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Extraction of interaction parameters from specular
neutron reflectivity in thin films of diblock
copolymers: an “inverse problem”†

Dustin Eby, a Mikolaj Jakowski,a Valeria Lauter, b Mathieu Doucet, b

Panchapakesan Ganesh, *a Miguel Fuentes-Cabrera *a and Rajeev Kumar *a

Diblock copolymers have been shown to undergo microphase separation due to an interplay of repulsive

interactions between dissimilar monomers, which leads to the stretching of chains and entropic loss due

to the stretching. In thin films, additional effects due to confinement and monomer–surface interactions

make microphase separation much more complicated than in that in bulks (i.e., without substrates).

Previously, physics-based models have been used to interpret and extract various interaction parameters

from the specular neutron reflectivities of annealed thin films containing diblock copolymers

(J. P. Mahalik, J. W. Dugger, S. W. Sides, B. G. Sumpter, V. Lauter and R. Kumar, Interpreting neutron reflec-

tivity profiles of diblock copolymer nanocomposite thin films using hybrid particle-field simulations,

Macromolecules, 2018, 51(8), 3116; J. P. Mahalik, W. Li, A. T. Savici, S. Hahn, H. Lauter, H. Ambaye,

B. G. Sumpter, V. Lauter and R. Kumar, Dispersity-driven stabilization of coexisting morphologies in asym-

metric diblock copolymer thin films, Macromolecules, 2021, 54(1), 450). However, extracting Flory–

Huggins χ parameters characterizing monomer–monomer, monomer–substrate, and monomer–air

interactions has been labor-intensive and prone to errors, requiring the use of alternative methods for

practical purposes. In this work, we have developed such an alternative method by employing a multi-

layer perceptron, an autoencoder, and a variational autoencoder. These neural networks are used to

extract interaction parameters not only from neutron scattering length density profiles constructed using

self-consistent field theory-based simulations, but also from a noisy ad hoc model constructed previously.

In particular, the variational autoencoder is shown to be the most promising tool when it comes to the

reconstruction and extraction of parameters from an ad hoc neutron scattering length density profile of a

thin film containing a symmetric di-block copolymer (poly(deuterated styrene-b-n-butyl methacrylate)).

This work paves the way for automated analysis of specular neutron reflectivities from thin films of copo-

lymers using machine learning tools.

Introduction

Neutron reflectometry1–3 (NR) has emerged as a unique charac-
terization technique for studying thin polymer films due to its
high spatial resolution (∼0.5 nm), non-destructive nature, and
the sensitivity of neutrons to both isotopes and spin. When
used in combination with other surface sensitive techniques
such as X-ray reflectivity,1 time-of-flight secondary ion mass
spectroscopy,4 ellipsometry, and transmission electron
microscopy, NR provides detailed information about the struc-
ture of thin films along normal (specular NR) and in-plane
directions (off-specular scattering). Due to the complicated
data analysis of off-specular5 scattering, mainly specular NR
has been extensively applied to various thin film systems since
the 1980s. T. Russell and co-workers have applied NR in their
pioneering work1 to study the surface enrichment of polymers
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in thin film blends, the adsorption of diblock copolymers on
surfaces, and microphase separation in thin films of diblock
copolymers. Since then, specular NR has been applied to
many more polymeric systems such as polyelectrolyte brushes
in solutions,6 block copolymer nanocomposites,7–12 disperse
diblock copolymers,13,14 and ionic copolymer melts in the
presence of applied electric fields.15

