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Nanoparticles in bodily tissues: predicting their
equilibrium distributions
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Nanoparticles (NPs) interact within organisms via various

biochemical interactions which can bring benefits to society.

Classically, fate/distribution of substances is assessed via phase

(octanol–water) based partitioning. A decade ago, Praetorius

famously stated that phase-based partitioning for NPs is “a road

to nowhere”. While (in vivo) experiments are cumbersome,

reliable partitioning values are of utmost importance given a

wealth of medicinal/toxicological and environmental exposure

assessments. In this communication, we describe calculus for

distribution in human tissues. We applied surface free energy

components for NPs, cell membranes/vesicles, plasma and

protein describing (van de Waals and Lewis acid–base)

interactions amongst tissue and blood constituents. We

considered neutral and charged NPs, and various tissues for

statistical evaluation. Comparison to experiments showed that

predictions are acceptable (R2 ≥ 0.7). Depending on surface

functionality, phagocyte-rich and cancerous tissues accumulate

NPs distinctly from ‘normal’ tissue, via e.g., receptor (lectin/

cadherin) binding. Our modeling study aids and supplements

experiments to quantify the interactions, tissues concentrations

and transport of NPs with(in) organs, to unravel mechanisms of

human exposures. It provides a reference for partitioning to

benchmark upcoming medical applications (e.g., PBPK) and

human/ecological risk assessments, enabling experimentalists

more efficient monitoring, data interpretation, and reduces cost/

time-intensive medicinal and toxicological campaigns.

1. Introduction

Nanoparticles (NPs)1,2 have a wide range of applications in
chemical industry and in medicine.3,4 NPs are, e.g., used
therapeutically to target tumor cells. NPs however, also come
with environmental risks5,6 depending on non-targeted

biochemical interactions.7,8 As NPs come in different
materials and sizes, quantifying the impact of surface
coating9/functionalization on NPs cellular transport has
important implications in toxicology.

For decades, fate and accumulation of small organic
compounds have been benchmarked using phase-behavior/
partitioning.10 Oil–water11,12 and octanol–water partition
coefficient (Kow) have been used to predict NP accumulation/
transformation in environments13,14 and organisms.10,15

However, NPs interact with bio-membrane surfaces,16

preventing dispersion.17,18 Interactions between NPs and
biological matrices are difficult to characterize due to
adsorption and (irreversible) agglomeration.

Pauli, markedly said, “God made the bulk; the surface was
invented by the devil”.19 In a bulk phase, elements are
surrounded by other similar elements. Surface elements
interact either with elements from the same surface, or with
elements located just below, above or beyond it. Therefore,
properties of a phase and its energies differ depending upon
location, making phase-partitioning inadequate to describe
exposure. As NP interactions are surface-driven, Praetorius
stated that “assessing NP fate via Kow is a road to nowhere”.17

Fully empirical (i.e., ‘black box’)20 methods, evaluate
cellular equilibria of NPs without regard for mechanism and
have confined applicability due to lack of understanding.
Instead, mechanistic insights are needed to describe NP-
biological interactions semi-empirically. Current semi-
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Environmental significance

Current study in our research group deals with the prediction of
distribution of nanoparticles in humans. This is crucial, but not adequately
covered by current fate models. In this study surface-driven models
were developed capable of predicting partitioning of structurally diverse
nanoparticles. The developed models can be used to predict
distribution in various tissues. The methods developed in our study
are the first of its kind that allow for robust predictions that were not
possible previously. We believe Environmental Science: Nano readers will
benefit from the results outlined in this study as it aids their further
research and policy decisions.
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empirical methods21,22 apply mechanisms but still have
limited applicability to other exposure regimes.

