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The increasing use of metal oxide-based nanoparticles (MNPs) and their release into the environment cast

concerns about their environmental impacts. Massive efforts have been focused on environmental

behaviours and ecotoxicities to figure out the potential threats posed by MNPs. This review systematically

summarises and re-analyses published data about the MNP interactions and transformation processes in

freshwater and the toxicological effects of MNPs on invertebrates. A case study was conducted through

meta-analysis to examine the impacts of silver nanoparticle exposure to freshwater invertebrates. The

conclusions categorized the current understanding of the outcome and ecotoxicity of MNPs in freshwater.

The adverse outcome pathway (AOP) is recommended for environmental risk assessment as it provides a

rapid and accurate risk assessment of an increasing number of novel compounds consuming fewer

resources and animal tests. Invertebrates contribute significantly towards developing robust AOPs thanks to

a shorter life cycle, allowing chronic and complete life cycle toxicity tests.

1. Introduction

Nanoparticles (NPs), with at least two dimensions between 1
and 100 nm, possess physicochemical properties that offer
many medical, societal and technological benefits.1 Metal
and metal oxide-based NPs (MNPs) are the most commonly
used materials and are particularly important to our life.2 For
example, the Organization for Economic Co-operation and
Development (OECD) has highlighted silver (Ag), zinc oxide
(ZnO), titanium dioxide (TiO2) and cerium dioxide (CeO2)
NPs as high interest due to their widespread applications
and inherent properties.3 However, the mass application of

products containing NPs inevitably results in nanoparticle
pollution, which triggers concerns about their environmental
impacts.4,5 Water ecosystems are among the most vulnerable
to contamination because they receive and accumulate large
amounts of pollutants, including nanomaterials, from
rainfall, surface runoff, subsurface seepage or wastewater
discharge.6 As the primary water environment in inland
areas, freshwater ecosystems are undoubtedly the prime
victim of nanomaterial pollution. The occurrence of NPs in
the freshwater environment is globally observed.7,8 Numerous
research studies show that the effects of nanomaterials on
freshwater organisms exist at all biological levels and all
stages of the organism's life cycle.9–11

Aquatic invertebrates represent well-established model
organisms for MNP toxicological studies.12 Some
invertebrates, including bivalves,13,14 gastropods15,16 and
crustaceans,17,18 are considered good environmental quality
indicators due to their wide geographic distribution,

Environ. Sci.: Nano, 2022, 9, 2237–2263 | 2237This journal is © The Royal Society of Chemistry 2022

Department F.-A. Forel for Environmental and Aquatic Sciences, Faculty of

Sciences, Earth and Environment Sciences, University of Geneva, Uni Carl Vogt, 66

Blvd Carl-Vogt, CH 1211 Geneva, Switzerland. E-mail: wei.liu@unige.ch

† Electronic supplementary information (ESI) available. See DOI: https://doi.org/
10.1039/d2en00052k

Environmental significance

MNPs may undergo different environmental processes in the aquatic system, consequently changing their mobility, bioavailability, and toxicity to
organisms. This review summaries and re-analyses published data regarding the MNP interaction with environmental factors and transformation processes
in freshwater and the toxicological effects of MNPs in three major groups of invertebrates by considering the bioavailability of MNPs as an essential step to
understand their biological outcome. After ingestion by freshwater invertebrates, MNPs are likely to be accumulated in sensitive organs and induce ROS
production, a predominant mechanism leading to toxicity. ROS production induced by MNPs is controlled by size, shape, surface, composition, solubility,
aggregation and particle uptake. In addition, a meta-analysis was conducted to examine the impacts of silver nanoparticle exposure on freshwater
invertebrates as a case study. Significant research gaps and recommendations for future research are also indicated.
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abundant numbers and easy availability. Bivalves (e.g.,
Mytilus spp.) are filter-feeding invertebrates in natural waters
with highly developed endo- and phagocytosis pathways.14

Based on pollutant accumulation in these organisms, fitness
can be adopted as a biological indicator of the load on the
ecosystem.13 Gastropods (e.g., Lymnaea stagnalis) display
significant advantages in high sensitivity and susceptibility to
water contamination and straightforward laboratory
maintenance.16 Such organisms are also an ethically
acceptable alternative to an animal model in toxicity
tests.15,19 Regarding crustaceans, Daphnia magna is one of
the most sensitive organisms widely used and included in
several guidelines and international standards for acute and
chronic tests.17,18 It can thus be concluded that aquatic
invertebrates are very promising for ecotoxicology research.

