures radius of 27 mrad,
and (iv) probe size of 0.6 Å. Note that an experimental point
defect STEM image training database for 2D materials does not
exist;47 therefore, we emulated experimental images using
simulated images. For CNN-1 and CNN-2, the main simulation
image construction factor is a Poisson (Gaussian) noise para-
meter of 5 r l r 20 (m = 20) to each simulated image.

Elaborate unit cell extraction

For accurate point defect classification, precise detection of
unit cells should be performed. Therefore, the role of CNN-1 is
crucial in the first-phase of the point defect analysis. Fig. 2b
illustrates our hexagonal-net casting process; once a hexagonal
cell is recognised by CNN-1, the coordinates of ‘‘A’’, ‘‘B’’, ‘‘C’’,
and ‘‘D’’ are determined for further cropping of the unit cells.
The width and height of the hexagonal cell is the difference
between the maximum and minimum x coordinate (xmax �
xmin) and the difference between the maximum and minimum
y coordinate (ymax � ymin), respectively. Subsequently, the left
upper and right lower unit cells in the hexagonal cell were
further cropped. This cropping technique increased the cap-
ability of detecting unit cells precisely.

Appropriate input types for point defect classification

Providing the appropriate input for the CNN-2 model to dis-
criminate different types of point defects was key for accurate
defect classification. Fig. 3a illustrates two types of input types
fed into CNN-2. As the contrast comparison between the Te2

and Mo column is used to classify point defects, we proposed a
2 ch-input, dividing the Te2 column and Mo column parts by
half along the x-axis of the unit cell. Then, the two separated
images were resized and stacked to form a 2 ch-input.

Deep learning architectures for the optimized analytic phase

CNN-1 was composed of a pre-trained mobilenet-v2 feature
extractor and the region proposal network.64 The anchor box
size of the region proposal network was (8, 16, 32, 64, 128), and
the ratio used to create various bounding box candidates was
(0.5, 1.0, 2.0). In addition, for one input image, the maximum
number of detection boxes was set to 800. The CNN-1 was
trained for 40 epochs using the Adam optimizer (learning rate:
1 � 10�4) by smooth L1 loss and cross-entropy loss. The CNN-2
was composed of the Resnet-18 feature extractor and a fully
connected (FC) layer. A total of 512 nodes were created through
the global average pooling layer. The last feature extractor and a
512 � N (N = number of layer classes) FC layer were con-
structed. We trained the CNN-2 using the cross-entropy loss
function for 40 epochs with the same optimizer (learning rate:
2 � 10�6) as CNN-1. The input size for CNN-1 was resized to
512 � 512, and the output of CNN-1 was the bounding boxes
(xmin, ymin, xmax, ymax) of hexagonal cells. Subsequently,
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through post-processing, two unit cells were cropped from the
hexagonal cells. For the CNN-2, one half of the unit cell image
was divided as a 2 ch image using the vertical axis of the unit
cell image as a perforated line. After resizing to 224 � 224, the
images were fed to CNN-2 for point defect classification. The
CNN architectures for the end-to-end analysis method in this
study were designed using PyTorch, which is a Python-based
framework and trained with a 11 GB NVIDIA RTX 2080Ti
graphics card.
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M. Moaied, J. J. Palacios, C. Salgado, M. M. Ugeda, J. Y.
Veuillen, F. Yndurain and I. Brihuega, Science, 2016,
352(6284), 437–441.

24 J. Hong, M. K. Park, E. J. Lee, D. E. Lee, D. S. Hwang and
S. Ryu, Sci. Rep., 2013, 3, 1–5.
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