Interaction with tissue components is at the basis of (NP)
accumulation.23,24 Transport of NPs in(to) cells25 depend on
uptake pathway, possible via passive diffusion into/through
the cytoplasm, adhesion to endoplasmic reticulum26 or Golgi
apparatus27 to be encapsulated by membranes and
vesicles,28–30 (e.g., non-endocytic pathways for red blood
cells31). NP can agglomerate in vesicles, to be excreted by
cells.29 NPs transport and accumulation (agglomeration) in/to
lysosomes17 enables acid-catalyzed degradation,7,30,32,33

altering their surfaces.34

Transport by vesicles35 drives NP exo/endocytosis. Upon
cytosis, cell membranes and vesicles deform to fuse and
release/trap NPs.36 Therefore, past research predicted
transport based on membrane energies like crossing,
deformation,37,38 encapsulation and combination.39 Recent
work40 linked NP properties to traits of cells to assess
interaction energy and predict cellular uptake and
elimination. Properties of NPs, e.g., charge (density41) and
cell traits influence NP transport, but it remains difficult to
characterize binding to vesicles. Identifying the probability/
frequency of binding and transport42 enable assessing NP
exposure.

Relationships between surface physico-chemical properties
and cell behavior at the interface have been
hypothesized.43–46 We specify this hypothesis by considering
NP properties and tissue/cells traits to assess partitioning in
organs, Fig. 1. In this communication, we quantify exposure
by using interaction energies between NPs and membranes.
We consider the fraction/frequency of NPs bound/
encapsulated by/in organ(elles). We focus on polar (Lewis

acid–base) and Van de Waals forces. We assessed our model
with experimental data for various tissues and explored the
effect of NP properties on partitioning.

2. Methods
2.1. Tissue compositions

Tissue partitioning (K) is affected by the amount of
membrane in a cell, and how many cells of a type an organ
tissue contains. E.g., cancerous cells express enhanced
intracellular signaling via vesicles.48–52 As the concentration
of cells and their membranes is in excess to NP
concentration, we take that sorption is linear in NP
concentration, and that K is a summation function over
Boltzmann partitioning (e−ΔGi/RT) among cell types (i),
weighted by their proportion in the tissue:

K tissue=blood ¼ a·
Xi

1

i½ �
toti½ �·e

−ΔGmembr ið Þ=water
RT

� �
þ b (1)

We take proportions of cell types from Table 1. We calculate
binding energy changes ΔGi from surface energies γ, section
2.3. Apart from membranes, proteins influence distribution
of NPs. We take serum protein concentration independent of
tissue type (equal among capillary bloods), and describe its
influence in section 2.2. Knowing how much water organs
contain, we extrapolate e−ΔG(tissue/water)/RT to e−ΔG(organ/water)/RT,
Table 1.

2.2. Membrane–protein–water partitioning

We calculate Ki via Boltzmann, via ΔG: values for free
energy of binding. Fig. 1 depicts the influence of G

Fig. 1 Example distribution of NPs throughout/around tissues, influenced by energy G. Plasma = extracellular serum (saline water + protein).

Difference between dividing beams (barriers) are ΔG = ΔG‡
on − ΔG‡

off, i.e., K ¼ kon
koff

denotes equilibrium which is attained after long-term exposure.

Intracellular vesicle-free NPs exist.47 Low G means high NP concentration: [NP] across compartments i (horizontal) [NP]j/[NP]total = e−ΔGnp-j/RT;
depending on properties, accumulation in phagocytes/lysosomes.

Environmental Science: Nano Communication
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(vertical) across different surfaces/compartments
(horizontal). The lower G, the higher the partitioning
therein/on. The ability of NPs to partition onto membranes
depend on their bio-availability, i.e., interaction with
endemic serum proteins,46,72,73 Fig. 1. We define
partitioning of NPs between water (w) and membranes (m)
as function of serum plasma protein coating in two
additive terms:

e
−ΔGmembr ið Þ=water

RT ¼ e −ΔGwater→membr serumð Þ=RT

1þ α·e −ΔGserum→water NPð Þ=RT
� �

þ e −ΔGwater→membr NPð Þ=RT

1þ α·e −ΔGwater→serum NPð Þ=RT
� �

(2)