How MNPs affect freshwater ecosystems has drawn
increasing attention in the last few years. One of the major
concerns is the bioavailability of MNPs in freshwater
organisms, which may undermine their fitness. Compared
with marine water, there is more natural organic matter
(NOM) in freshwater, which rapidly adsorbs onto the surface
of MNPs, producing repulsive forces between particles and
decreasing their aggregation.20 Furthermore, freshwater
normally displays lower ionic strength (conductivity: 0.03–
0.10 mS cm−1) than marine water (47.8–49.8 mS cm−1), where
charged NPs are less neutralised by counterions and keep
their colloidal stability and thus are less aggregated.21 This
might lead to a longer residence time (which is related to the
bioavailability) of NPs in freshwater rather than in marine
waters.20 Many existing documentaries on the
bioaccumulation of various MNPs, including AuNPs,22,23

AgNPs,24,25 and CuONPs are available.26,27 MNPs are
primarily mediated by ingestion and subsequently
accumulate in gut tissues of organisms and are often not
readily taken up by the epithelial surface and transported via
the circulatory system.28,29 Further, MNPs may be taken up
by plasma membrane vesicles rather than being absorbed by
the cell through transferring proteins and passive diffusion.
Once ingested, MNPs remain in the digestive tracts of
organisms for days up to weeks, allowing the transfer of NPs
to the food web.30–32 Biomagnification may cause more
significant impacts on freshwater ecosystems because it
amplifies the concentrations of MNPs at upper trophic levels
by an order of magnitude.30 Thus, understanding the
capacity for MNPs to bioaccumulate in organisms and
subsequently transfer through and biomagnify within food
chains is crucial.

Another primary concern is how MNPs impact freshwater
organisms after ingestion. Multiple recent reviews have
summarized the MNP's toxicity to aquatic organisms and
highlighted that additional research to improve our
understanding of the adverse impacts of MNPs is necessary.
The physicochemical characteristics of MNPs change as an
environmental release with time under the influence of the
surrounding environment, thereby affecting the impact on
organisms. Abiotic factors such as media composition,

sulfidation, irradiation, pH and ionic strength (IS) of media
may also contribute to determining the outcome and toxicity
of NPs.33 The overall potential adverse impacts of MNP
pollution are considered challenging to predict. We need to
integrate quantitative studies to produce a more
comprehensive and objective evaluation of the differential
biological responses triggered by MNP exposure.

A meta-analysis is a powerful tool to rigorously assess the
findings of published independent research, which can help
determine the effect size for result variables. A meta-analysis
has been developed to study the toxicological TiO2 NPs on
marine bivalves.34,35 Furthermore, due to the diversity of the
MNPs, toxicity evaluation is challenging to access, and the
limitation remains to test various MNPs' toxicity each time.
To address these limitations, a toxicity mechanism-based
approach, such as the adverse outcome pathway (AOP), is
more practical than a substance-based approach. However,
the majority of NP toxicity studies focused on ecotoxicity took
apical endpoints, and only a few dealt with toxicity
mechanisms.36–39 AOPs span numerous levels of biological
organization, from the molecular level to an organism level
or even to population levels for ecotoxicology scenarios.40

Since the AOP is an evidence-based framework, it is
constantly updated following new evidence of toxicity
mechanisms, improving its reliability and application.41 It
also allows us to identify data gaps for future research based
on the current AOP. Thus, although the study of toxicity
mechanisms of MNPs is limited, identifying the currently
available molecular-level toxicity information and linking it
with AO is a tactical beginning for the risk assessment of
MNPs.