T. Russell introduced and described ad hoc data analysis for
multi-layers in his review of X-ray and neutron reflectivity in
1990,1 which contributed significantly to the widespread use
of specular NR in studying polymeric systems. Nowadays, data
analysis of specular NR (i.e. generating neutron scattering
length density (SLD) profiles for a model and computing
specular NR) can be done using publicly available packages
such as the Refl1D,16 refnx,17 and BornAgain.18 By using these
packages, typically the number and thickness of layers as well
as roughness are varied to fit experimentally measured NR.
Despite these advances, connecting NR to physics-based
models has not been widely developed due to a number of
complications. These complications include the selection of
an appropriate physical model for the polymers under study,
native oxide layers on substrates, and instrument resolution
functions, which must be taken into account when fitting
experimental reflectivity curves R(q) (q is the wave vector trans-
fer perpendicular to the film surface). Furthermore, tackling
the “inverse problems” still remains a challenge. These are (i)
determining the SLD curves from the experimentally measured
NR data and (ii) extracting the physical interaction parameters
that produce those SLD curves. Both of these inversion pro-
blems remain unsolved and ill-posed because only reflected
intensities are measured in most of the experiments, and the
phase of reflected waves is not measured. Indeed, although it
is possible to accurately determine the phase in an NR experi-
ment using a known reference layer,19 a practical implemen-
tation of this method has not been established due to several
obstacles, such as a significant increase in neutron scattering
time required for experiments and difficulties associated with
obtaining identical and reproducible reference layers.
Similarly, when a SLD profile is constructed using linear com-
binations of different volume fraction profiles weighted appro-
priately by nuclear scattering cross-sections, sometimes
different combinations of interaction parameters can lead to
the same SLD profile (as shown in this work). Each of these
inverse problems needs to be solved for facilitating the use of
physics-based models for the interpretation of specular NR
curves. This, in turn, will result in the discovery of unique
information from NR experiments, which is not currently avail-
able. The importance of solving the inverse problem related to
the loss of phase information in specular NR was identified as
early as the late 1980s by T. Russell1 and G. Felcher.20

Specifically, T. Russell wrote, “It would be ideal if one could
derive the scattering length density variation directly from the
reflectivity profile. However, since the reflectivity profile is the
square of the transform of the density profile, phase information is
lost and calculating the potential or the scattering length density
profile directly from R(kz,o) is not possible. This “inverse problem”

has been and still is the major limitation of the reflectivity tech-
nique. It precludes an absolute determination of the scattering
length density profile. The solution of this problem would consti-
tute a major advance in the field and would remove some of the
subjectivity associated with current data analysis”. These state-
ments are still valid today on the 70th birthday of Prof.
Russell, and in this work, we present our attempts to tackle a
similar inverse problem arising in the extraction of interaction
parameters from SLD curves. These parameters are present in
a field-theoretic model, which is used to simulate volume frac-
tion profiles of two components of a linear di-block copolymer
in thin films. In turn, volume fraction profiles are used to con-
struct the SLD. We plan to address the inverse problem stated
by T. Russell in a future publication using the strategy pre-
sented in this work.

Previous attempts20,21 to solve the inverse problem related
to the loss of phase in NR have used the Gel’fand–Levitan–
Marchenko method,22 involving a numerical solution of an
integral equation. Later on, the addition of reference layers
and three NR measurements with polarized neutrons were pro-
posed to invert reflectivity curves unambiguously.19,23

Although it is useful, the validity of the Gel’fand–Levitan–
Marchenko method places constraints on the asymptotic be-
havior of SLDs, which is not known a priori. Similarly, the
addition of a magnetic layer and additional measurements
with polarized neutrons require alternative methods for con-
verting NR into SLDs. In recent years, machine learning tools
such as neural networks have been used to address the inverse
problem.24–28 Neural networks can be trained to learn relations
and then used to address the inverse problem. In this work,
we use three different neural networks, i.e. a multi-layer per-
ceptron, an autoencoder, and a variational autoencoder, to
solve the inverse problem of extracting three interaction para-
meters from a SLD profile representing thin films containing
linear and symmetric di-block copolymer chains. These thin
films were studied in our previous works12,14 using self-con-
sistent field theory (SCFT) of di-block copolymers and NR
measurements. However, in our previous work, we constructed
a SCFT-based model by carefully varying different parameters
manually. Here, we have developed a suite of machine learning
tools to extract the three interaction parameters of the SCFT
from SLD, thereby expediting interpretation of specular NR
using the SCFT.