where we take that a NP is either covered or uncovered by
serum proteins (p), analogous to small organic molecules.
α is a dimensionless frequency of NP-encounters,
proportional to plasma protein amount (7%); inversely
proportional to the NPs (surface area) acting as a plasma

protein scavenger, α ¼ 0:07
NP½ �

serum½ �
� �

þ 1
. RT is gas constant;

temp.
Serum contains 60–80 g L−1 plasma protein (35–50 g

L−1 albumin), with MW of ∼150 kg mol−1, thus (70/

150000) × 6.02 × 1023 = 2.8 × 1020 proteins per L (size
dserum = 6 nm), of which (1000/(6 × 6) = ) 28 can adsorb
on 1000 nm2 NP surface. Thus, protein concentration is
in excess to NPs dosing concentration [NP] in any
practical scenario (106–1012 NPs L−1 (ref. 74)). We thus
disregard NP homo-/heteroaggregation/agglomeration,
taking α = 0.07.

2.3. Free energy changes

We obtained different binding free energy changes ΔG via:

ΔGwater→membrane(serum)

= A·(γABserum–plasma–membr + γLWserum–plasma–membr)

ΔGwater→membrane(NP) = A·(γABNP–plasma–membr + γLWNP–plasma–membr)

ΔGwater→serum(NP) = A·(γABNP–plasma–protein + γLWNP–plasma–serum)

ΔGserum→water(NP) = −A·(γABNP–plasma–serum + γLWNP–plasma–serum) (3)

In ‘classical phase partitioning’ (for small organic
compounds) A is the solvent accessible molecular surface

Table 1 Simple representative composition (%) of healthy human organ tissues by generic celltype. Colors denote dominant contribution to energy (red
= hydrophobic, blue = Lewis basic, green = Lewis acidic). We combined compositions with surface energy data (Table 2). Membrane types have varying
degrees of immunological (Fig. 1) relevance53–70

a Representative functional cell; b excluding bone marrow; c assuming the majority of immunological cells is phagocytosic, d BBB consists of
tightly packed endothelial cells. e White pulp (25% of splenictissue) structurally similar to lymph.71

Environmental Science: NanoCommunication
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area. NP partitioning is geometry-driven;75 we assume only
partial wrapping of surface area (e.g., bending/deformation
negligible to AB/LW forces or compensated by receptor–
ligand binding76) estimating the interaction area (m2) A from
molar volume77 (here, the ethylene glycol monomer of PEG).
We involved Vande Waals (LW)/polar Lewis acid–base (AB)
forces40,78 taking distances in equilibrium by born repulsion,
0.157 nm.78

We calculated γAB and γLW (mJ m−2) from effective surface
energy components γLW, γ+ and γ− (electron acceptor and
donor) for each species: NPs, membranes, serum plasma
protein and water; details in ref. 78 and 79, substantiated by
multiple cell lines (macrophage, endothelial cancer,
fibroblast, etc.).80,81 We take for γ+protein, γ−protein, γLWprotein of
serum protein 0.002, 20, and 41 mJ m−2, taken to resemble
dry albumin at pH 7,79,82 and for γ+plasma, γ

−
plasma, γLWplasma of

plasma 25.5, 25.5 and 21.8, mJ m−2, taken to resemble water.
For NP γ+NP, γ

−
NP, γ

LW
NP we took 0, 45, and 43 mJ m−2, taken to be

polyethylene glycol.

2.4. Cell membrane types

While carbohydrate contents in membrane surfaces do not
(greatly) differ between cell types,83–87 differentiation involves
glycosylation:88–90 phagocyte have glycosylated protein
receptors (lectins90,91) with binding motifs specific to (β-)
glucan-chitin copolymers92–94 recognizing foreign particles.
Liver (Kupffer)92,95,96 and cancer cell97,98 membranes are
lectin-rich. Immunological (mucus/phagocytic/cancerous)

cells have enhanced metabolism over ‘tranquil’/‘sluggish’,
e.g., endothelial cells.7,81,99,100