This review summarizes the transformation processes that
MNPs undergo and the effects of main physical–chemical
properties and environmental factors on MNPs'
transformation in freshwater. We present the records that
examined the impact of MNPs on freshwater invertebrates,
experimentally and under laboratory-controlled conditions.
Based on these studies, we conduct a meta-analysis to
investigate the importance of the MNP type, size, coating,
concentration and exposure time effect of MNPs on
freshwater invertebrates. Through the comprehensive
analysis of the current research on the effects of MNPs, we
propose an appropriate AOP to manage MNPs based on the
existing literature and highlight research gaps, discuss
methods, and identify recommendations and perspectives for
future research.

2. Environmental transformations of
MNPs in freshwater

Knowledge of the environmental fate and behaviour has
essential implications in evaluating the MNPs' hazards and
ecological and environmental risks. When NPs are released
into the environment, these NPs, which have high surface
activity, readily interact with substances in complex
environments, causing changes in their surface structure,
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resulting in more unique environmental behaviours.42 The
MNPs exposed to freshwater systems undergo various
physical (e.g., aggregation, adsorption and sedimentation),
chemical (e.g., dissolution and sulfidation), and biological
(e.g., eco-bio-corona) processes.9,33,43 The above
transformations are known to depend on the
physicochemical properties (e.g., size, charge, surface coating,
concentration) of MNPs and water conditions (e.g., IS, pH,
NOM).43,44

2.1 Physical transformations

2.1.1 Aggregation. Aggregation refers to MNP cluster
formation in suspension, and such a process increases the
NPs' size and density, which leads to gravitational settling
in the sediment and impact on benthic organisms.45,46 NPs'
size has been found to affect the aggregation, due to the
higher percentage of atoms present on the surface of NPs
with smaller size, resulting in surface chemistry change and
subsequent layer charge decrease, thus promoting this
process.47 For instance, in moderately hard water, smaller
platinum (Pt) NPs (20 and 30 nm) formed a wide-size range
and larger aggregates than larger sizes (75 nm).48 Similar
results were also found in AuNPs when exposed to a sterile
lake water medium, where 30 nm NPs aggregated more
rapidly than 40 nm NPs.49 Generally, higher concentrations
carry higher surface charges, which promotes the stability
of NPs by limiting the inter-particle contact. For example,
Al2O3NPs showed lower aggregation at 1 mg L−1

concentration compared with lower 0.1 mg L−1 in river
water.50

The nature of the surface coating also acts as an essential
factor in deciding the MNPs' aggregation. In lake water,
compared with polyvinylpyrrolidone (PVP)-coated AgNPs,
lipoic acid (Lip) and citrate (Cit) coatings demonstrate lower
protective effects of AgNPs against aggregation.51 These
results illustrate that the surface coating stabilising AgNPs
(i.e., PVP, higher affinity) by steric repulsion is more effective
than electrostatic repulsion (i.e., Cit and Lip, weak affinity).
In both raw and filtered river water, polyethylene glycol (PEG)
or carboxylated PEG (PEG–COOH)-coated AuNPs showed
good stability, while branched polyethyleneimine (bPEI),
amine-functionalized PEG (PEG-amine) and Cit-coated AuNPs
have been shown to readily aggregate.52 These neutral or
negatively-charged coatings (e.g., PEG, PEG–COOH-) could
prevent homoaggregation of NPs via electrical double-layer
(EDL) compression and are not affected by the presence of
NOM in test medium.53 Although positively charged (e.g.,
bPEI-, PEG-amine-, Cit-) coatings could also serve to stabilize
the NPs, they are more easily adsorbed with NOM and
promote aggregation either by interparticle bridging or
divalent cation bridging.52,53

The point of zero charge (pHPZC) refers to the pH when
the net surface charge of NPs approaches zero. Theoretically,
the smaller the difference between solution pH and pHPZC,
the greater the aggregation rate. For example, in wastewater,

when the pH value approaches the pHPZC of ZnONPs, due to
the decreased repulsive interactions between NPs, the process
of aggregation and deposition occurs within two hours.54

When the pH value of simulated lake water reached the
pHPZC of TiO2NPs, large agglomerates were observed.55 In
general, divalent electrolytes (Ca2+ and Mg2+) in freshwater
could destabilize MNPs, and the enhanced IS tends to
weaken electrostatic repulsion between particles,
compressing the EDL surface and leading to aggregation.56,57