For extracting interaction parameters, we focused on a thin
film of the symmetric poly(deuterated styrene-b-n-butyl meth-
acrylate) (poly(dS-b-BMA)) di-block copolymer. Thin films of
these copolymers have been extensively studied by Lauter and
coworkers7,8,10,12,14 using NR. In our previous work,12 we fitted
experimental NR profiles from thin films of the lamellae
forming poly(dS-b-BMA) di-block copolymer and constructed
SLDs based on the SCFT model and an ad hoc multi-layer
model. In other words, two models (almost similar to each
other) were constructed12 to fit the same data, and additional
information, such as phase information, was needed to deter-
mine which of these two models was better. With the goal of
automating the process of estimating interaction parameters
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for the SCFT from SLDs, we herein use neural networks.
Another goal is to identify a need to use a more realistic SCFT-
based model13,14 with additional parameters such as dispersity
of chain lengths, substrate properties etc. for interpreting the
NR data. In this paper, we will show that indeed, our approach
based on neural networks paves the way towards achieving
these goals related to the inversion problem of going from NR
data to SLD curves.

This paper is organized as follows: the Methods section
provides a brief description of the SCFT-based model and
describes in detail the three neural networks used in this
work. The Results section shows the extracted parameters and
discusses the results. We conclude with the Conclusions
section.

Methods
SCFT-based simulations

We used self-consistent field theory (SCFT) to model the struc-
ture of thin films containing n A–B diblock copolymer (mono-
disperse and flexible) chains. The details of the SCFT and
mapping the SCFT parameters for experimental poly(dS-b-
BMA) are presented in our previous work.12 Briefly, two bound-
aries were included to represent silicon and air in the experi-
mental set-up. A local incompressibility constraint was
imposed on the system, so that at any location, the sum of the
volume fractions of all the components (substrates, A and B)
results in unity. A schematic of the system is shown in Fig. 1.
Short-range pairwise interactions between different com-
ponents were represented by Flory–Huggins χ parameters.
Three parameters characterizing the interactions between
different components were χA–BN and χp–kN = (χk–B − χk–A)N (k =
Si, air), where N is the total number of statistical segments of
the A and B chains, and subscripts p, Si, and air denote
polymer, silicon and air, respectively. For comparisons with

the experiments, A and B represent deuterated styrene (S) and
n-butyl methacrylate (BMA), respectively. In this work, we have
used χk–A = 0, so that χp–k = χk–B and negative values of these
parameters will cause BMA to be localized at the boundary
designated by k. Polyswift++ 29 was used to solve for volume
fraction profiles of different components by solving a set of
equations representing a saddle-point. As described in ref. 10
and 12, the spatial SLD profile was obtained using SLD(z) =
SLDdPSϕA(z) + SLDPnBMAϕB(z) + SLDairϕa(z) + SLDSiO2

ϕs(z), where
z is normal to the substrate, SLDdPS = 6.19 × 10−6 Å−2,
SLDPnBMA = 0.55 × 10−6 Å−2, SLDair = 0, and SLDSiO2

= 3.2 × 10−6

Å−2. It should be noted that the dPS used in the experiment10

was not fully deuterated, resulting in SLDdPS = 6.19 × 10−6 Å−2,
which is lower than 6.45 × 10−6 Å−2 for fully deuterated PS.30

Data creation: SLD profiles vs. the three Flory–Huggins χ
parameters

SLD profiles were constructed from the volume fraction pro-
files obtained after solving the SCFT equations for a fixed film
thickness. The SCFT equations were solved on a Cartesian
three-dimensional grid with Nx = Ny = 16, and Nz = 96 colloca-
tion points along x, y, and z, respectively, with a uniform grid
spacing of Δx = Δy = Δz = 0.145. All the lengths were made
dimensionless using the radius of gyration of the diblock
copolymer chains, which was taken to be Rgo = 136.47 Å,
based on our previous work.12 In addition, N = 198 and the
chain contour step Δs = 0.01 was used for solving the
equations for chain propagators. For generating the SLD pro-
files, volume fractions were averaged along x and y. This way,
a total of 5942 SLD profiles were generated with χA–B ≡ χS–BMA

ranging in value from 0.05 to 0.20, χp–Si ranging from −0.6 to
0.6, and χp–air also ranging from −0.6 to 0.6. These SLD pro-
files were stored as 2 × 97 matrices, which were indexed along
with their corresponding χ input parameters to form our
dataset.