Via abnormal metabolism cancer cells produce e.g., lactate
acidifying tissues,101 affecting bio-adsorption.102,103 Metastatic
cancer cells migrate/proliferate to tissues via the blood,104,105

depending on hydrophilicity (i.e., γAB). Cells contain many
surfaces: Golgi apparatus/vesicles/lysosomes/endoplasmic
reticulum. Liver macrophages internalize NPs106–108 and entail
acid-rich lysosomes, attacking particles.109,110 pH can alter/
affect surface activity, tension (γ)111 and ‘biocollisions’.112

Membranes thereby differ in characteristic ‘surface
acidity’,113 analogous to pKa/pH functionalities among
organic compounds (pKa's on surfaces).114 We characterize
cell membrane type by energy of surfaces γ. Adipocytes
contain more lipid (with specific γ).85,115 Table 2 lists
γ+membrane, γ−membrane, γLWmembrane values that we used to
effectuate aforementioned factors, substantiated by
relationships between phagocytosis/contact angle (i.e., γ).43

2.5. Testing using experimental tissue partitioning.

We evaluate accuracies of K from eqn (1)–(3) by comparison
with experimentally-derived K from in vivo concentration
data133,134 (open literature). We neglect biotransformation,
and disregard elimination via faeces/urine. We focus on large
exposure times t, e.g., months,133 so organs continuously take
in/eliminate NPs (4, 13, 100 nm, coated with PEG) with equal
rates. By analogy, barriers in Fig. 1 are sufficiently low. Then,
dividing uptake and elimination gives K for organ tissues:

Table 2 Energy components of membrane surfaces in cell types (mJ m−2). Ranges are variabilities across exp. setups. Colors denote dominant
contribution to γ (red = hydrophobic, blue = basic polar, green = acidic polar). Octanol is a reference to phase partitioning44,116–131

a Values represent untreated keratinous skin, keratin <85% of differentiated keratinocytes.132 b Human endothelial cellline HUVEC. c Values
unknown, γLW taken for a generic cell,78,80 γ+ taken as range for non-immune cells, γ− taken corresponding to maximum binding.120 d For
bone/osteocytes, membranes surface reflects hydroxyapatite, values represent untreated (hydrophilic) hydroxyapatite (>70% crystalline) and
collagen. e Phagocytic cell lines THP-1, HL-60. f Local tissue/organelle pH enhances γ: linear/exponential extrapolations82,102 imply γ+ = 1.2–6.0
mJ m−2, substantiating values reported. g Breast cancer cell line MCF-7.

Environmental Science: Nano Communication
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kin
kout

· 1 − e−kout ·t
� � ¼ NP½ �organ

NP½ �blood
¼ K tissue=blood (4)

assuming that experiments reflect equilibrium. Section 4.2–
4.4 discusses accuracy of the assumption.

3. Results
3.1. Interaction between NPs, membranes and serum

Table 2 shows energies for interaction between PEG-NPs and
membrane biomaterial membrane surfaces (γ and ΔG).
Interaction energies are either positive or negative. The larger
the hydrophobicity and Lewis acidic character of the
membrane, the more negative the energy values for
interaction. The ΔG did not differ between differently sized
PEG-NPs (4–100 nm) as the PEG coating groups are similarly
sized.

The ΔGNP range from −4.4 to +5.1 kJ mol−1, which is an
energy range of 9.5 kJ mol−1. If ΔGalbumin were taken into
account also, the summed ΔG is a range of −11.5 to +7.8 kJ
mol−1. This shows that albumin has a differentiating effect
on cell type. Based on these values, via eqn (1)–(3), ratios
were calculated for partitioning of PEG-NPs between serum
and membranes. Predicted K was highest for non-polar
lipocyte surfaces, and lowest for endothelial/epithelial cells.
Again, the larger the hydrophobicity/Lewis acidic character of
the membrane surface, the larger the predicted K.