For instance, CuNPs' aggregate size correlated well with IS in
ground water and freshwater.56 An increase in the particle
size of AgNPs was reported in surface water with higher IS.57

After exposure to filtered river water, the AgNPs aggregate
readily within one hour.58 Under freshwater relevant
conditions, the aggregation level of Cit-AgNPs and TiO2NPs
depends mainly upon the concentration of Ca2+.59

In freshwater, NOM represents the most critical ligand
group, composed mainly of humic acids (HAs) and fulvic
acids (FAs). Rich functional groups of NOM provide the high
potential to adsorb MNPs via various mechanisms, including
hydrophobic interactions, van der Waals interactions, surface
ion chelation, cation bridging, etc.42,60 It is suggested that
HAs can inhibit the aggregation and deposition of MNPs
(e.g., Ag, Fe, Fe3O4, Al2O3, TiO2, SiO2 and ZnO) through
electrostatic and spatial dislocation effects.42 However, in the
presence of divalent cations, dissolved organic matter (DOM)
can flocculate on the surface of MNPs through cationic
bridging, causing the occurrence of aggregation and
deposition of MNPs.61 In addition, different pH and ionic
conditions affect the adsorption of NOM. For example, under
acidic and basic conditions, DOM can be adsorbed on the
surface of AgNPs via carboxyl groups and aliphatic and
phenolic groups, respectively.62 In the presence of NOM, the
larger-sized PVP-PtNPs (95 nm) are more affected than the
smaller NPs (20 nm), which form larger agglomerates in
artificial freshwater.48 Similar results were observed in FA
coated CeO2NPs, which generated small aggregates in lake
water, while large aggregates were obtained in the absence of
FAs.63 In natural lake water, NOM could accelerate the
heteroaggregation of TiO2NPs and subsequent
sedimentation.64

2.1.2 Sedimentation. The sedimentation process is critical
for removing MNPs from water bodies and thus is essential
in their fate studies.65 For example, after exposure to
moderately hard water for 24 hours, around 28–53% of PtNPs
were likely to settle out of the suspension.48 Homo-
aggregation (MNPs' cluster) and hetero-aggregation (MNPs
associated with suspended natural colloids) of MNPs lead to
denser particles and are considered the main pathways for
deposition in the sediment.33 The prevalence of NOM and IS
in an aqueous environment are considered two key factors
affecting NPs' sedimentation.

NOM can promote aggregation and aggravate
sedimentation by bridging the function at low concentrations
while inhibiting or slackening this process by increasing the
surface charge and spatial resistance at high concentrations.

Environmental Science: Nano Critical review
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For instance, in freshwater, almost complete sedimentations
were observed for CuNPs, AlNPs and MnNPs within less than
15 min due to rapid aggregation.66 Furthermore, a higher
concentration of NOM (e.g., HA and dihydroxy benzoic acid)
enhanced the NPs' electrostatic stabilization, evidenced by
lower sedimentation velocity.66 IS could promote
sedimentation by compressing the EDL of NPs.56 For
example, sedimentation of CuNPs and CuONPs were directly
or inversely proportional to IS and organic content in lake
water, respectively.56 A recent study highlights that
heteroaggregation between AgNPs and suspended sediment
(SS) played a predominant role in settlement behaviour under
high IS conditions, while AgNPs distributed in the overlying
waters under low-salinity and SS conditions.45 Similarly,
CeO2NPs were stable in low pH, IS, and SS water, whereas
aggregation occurred with increasing cation concentration,
showing that the larger size NPs (>1000 nm) settle quickly to
the bottom while the smaller particles are suspended in
solution.67

2.2 Chemical transformations

2.2.1 Dissolution. MNPs readily react with H+ and
dissolved oxygen from water and release metal ions, a
process usually referred to as dissolution.33 Some MNPs with
active chemistry properties, such as AgNPs, CuONPs and
ZnONPs, are susceptible to oxidation dissolution.33 In the
case of AgNPs, Ag+ could be released via the redistribution of
adsorbed Ag+ on the NPs' surface during the synthesis
process and dissolution of the outer Ag2O oxide layer.68