Fig. 1 (Left) A schematic of the system showing the substrate (silicon), diblock copolymer chain, and interaction parameters. All pairwise inter-
actions considered in the SCFT-based model are represented by the Flory–Huggins χ parameters. SCFT was used to simulate different morphologies
in the film of a known thickness by varying three parameters χS–BMA, χair–BMA − χair–S and χSi–BMA − χSi–S. (Right) Schematic of the morphology in the
thin film studied in this work and previously by us12 using neutron reflectivity, which exhibits three alternating strongly segregated domains of
PBMA-dPS-PBMA.

Paper Nanoscale

7282 | Nanoscale, 2023, 15, 7280–7291 This journal is © The Royal Society of Chemistry 2023

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 1

0 
de

 m
ar

ç 
20

23
. D

ow
nl

oa
de

d 
on

 6
/2

/2
02

6 
12

:4
7:

09
. 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n-
N

on
C

om
m

er
ci

al
 3

.0
 U

np
or

te
d 

L
ic

en
ce

.
View Article Online

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d2nr07173h


The experimental measurement12 on the symmetric poly
(dS-b-nBMA) film revealed three strongly segregated domains
of PBMA-dPS-PBMA (cf. Fig. 1). Such strong segregation of
microphase separated domains places a bound on the lowest
value of the interaction parameter χS–BMA. Below this value, the
domains exhibit mixing of dPS and PBMA. In addition, we
have to impose an upper bound on χS–BMA as the SLD profiles
do not change significantly beyond this value. So, we analyzed
SLD profiles for a narrower range of values lying in the ranges
0.08 ≤ χS–BMA ≤ 0.11 and 0.07 ≤ χS–BMA ≤ 0.12 for the multi-
layer perceptron (MLP) and autoencoders, respectively. After
this, our dataset consisted of 1931 simulated SLD curves and
their input χ parameters. We split this dataset into 3 sets, a
training set (70%), a validation set (15%), and a testing set
(15%).

NR is sensitive to the thickness and roughness at the
boundary of both surfaces (i.e., polymer–air and polymer–
silicon). As we do not simulate these details of the boundary

layers and we want to extract parameters from the SLD profiles,
we used the SLD profiles corresponding to the interior of the
films and discarded SLD data below z = 251 Å and above z =
1680 Å, reducing our SLD matrices to 2 × 72. The SLD curves
were then normalized to have x and y scales from 0 to 1.
Similarly, an oxide layer was added to the SCFT-based SLD pro-
files before computing reflectivities. Simulation failures
appeared as straight horizontal lines, so the dataset was
checked and cleaned of these poor data points.

Artificial neural networks (ANNs)

In this paper, three different ANN architectures were used to
tackle the inverse problem. The first architecture was based on
a multi-layer perceptron31 (MLP), shown schematically in
Fig. 2. The MLP was trained to learn the relationship between
SCFT-generated SLD profiles and χ parameters. It could be
seen that even though the MLP was capable of predicting accu-
rately the χ parameters for the SCFT-generated SLD curves, it

Fig. 2 Schematic representation of the multi-layer perceptron (MLP) architecture. It takes SLD curves as inputs and outputs the corresponding
three Flory–Huggins parameters. Here, f(x) is an activation function.
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produced unphysical χ parameters for an experimental SLD
curve. To overcome this issue, we constructed an ANN architec-
ture comprising an autoencoder (AE) and an MLP. This archi-
tecture was inspired by the work of Routh et al.,32 who used an
AE and MLP to predict physical descriptors from X-ray absorp-
tion near edge structure (XANES) spectra. The AE-MLP hybrid
model architecture is shown in Fig. 3. The AE was composed
of two ANNs, the encoder and the decoder. The encoder took
in the SCFT SLD curves and compressed them into vectors in a
multidimensional “latent” space. The decoder took in vectors
from this latent space and regenerated the corresponding SLD
curves. The AE was trained until the SLD curves generated by
the decoder resembled the corresponding SCFT input. This
was done by generating a loss function, where the output of
any given pass is compared against its true input, and then
minimizing this loss. Once the AE was trained, the latent
space vectors contained the most important information
associated with the input SCFT SLD curves. In this approach,
for each SCFT SLD curve, there is a vector in the latent space,
and for each vector, there is also a corresponding set of χ para-
meters. Next, the MLP was trained on the relationship between
the latent space and the χ parameters. The reasoning for using
the MLP is follows: as the latent space can have a smaller
dimension than the dataset composed of SCFT SLD curves, it
should be more efficient to train the MLP on the relationship