3.2. Partitioning of NPs in organ tissues

Experimentally derived (eqn (4)) Ktissue/blood for PEG-NPs
range from 0.044 to 2600;133 these K's are independent of
time within 7 days to 6 months. Other data for starch/dextran
coated NPs135 and eqn (4) imply a 3 day apparent tissue/
blood/K is ≥7 for phagocyte-rich tissues (e.g., liver/spleen);
for phagocyte-poorer tissues, Ktissue/blood ≥ 0.3.135 These
values appear low compared to longer exposure times >7
days–6 months. This indicates absence of equilibrium or
steady state. We did not see a statistically significant effect of
NP size on the Kexp,

133 Fig. 1. Surface functionality does
influence partitioning, with 6 day Kliver/blood > Kspleen/blood for
cationic CTAB-NPs, but Kliver/blood < Kspleen/blood for neutral
PEG-NPs.134

3.3. Prediction of NP partitioning

Fig. 2 depicts predicted K, eqn (1)–(3) and experimentally
derived K (eqn (4)) for PEG-NP partitioning in different organ
tissues, with reference to blood (Ktissue/blood). For 4 nm PEG-
NPS, the Pearson correlation coefficient R2 = 0.69 and p =
0.0004 (2SD). For 13 nm, R2 = 0.75, p = 0.0001 (2SD) and for
100 nm R2 = 0.70, p = 0.0004 (2SD). For 4, 13 and 100 nm
grouped together, R2 = 0.68, p < 0.00001 (2SD). The p values
of these four linear regressions are all lower than 0.05 (SD),
denoting statistically significant relationships. R2 values are
all higher than 0.6, which is often considered the minimally

accepted prediction precision for (environmental) risk
assessment.136

The slope a of the linear regression (i.e., logKorgan/blood,exp
= a·logKpred + b) is approximately 15 ± 3 (2SD), significantly
larger than 1. The offset b is −2 ± 1 (2SD). Regression fits (R2)
were slightly higher for a log-logistic fit, as compared to a
linear fit. As adipose tissue appears out of domain, it was not
taken into account in regressions. Values for predicted K for
partitioning of PEG-NPs from blood into skin and adipose
tissue were relatively high, ≥0.4. Values for Kpred and Kexp for
bone and brain were lowest. We did not observe any apparent
outliers. Though we took data in Fig. 2 from 1 literature
source,133 other sources134,137–139 show similar trends for
PEG. eqn (1)–(3) correctly predict that albumin adsorption for
cationic NPs is higher than for anionic NPs.134

logKorgan/blood,experimental

= 15(±3)·log{
P

(i/toti)·e
−ΔGmembrane(i)/blood}predicted − (2 ± 1)

4. Discussion
4.1. Energy considerations

Eqn (1)–(3) have a mechanistic basis. High/low K can be
explained by many experimental phenomena. Cationic NPs
(high γ+) are cleared from blood (hence, organs) faster than
neutral or anionic NPs,137 presumably via enhanced binding
to serum protein (high γ−). Eqn (3) predicts this, which
constitutes a basis for tissue partitioning. Organs rich in
phagocytes show enhanced K; indeed, NPs accumulate in
lymph nodes.140 Instead of polar headgroups (AB
interaction), NPs may interact with lipid tails (micelle-like

Fig. 2 Predicted (x-axis, eqn (1)–(3)) vs. experiment-derived
partitioning between organ tissue (Table 1) and blood of PEG-NPs
(Cho et al.133 data, N = 42, eqn (4)). Circle ○ = 4 nm, triangle △ = 13
nm, square □ = 100 nm. Variance between same symbols due to
difference in organ tissue composition (Table 1). Adipose tissue (log
Kpred = 1.3) shown as 0.5. Horizontal error bars propagate variabilities
in γ−membrane (Table 2); vertical error bars are 1SD based on 4 datapoints.
ΔG in 2.303 RT.
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system, involving differing γ (ref. 126 and 141)), as enhancing
concentrations in adipose tissues (Fig. 2).