Smaller NPs dissolve more quickly than larger ones due to
the enhanced surface area, indicating that more available
surface sites are involved in dissolution.69 For instance, in
lake water medium and freshwater-like conditions, enhanced
dissolution was found at smaller-sized (50 nm) ZnONPs than
100 nm and bulk form.70,71 In media relevant for freshwater,
the smallest AgNPs (5 nm) promoted a higher dissolution
rate than larger NPs (10 and 20 nm), which could be
explained by the proton number that active molecular oxygen
adsorbed by the surface.72 In freshwater, a significant
dissolution percentage (∼81.98%) was found at lower
concentrations (10 mg L−1) of ZnONPs compared with 1000
mg L−1, which exhibited ∼78.83% dissolution after one hour
of exposure.73 Similar results were found in AgNPs after
exposure to moderately hard reconstituted water, where
dissolution rates of 5 μg mL−1 are much higher than that for
100 μg mL−1.74 This difference might be explained by the
higher ratio of Ag+ to Ag complexing agents, which helps
scavenge Ag+, or Ag+ could associate back with the NPs at
high concentrations.74

The surface coating of NPs and test media also affects its
solubilisation pattern. For some highly soluble MNPs (e.g., Ag,
CuO, and ZnONPs), their dissolution rates showed a wide range
of 1–80% under various environmental scenarios, which
demonstrates the critical role of media constituents (e.g., pH, IS
and NOM) in this process.75 For example, Cit-AgNPs showed

higher dissolution when compared to PVP AgNPs76,77 in
laboratory scenarios, where PVP-AgNPs are more prone to Ag+

release than Cit-AgNPs in natural waters.78 Selenium (Se) NPs
displayed a higher dissolution rate (∼35.3%) in lake water when
compared with ultrapure water (∼20.8%).79 The presence of
NOM in freshwater reduces the dissolution of CuONPs, which
might be via metal ion-chelating or coating particle surfaces.56

In synthetic freshwater, the HAs and dihydroxy benzoic acid
(DHBA) could adsorb on CuNPs, AlNPs and MnNPs within one
minute and, in particular, enhance the dissolution of AlNPs and
CuNPs.66 The HA and DHBA could coordinate with the NP
surface via forming mononuclear surface complexes, which
weaken the bonds between the metal and oxygen in the surface
oxide and thus promote the dissolution of CuNPs.80

2.2.2 Sulfidation. Sulfidation plays an essential role in
controlling metal ion concentration in the environment due
to the high complexation tendency with sulfide ligands.33

Sulfide, which is generated by microbial sulfate reduction,
commonly exists in hypoxic environments such as riverine,
lake sediments and wastewater treatment plants.81,82 For
instance, sparingly soluble silver sulfides (Ag2S) have been
identified as a major Ag species in the sewage sludge taken
from urban wastewater systems.81 In moderately hard
reconstituted water, AgNPs could transform to Ag2S via direct
or indirect oxysulfidation, depending on the concentration of
sulfides.83 At high concentration (mg L−1) applied, the AgNPs
undergo a fast, direct NPs–fluid reaction and generate Ag2S;
meanwhile at low concentration, the AgNPs first develop into
silver ions before reacting with sulfide ions and eventually
generate Ag2S.

83,84 Such a transformation process could be
reversible, and one recent study proposed that Ag could be
remobilized from Ag2S with the aid of Fe(III) in freshwater
under light conditions.85

Generally, smaller sizes could enhance the sulfidation rate
of AgNPs, probably due to the dependency of the reaction
rate on the specific surface area of NPs.86 The enhanced ratio
of HS−/Ag also contributes to the sulfidation of AgNPs, where
Ag2S bridges are formed between NPs.86 Other factors, such
as NOM, can also affect the sulfidation process. For example,
the presence of HAs and FAs could slightly enhance or
decrease the sulfidation rate of AgNPs, respectively.38 HAs
might promote the sulfidation reaction via replacing the
surface coating of NPs, giving rise to an extensive available
surface area, while FAs diminish this process by blocking the
surface of AgNPs. Notably, the sulfidation process is usually
accompanied by more significant aggregation and
sedimentation and a lower dissolution profile, which might
influence the fate and bioavailability of NPs (e.g., AgNPs,
ZnONPs).9,86 For instance, a recent study highlighted that the
sulfidation process could diminish the toxicity of AgNPs in
constructed wetlands.87