between the latent space and the χ parameters than to train it
on the relationship between SCFT SLD curves and χ para-
meters, as we did initially. Subsequently, we reasoned that it
might be possible to use the AE-MLP architecture to accurately
predict the χ parameters of an experimental SLD curve.
Unfortunately, we did not succeed in achieving the latter
because, as it will be seen, the decoder was incapable of regen-
erating the experimental SLD curve accurately. The reason for
this is rooted in the sparsity of the latent space: the mapping
of SCFT SLD curves into the latent space resulted in 4 well-sep-
arated clusters, none of which contained the point associated
with the experimental SLD curve. To solve this issue and focus
mainly on reproducing the experimental SLD curve, we
replaced the AE with a variational autoencoder, VAE,33 which is
a probabilistic extension of an AE. In a VAE, an additional term
is added to the loss function to achieve regularization of the
latent space, thereby making it continuous and complete. The
VAE architecture is shown in Fig. 4. The decoder of the VAE was
capable of regenerating an experimental SLD curve accurately.
Below, we describe the components of each architecture.

All three ANNs were coded in PyTorch. In the MLP architec-
ture, as shown in Fig. 2, the MLP contained 6 dense layers of
400, 300, 200, 100, 80, and 30 neurons, with all layers using
the ReLU as the activation function. The MLP was trained over
800 epochs on 16-sample batches of training datasets using

Fig. 3 Schematic representation of the AE-MLP architecture. The encoder, f (x), takes SLD curves, x, as inputs and compresses them into the latent
space, z. The decoder, g(z), generates SLD curves x̂ which, when the AE is properly trained, resemble x. The multi-layer perceptron (MLP), h(z), takes
vectors in z as inputs and outputs the corresponding three Flory–Huggins χ parameters.
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the mean squared error (MSE) loss and the AdamW optimizer
with a learning rate of 0.0001.

In the AE-MLP architecture, as shown in Fig. 3, the encoder
of the AE was composed of 2 dense layers of 96 and 64
neurons each, with ReLU non-linear activation. The decoder
had an identical number of layers to the encoder, but in
reverse order. The AE was trained over 800 epochs with
16-sample batches, using the MSE loss and the AdamW opti-
mizer with a learning rate of 0.0001. The effect that changing
the dimensionality of the latent space, nl, had on the results
was investigated by assigning the values 2, 3, and 4 to nl. The
MLP composition in the AE-MLP network was identical to the
one described in the preceding paragraph.

Given that we are modeling a physical system, the latent
space is expected to have some regular structures, which are
continuous and complete. In an AE, the continuity and com-
pleteness of latent space projection are not guaranteed, since
there is no explicit term in the loss function (i.e., mean square
error) that ensures projection to random regions of the latent
space, hindering construction of meaningful latent space rep-
resentations. In this work, the encoder in a VAE was set up
such that the last layer created probability vectors in the latent
space, which can then be regularised using a Kullback–Leibler
(KL) divergence term, in addition to the usual cross-entropy
loss in an AE between the input and output vectors, to cover
defined and predictably sized continuous regions. Thus, in the
VAE, the latent vectors used to decode are not just singular
points, but also samples from the distributions created by
each encoding.

Results

In this section we describe how we have used SCFT SLD data
to train the ANNs described above and use them to extract

physical descriptors (i.e. the χ parameters) or reproduced SLD
profiles. We started with the experimental NR curve obtained
in ref. 10. This curve is referred to as “Experimental data” in
Fig. 5a. In our previous work,12 we showed that the SCFT-
based simulations capture long-wavelength physics correctly
and computed NR using the simulations. To show this, we
first added a semi-infinite layer of silicon (SLDSi = 2.07 × 10−6

Å−2) and a finite layer of silicon oxide to a simulated SLD
curve. Then we varied SLDs to fit the experimental data. The
resultant curve is denoted as “Fit: SCFT informed” in Fig. 5b.
The resultant NR curve is denoted as “Fit: SCFT informed” in
Fig. 5a. This curve captures well the long-wavelength behaviour
of the “Experimental data”.