Across tissues, ΔG ranges from −4.4 to +5.1 kJ mol−1, a
range of 9.5 kJ mol−1, equal to around 5–10 hydrogen (H)
bonds. H-bonds need to be broken in order for surface
molecules to interact. This number, ∼10 kJ mol−1, was
associated to the difference between active and passive
uptake mechanisms:142,143 cells with high positive ΔG
(Table 3) take up PEG-NPs passively; cells with lower ΔG also
take up PEG-NPs actively. The number of PEG chains on the
(4 nm) NP surface would be ∼40,144–146 but a limited number
need interact with biomembranes. Molecular initiating
interaction events (MIE) between substance and biomolecule/
system (e.g., ∼7 kJ mol−1 (ref. 147)) lead to outcome
pathways. The MIE involves a limited/single functional group
on the NP surface.

Though (e.g., lung) tissue contains only ∼1% phagocytes,
these contain up to 83% of all (PEG) NPs in tissue.148 This
implies a NP macrophage/tissue partitioning K = (100/
[pha])·([NPtot]/[NPpha] − 1), i.e. (100/[1])·([100]/[83] − 1) = 20.
This 20-fold enhancement matches higher receptor
densities149 and activities150 of macrophages. Moving 1 mol
of a substance across a 20-fold gradient at 25 °C is ΔG =
(8.315 J mol−1 K−1)·(298 K)·ln(20/1) = 7.4 kJ mol−1.151 It is
therefore unlikely that slope = 15, larger than 1 (Fig. 2), stems
from inaccurate γ (eqn (1)–(3), Table 2). If our ΔG is fully
precise and exact, slope (Fig. 2) should be 1 (according to
Boltzmann). The difference between expected (1) and
observed (∼15) may relate (partially) to unanticipated
wrapping/bending or (geometry-)specific ligand–receptor
energies152–154 contributing to γ, not reflected by Table 2,
which may refine K. After phagocytosis, a cell minimizes its
surface tension (γ) by smoothening.155

4.2. Cell signaling

Not the full NP surface area interacts with the biomembrane
surface. Indeed, Kexp does not differ between NP sizes133(-
Fig. 2). Log-logistic fits are slightly better than linear fits
between Kexp and Kpred (levelling off in Fig. 2), implying a
crowding/shielding/saturation. This may refer to interaction
area A (eqn (3)), which varies depending on strength of
interaction (ΔG). ΔG depends on polymer size, but
approaches (per monomer unit) zero at higher MW.156

Chemical potential of an atom/molecule depends on its
surrounding, larger on convex surfaces than on flat surfaces,
in turn larger than under concaves.157 While size/geometry
can affect γ,158,159 interaction with serum/cytoplasmic
constituents and geometric restrictions may offset the effect.
The slope (∼15) is thus not a size-effect per se.

The slope (Fig. 2) may entail information on frequency, α
in eqn (2) or i in eqn (1). Under steady state, it implies higher
phagocytic activity. By analogy, in (eco)toxicology, IC50/EC50

values (in log-logistic curves) describe induction of biological
response. Indeed, high (toxic) pressures instigate aggrupation
of phagocytes (granuloma) at sites of NPs (increasing i/toti
for phagocytes, eqn (1)). We assumed that one NP binds to/
within one vesicle42,160 ignoring (intracellular) aggregation.33

This is sometimes not true: spleen phacocytes cluster
(bioconcentrate) PEG-NPs in lysosomes;133 Kupffer
macrophages engorge NP-aggregates.161 Aggregation changes
the properties of the NP cluster.

A 10-fold increase in the average number of NPs per
lysosome, implies an effective ‘bioconcentration factor’ of 10.
Bioaccumulation (in organisms), rather, involves multiple
uptake steps by different signaling pathways. Detecting
bioactive substances enhances local internal

Table 3 Surface energies changes for adsorption interaction of albumin and PEG-NPs onto membranes biomaterials i, and for sorption of albumin onto
PEG-NPs. Corresponding membrane-serum partitioning ratio K (eqn (2)) also shown. γwater→albumin

NP = 4.2 mJ m−2
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concentrations.162–164 BAFs along (cell signaling94,165)
pathways may be ∼100 times higher than BCF for the same
substance.166 Bioaccumulation KBAF may be described as
KBCF·KBCF·KBCF… etc., involving multiple concentrating steps
(after the MIE).