2.3 Biological transformations

The eco-bio-corona is the principal biological mediated
transformation in the environment. Upon entering the
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aquatic environment, MNPs are rapidly encapsulated by
biomolecules (e.g., extracellular polymeric substances (EPS),
which are secreted mainly by aquatic organisms' metabolic
activities), forming an eco-corona. Similarly, the bio-corona is
formed via interacting with the adsorbed endogenous
proteins in the presence of organisms.88,89 The eco-bio-
corona can modify the distribution, accumulation,
degradation, intracellular recognition and biotoxicity of NPs
by altering their structure, kinetic behaviour and function.90

On the other hand, the biocompatibility of NPs within
organisms can be improved by modulating the cellular
uptake of NPs. For example, the bio-corona can control the
interaction of NPs with outer membrane receptors for
specific cellular uptake.91

Biomolecules have been known to bind with metals via
electrostatic interaction and complexation, with the aid of
many functional groups, including carboxyl, hydroxyl, etc.92

EPS are amphiphilic molecules with a hydrophobic region,
facilitating adsorption onto organic substances. Studies have
shown that positively charged NPs generally readily interact
with negatively charged EPS such as polysaccharides or
proteins, while hydrophobic components of EPS can act as
stabilisers to stabilise NPs. For example, the EPS of
freshwater biofilms could stabilize CeO2NPs and induce
aggregation of AgNPs.93 Similarly, EPS adsorption enhanced
the ZnONPs' stability with electrostatic attraction and surface
complexation involved.94 EPS also exhibit reducing
characteristics due to the reducing functional groups (i.e.,
hydroxyls, phenolic–OH, thiols and aldehydes).95 Recent
research proposed that Ag+ could be reduced to AgNPs by
EPS in natural water, and this process could be enhanced
under light irradiation.96 Thus, EPS can change the
environmental behaviour of NPs and might subsequently
influence their fate and toxicity in the environment.39

In addition to the EPS derived from natural water, the
biomolecules secreted by organisms could also interact with
the MNPs' surface and form a new identity (i.e., eco-corona)
which affects the stability and toxicity of the MNPs toward
organisms in the surrounding environment. For example, a
recent study showed that AuNPs could interact with protein
secreted by D. magna and produce protein-corona, reducing
the AuNP aggregation and potentially detoxifying AuNPs to D.
magna by shielding their surface attraction.97 Conversely, for
polystyrene NPs, a previous study highlighted the promoted
aggregation of NPs with protein-corona in a dispersion
medium previously conditioned with D. magna neonates.98

Many studies reviewed the bio-corona formation and
associated biological effects.91,99,100 However, most of these
focused on biomedical and human toxicology, and studies
demonstrating this field in natural waters, including
freshwater, are still elusive.99,100

To sum up, after entering the freshwater system, MNPs
undergo physical, chemical, and biological transformational
processes governed by NPs' characteristics and the chemical
properties of water. In general, small size NPs easily form large
clusters due to the large surface and high surface energy.

Therefore, the concentration and surface coating of NPs
demonstrate essential roles in determining the size by
electrostatic and steric repulsion functions. The pH impacts the
surface potential of NPs, and large clusters are formed as the
pH approaches the pHPZC. The low IS and high NOM
concentration in freshwater generally stabilize the NPs but the
fate and behaviour of NPs are also affected by other factors due
to the complex composition of the natural system. A schematic
diagram showing the environmental transformations MNPs in
aquatic environments is presented in Fig. 1.