After this, we used the MLP for extracting the Flory–
Huggins χ parameters for the “Fit: SCFT informed” SLD curve.
For this purpose, we trained the MLP on a set of SCFT-gener-
ated SLD curves and associated χ values. After training, we
tasked the MLP with predicting the χ values for a set of SCFT
curves, which were not used during training (this set is known
as the test set in the ML jargon). The MLP predicted χ values
for the test set are shown against the true values in Fig. 6.
Clearly, the MLP was capable of predicting accurately the χ

parameters. This MLP was subsequently used to predict the χ

parameters for the “Fit: SCFT informed” SLD curve shown in
Fig. 5b. The results were χS–BMA = 0.11, χp–Si = −0.42, and χp–air
= −0.075, and are shown in Fig. 6 as “orange dots”. These
values are qualitatively correct, as they lead to the localization
of PBMA at both the silicon and air surfaces. However, these
values are outside the original distribution of χ parameters:
they are not parts of the χ set associated with the SCFT SLD-
generated curves, shown as black dots in Fig. 6. The triplets of
“black dots” that approach the “orange dots” most closely were
determined to be χS–BMA = 0.12, χp–Si = −0.42, and χp–air =
−0.083. For these values, the corresponding SCFT SLD curve
and related NR curves are referred to as the “Closest SCFT

Fig. 4 Diagram of a variational autoencoder (VAE) structure, with the encoding outputs as Bayesian probability vectors shown. All other details are
the same as in Fig. 3.
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simulation” in Fig. 5b and Fig. 5a, respectively. These results
illustrate the degeneracy of the solution when extracting physi-
cal parameters from NR curves: similar SLD curves can have
different χ physical descriptions that produce different NR
curves.

Lauter et al.10 were able to construct another SLD curve that
produced a NR profile that captured the long-wavelength be-
havior. This SLD curve and the corresponding NR profile are
shown in Fig. 5b and Fig. 5a, respectively, and denoted as “Fit:
ad hoc”. To determine the χ parameters for this ad hoc con-
structed SLD curve, we used the MLP. The values found were
χS–BMA = 0.078, χp–Si = −0.092, and χp–air = +0.087 (see the green
lines in Fig. 6), which are qualitatively incorrect as a positive
value of the parameter χp–air implies that PBMA should be
repelled from the air and this is non-physical.

To understand why an MLP trained on SCFT SLD generated
curves was not capable of predicting physically meaningful χ
parameters for the “Fit: ad hoc” SLD curve, we analyzed the
last hidden layer of the MLP. This layer has 30 neurons, and to
visualize its output, we used the t-distributed Stochastic
Neighbor Embedding (t-SNE) method. The t-SNE method
approximates an isometry between a thirty-dimensional space
and a two-dimensional space (the distance between any two
points in the 30 dimensional space is roughly the same as the
distance between their images in the two dimensional space).
The t-SNE plot is shown in Fig. 7, and it is clear that the SCFT
SLD curves are clustered into four groups. The groups are
shown in a column on the right side of Fig. 7, and from top to
bottom they correspond to the following monomer
configurations:

Fig. 5 (a) Measured neutron reflectivity (labeled as “Experimental data”) vs. wavevector (q) for the film containing poly(dS-b-BMA). Two models
containing multi-layers were constructed to fit the experimental data. The first model was constructed in an ad hoc way10,12 (“Fit: ad hoc”) and the
second model was built using information obtained from the SCFT for the number and thickness of microphase-separated domains (“Fit: SCFT
informed”). Reflectivity computed from the SLD profile which was constructed from the SCFT simulation using the three chi parameters closest to
the predicted parameters is also shown (“Closest SCFT simulation”). (b) The SLD profiles for computing these reflectivities.