Such steps may involve Ca2+, affecting lectin binding
capacity,91,165,167 which γ (Table 2) not captures. Cancer cells
lack Ca2+-dependent cadherin168–170 enhancing repulsion.
Saline solutions effectuate different γ than pure water75,129

(eqn (3)). Amine-binding is key to pathogen detection and
immune response,171–174 with electron-acceptor/donor
interactions central to lectin binding to chitin (γLW = 41, γ+ =
1.3, γ− = 17.1 mJ m−2 (ref. 175)) via the N-acetyl group.176 Ca2+

complexation (bridging) affects its ΔG.177–180 This explains the
high slope (Fig. 2) because Ca2+ is only relevant in those (i.e.,
immunological) tissues.181 For phagocytes, a decrease by Ca2+

in ΔGwater→membrane
NP from 0 (Table 3) by a representative −25 kJ

mol−1 (ref. 182 and 183) increases predicted logK for e.g., the
liver to ∼2.9, agreeing with experiment (2.4–2.8, Fig. 2).

4.3. Tissue inhomogeneities

Stronger correlations may imply a more homogeneous tissues
or uniform binding mechanism. Inhomogeneities (e.g.,
layering) in tissues affect K (hence, R2, Fig. 2) via local
increased exposures. Penetration of PEG-NPs through skin
depends on hydration status.75,184,185 Mucus epithelial tissue
(mouth/stomach) cells produce (N-)glycosylated proteins186

protecting organisms by binding (trapping) foreign
material.187,188 This explains marked accumulation of NPs in
(Ca2+-augmented) mucin (Table 3),189,190 having distinct γ

(Table 1).
We cannot always assume the barriers in Fig. 1 are

sufficiently low; inhibition of transport limits tissue
partitioning.81 Macrophages (microglia) account for 10–15%
of brain cells,191 and would readily take up NPs.192 However,
the brain's blood vessels are lined with endothelial cells

wedged tightly together, creating a boundary. Likewise,
microvascular endothelial cells form the blood–spinal cord
barrier; Sertoli cells constitute the blood–testis barrier. Pores
sizes of ∼5 nm may complicate measuring a K in kidney.

We characterized each individual membrane surface (and
serum protein) by a single γ set, implying that e.g., vesicles
share the characteristics of cell surfaces, which combine
during cytosis. γmembrane characterizes weighted averages of
membrane components: lipids, receptors/proteins,
counterions, etc. However, generic description of γ may not
apply. Inhomogeneity in tissues is apparent from e.g.
markedly different γ for bile in the liver (γLW = 23–26, γ+ = 36–
46, γ− = 8–15 mJ m−2,193 and γ+ = 10–13, γ− = 35–41, γLW = 25–
27 mJ m−2 (ref. 194)) and hydroxyapatite (γLW = 2.2, γ+ = 19.8,
γ− = 73.2 mJ m−2 (ref. 195)), differing from Table 2. In reality,
γmembrane differs across cell membranes. Pending
(experimental) data, implementing distributions of γmembrane

for inhomogeneous surfaces renders predictions more
precise.

NP distribution depend on interaction with (intra)
cellular/tissue compartments, other than in Table 1.196,197 A
diversity of proteins in biological media198,199 may
differentially functionalize NPs (and membranes) affecting
γ, but was ignored. Tissue composition (Table 1) may be
dependent on NP concentration, characterizable by healthy/
affected tissues, in terms of phagocytes.200 Differences in
body/organ weights and composition exist.163,201 We
presume that inter-202 and intraspecies86 differences in
lectin contribute to variance in NP distribution. Human
physiology is not an exact science; assessments need
customization. Standardization helps to benchmark
exposures and tailor assessments.

4.4. Outlook and conclusion

Performance of eqn (1)–(3) is appreciable, R2 = 0.68, and
statistically significant p < 0.00001 (2SD). In comparison,

Fig. 3 Experimental vs. predicted partitioning for 155 biomolecules between water and fullerene C60 (left) and amino-functionalized SiO2 NPs
(right). Experimental values characterize partitioning of NPs onto (within) biomolecules and water. Data from ref. 215. Open symbols are
(incompletely characterized mixtures of large) flexible molecules that minimize energy by molecular reorientation (oligonucleotides, small
proteins). Interaction with C60 (γLW, γ

+, γ− = 25, 2, 17 mJ m−2) via polarization and electron donation; with (cationic) SiO2–NH3 (γLW, γ
+, γ− = 0, 50,

0.1 mJ m−2) via electron accepting.
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different labs monitoring in vivo concentration routinely yield a
variability scatter of >20–40%.138 Variance in experimental log
K (e.g., 7 days or 6 months) is 20–100% depending on tissue.133

∼70% of white blood cells are phagocytes, hence,
representability of Table 1 entries introduces errors of ∼30%.
Whether K reflects equilibrium (section 2.5) is uncertain due to
experimental limits (colloids preventing dispersion). Barriers/
inhomogeneities complicate in vivo measuring (local
equilibria). K may increase/decrease via size-exclusion or
immune response by aggrupation (clustering) of macrophages.
Uncertain geometry of protein/vesicle/cell/tissue surfaces
impacts γ, within 5%.203 Additional experiments on (de/at)
tachment NPs aid assessment of tissue trafficking.

Depending on chemistry,103,204,205 lysosomes/
autophagosomes206 degrade ionizable/polarizable NPs,26,207

affecting γ, but does not affect model results for inert PEG-
NPs (Fig. 2). γ is a function of surface morphology
(shape),155,208 but applicability to non-spherical NPs remains
speculation, needing further study. Long-term exposures to
various NPs/coatings (PbO, TiO2, QDs, C60, citrate61,209–214)
show distributions similar to Fig. 2 and values, e.g. Kliver/blood

≈ 103,212 are comparable. Moreover, Fig. 3 ascertains
flexibility of our ‘generic’ model by showing applicability to
other NPs/biomolecules:

Eqn (3) uses γ of NP and cell membrane (biomolecules),
either experimental (if available) or predicted (i.e.,
computed80). We used γ (ref. 216 and 217) to describe
adhesion of surfaces, avoiding shortcomings of Kow.

17

Relationships (Fig. 2) depend on standardizing doses/
exposures and sample processing (tissue-specific digestion/
fixation/drying rates). γ (Table 2) is subject to test liquids
(analogous to octanol). Surface energy components (γLW, γAB)
describe small organic compounds (e.g., polar surface area);
cations are electron-poor Lewis acids, anions are electron-
rich Lewis donors. For NP surfaces with limited/uniform
polarizability, we can obtain γLWNP, γ+NP and γ−NP from partial
charged surface area/density.40,80 This unifies descriptions
for NPs and small organic molecules:218 both γ for NPs and
charged surface areas of small molecules drive their
partitioning; both find use in risk assessment.214,219,220

Our calculus for various NP types successfully yields
partitioning in(to) many tissues/organs, by cells40,81 and
biomolecules. These data find use in PBPK modeling with
extensions via scaling.201,214,221 Existing PBPK models
parametrize partitioning without (much) regard for
mechanism:222 higher K in non-phagocytotic organ tissues.223

Ideally, all parameters ought be mechanism-based to allow
extrapolation across NPs/tissues. To our knowledge, a
theoretical framework did not yet exist for tissue partitioning
of NPs. We are happy to attribute complex behaviors to
simple properties and traits and expand concepts for small
molecules to NPs. Regressions between predicted/
experimental K are useful to obtain tissue partitioning
without experiments. We instigated future research for
implementing biodistributions of particles in medical and
toxicological applications.
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