Fig. 6 True vs. predicted values from the MLP of simulation (black dots) data, along with the best estimations of the three parameters for the “Fit:
SCFT informed” curve shown in Fig. 5 as True (orange dot). Current best estimations for the parameters corresponding to “Fit: ad hoc” in Fig. 5 are
also shown. These estimates are at the intersection of the horizontal green lines and dashed red lines.
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• Three microphase separated domains of dPS–PBMA–dPS,
with dPS interfacing with both the substrate and air.

• Three microphase separated domains of PBMA–dPS–
PBMA, with PBMA on the substrate side and a dPS domain on
the air side.

• Three microphase separated domains of PBMA–dPS–
PBMA, with PBMA interfacing with the substrate and air.

• Three microphase separated domains of dPS–PBMA–dPS,
with dPS enriching the substrate and a PBMA domain at the
air side.

The clustering observed is of course a consequence of the
choices made when generating the SLD curves with the SCFT.
In particular, the number of microphase-separated domains
was fixed at three due to the parameterization used in the
SCFT simulations. In Fig. 7, we also show the χ parameter
ranges associated with each cluster. The t-SNE analysis showed
that the clusters associated with the SCFT SLD curves were
tight, with high levels of sparsity in between them. This
explains why the MLP was not capable of predicting accurately
the χ parameter for the ad-hoc model: the “Fit: ad hoc” SLD
curve may lie in the sparse region between the clusters in
Fig. 7, where the MLP was not trained. In the following, we
show that this was indeed true.

While the physically simulated model is constrained to lie
in one of the four clusters, the experimental curve could lie in
the sparse region because the complete physical model
describing it may be in a higher dimension than the three

dimensions used to build the simulated data i.e., the complete
physical model might require more than the three interaction
parameters. Using the AE-MLP architecture, we can identify
the “true” dimensionality, and interpret its physical meaning.
This would effectively allow us to also extend our physical
model to capture the missing physics in the experimental
data. For such purposes, we trained the AE with a set of SCFT
SLD curves and the dimension of the latent space being 2, 3 or
4. The latent space with a dimension nl = 2 is shown in Fig. 8
(left), and it is seen that the clustering observed resembles that
in Fig. 7. The latent point corresponding to the SLD curve “Fit:
ad hoc” is placed in between two of the clusters (see Fig. 8
(left). Therefore, as can be seen in Fig. 9(left), the decoder of
the AE is unable to reproduce the SLD “Fit: ad hoc” curve accu-
rately. In fact, it seems that the decoder attempts to draw an
average of the two SLD curves associated with the nearest two
clusters. The reason for this is once again related to the fact
that the “Fit: ad hoc” SLD curve is not represented by any of
the curves in the set used to train the AE.

Despite this, in an effort to determine the optimal latent
space dimension needed to capture the most important fea-
tures of the SCFT SLD curves, we trained the MLP on the
relationship between the latent space and the corresponding χ

parameters. The MLP predicted χ values vs. the true ones are
shown in Fig. 10 for nl = 2, 3, 4. Interestingly, the accuracy of
the prediction increases with nl, revealing that a nl = 4 pro-
duces near-optimal retention of SCFT SLD information. This

Fig. 7 Visualization of the latent space in the last layer of a multi-layer perceptron (MLP), and the clustering of SLD curves within. The red and
orange clusters have dots of different colors representing the SLD curves, which do not belong to these clusters (seen in the right panels). These
dots imply that the categorization of the data into the four clusters is not perfect and there are some exceptions. Silicon substrate and air are at 0
and 1, respectively, on the rescaled axes of the SLD curves.
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leads to an intriguing hypothesis: the complete physical model
describing the NR data correctly might lie in a higher dimen-
sion than the three dimensions used to build the simulated
data. This hypothesis will be probed in more detail in future
studies.

Increasing nl beyond 4 did not solve the issue with the
decoder not being able to reconstruct the SLD curve. At
this point, however, we only focused on improving recon-
struction with the decoder of the “Fit: ad hoc” SLD curve.
For this purpose, we explored whether using a VAE will
improve reconstruction. As we did with the AE, we also
trained the VAE with the same set of the SCFT SLD curves.
During training, nl was also varied and had values of 2, 3,
and 4. The latent space for nl = 2 is shown in Fig. 8
(right). Four major clusters were still observed, but now

the transition between these clusters was much smoother
than the transition seen in Fig. 8(left) for the latent space
of the AE. Furthermore, the latent point corresponding to
the “Fit: ad hoc” SLD curve now lies in one of the tran-
sition regions. As a consequence, and as shown in Fig. 9
(right), the decoder of the VAE was capable of reproducing
the “Fit: ad hoc” curve in a better way. This points out
that indeed a physical model such as the one based on
the SCFT needs to have more than three parameters to
describe the NR data correctly. These additional para-
meters may include the dispersity of the chain lengths,
which leads to an increase in the thickness of the micro-
phase separated domains. Nevertheless, this work shows
that VAEs can be used to identify a need for an improved
physical model.

Fig. 8 Plot showing latent space representation of a traditional autoencoder (left) versus a variational autoencoder (right). Both have latent dimen-
sionality nl = 2, and l1 and l2 are latent space variables. The VAE has Kullback–Liebler divergence β = 1. Red crosses correspond to the SLD curve
labeled as “Fit: ad hoc” in Fig. 5b.

Fig. 9 Reconstruction of an experimental curve (“Fit: ad hoc”, which is the same as shown in Fig. 5) from an autoencoder (left) and variational auto-
encoder (right) across multiple latent space dimensionalities.
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Conclusions

This work provides a set of neural networks for extracting
interaction parameters from neutron SLD profiles obtained
for thin films of diblock copolymers. These networks
consist of a multi-layer perceptron (MLP), an autoencoder
(AE) combined with a MLP, and a variational autoencoder
(VAE). All three networks were trained on the SLD profiles

generated by SCFT-based simulations for a given film thick-
ness, while varying three Flory–Huggins interaction para-
meters. The MLP and the AE-MLP were successful in learn-
ing the relationships between the SCFT SLD curves and the
corresponding three Flory–Huggins χ parameters, but they
were not able to predict correctly the χ parameters for an
experimental SLD curve. The reasons for this were: (i) the
experimental SLD curve lay outside the distribution of SCFT

Fig. 10 Truth vs. prediction of the three χ parameters for a hybrid model with an autoencoder and an MLP while varying the number of latent space
parameters, nl = 2, 3, and 4 in the top, middle, and bottom rows, respectively.
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curves used during training; and (ii) the sparsity and clus-
tering of the SCFT SLD curves. This sparsity resulted from
the underlying physics of microphase separation in di-block
copolymers, which enforced a fixed number of microphase
separated domains for a given film thickness and chain con-
nectivity, and led to alternative domains containing different
monomers. It was observed that small deviations of the
experimental SLD curves from the SCFT ones caused misin-
terpretation of interaction parameters. The VAE permits the
construction of continuous and complete latent space rep-
resentations, which allowed experimental data that fell in
regions where SCFT data did not exist to be accounted for.
As a consequence, the decoder of the VAE was capable of
reproducing an experimental SLD curve, something that the
decoder of the AE was incapable of doing. The fact that the
VAE showed better reproducibility of the SLD experimental
curve when the dimension of the latent space was 4
suggests that the physical model that better represents the
experimental data might consist of more than 3 parameters.
This will be investigated in future studies as it presents an
exciting opportunity for interpreting experimental SLD
curves. Overall, the machine learning techniques used here
provide a practical approach to solve the problem of
neutron reflectivity inversion to SLD and even interaction
parameters. Indeed, this work not only outlines the feasi-
bility of a machine learning-based approach to the extrac-
tion of interaction parameters from neutron SLD curves, but
also more broadly demonstrates the feasibility of machine
learning models to tackle the inverse problem in general.34

The insights from the models in this work move us closer
towards the application of machine learning models in the
analysis of off-specular scattering,35 which is currently a
difficult task. While the models shown in this paper demon-
strate the capabilities of our approach, more work and
refinement are still needed to generate a model with the
predictive accuracy required for researchers to adopt this
framework.

Data availability

All of the data including the SCFT simulations and scripts for
the ANNs, AEs, and VAEs are available at https://github.com/
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