3. Bioavailability of MNPs in
freshwater invertebrates

Studies on bioavailability and uptake are critically essential
to link the environmental transformation of MNPs to
biological responses.101 Individual free MNPs,
homoaggregates and MNP heteroaggregates can accumulate
and subsequently remain within organisms.18,32,102–104 In
natural water, some soluble MNPs (e.g., ZnONPs, CuONPs
and AgNPs) can release metal ions, which can cause latent
free-ion toxicity, resulting in different toxic impacts than
exposure to the pristine MNPs.18,105,106 Understanding the
bioaccumulation of MNPs is pivotal for addressing their
ecotoxicity and risk assessment because it determines the
potential MNP concentration. Since mollusk and Arthropoda
are the largest phyla of invertebrate animals, three commonly
used classes for toxicology studies (bivalvia, gastropoda and
crustacean arthropods) are discussed in separate sections.

3.1 Bivalve molluscs

Bivalve molluscs, sedentary-style filter-feeding invertebrates,
are widely adopted as bioindicators in nanotoxicology.107

Filter-feeding bivalves may filter large water throughputs at
high rates for respiratory and nutritional purposes and thus
may ingest considerable amounts of MNPs dispersed in the
water.3 Bivalves are considered an effective sink for MNPs.108

Suspended MNPs from the water, concentrated in faeces and
pseudo-faeces, can be captured and ingested by benthic
invertebrates and transferred into the aquatic food chain.109

As filter feeders, bivalves represent one of the most important
pathways of MNPs into the human food chain.35,110

Bioaccumulation tests of MNPs in freshwater bivalves have
primarily been conducted in Corbicula fluminea,22,102 Anodonta
cygnea,111 and Dreissena polymorpha.112,113 After exposure to
AgNPs, most particles accumulated in the viscera (gills and
digestive tract) of C. fluminea, while mantle, muscle, and foot
tissue showed low accumulation potential.102 This indicates no
significant transport of AgNPs through the different
compartment tissues or hemolymph and thus points to the
negligible bioavailability of AgNPs to C. fluminea. Gills and
digestive glands are considered preferential organs of MNP
accumulation in filter-feeding organisms, compared to mantle
and foot organs.114 A. cygnea in exposure to sub-lethal
concentration of CuONPs (40 nm) for 12 d leads to a significant
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accumulation of Cu in mantle and foot than that in gill.111,115 It
is worth noting that the MNP's surface properties could
influence the bioaccumulation process. D. polymorpha
accumulated Cit-CeO2NPs three times more than bare-CeO2NPs;
the reason behind this difference is correlated with their
distinct behaviours presented in the water column. Cit-CeO2NPs
are more stable than bare-CeO2NPs in water, making it easier to
be captured by mussels.112

Freshwater bivalves can directly ingest and rapidly
accumulate MNPs in water (i.e., bioconcentration)102,111,112 or
intake of MNPs via trophic transfer (e.g., from prey to
predator).22 For example, in Arini's study,22 the rate constants
for uptake of AuNPs from water (kuw) and food (kuf) were
accessed. The former way is likely to be the primary exposure
pathway for C. fluminea, considering the higher kuw than kuf.
During the dietary exposure, C. fluminea decreased its
ventilator activity, resulting in reduced gill filtration. Thus, Au
accumulation presents a 30-fold reduction after dietary
exposure to algae loaded with AuNPs compared to waterborne
exposure.22 The results above revealed that MNPs might
compromise bivalves' feeding capacity, but indeed, not just
for bivalves, other freshwater species were also observed to
exhibit filtration behaviour impairments as reviewed below.

3.2 Gastropod molluscs

Gastropod organisms are ubiquitous in the aquatic
ecosystem. Most freshwater gastropods (e.g., Lymnaea

stagnalis) are lung-breathing pulmonates; hence, they spend
time at the water surface for air-breathing and ingestion.116

They are considered sentinel species for pollution
biomonitoring in their wide geographic distribution,
relatively sedentary life habits, and ease of availability.117

Current studies have indicated that the dissolved metal
ion form (e.g., Ag+, Cu2+) was more bioavailable than their
nanoparticulate forms in gastropod molluscs.24,27 For
example, the total body burden of Cu in the whole freshwater
snails Potamopyrgus antipodarum118 and Bellamya
aeruginosa27 was significantly higher for those exposed to
Cu2+ than both control and CuONPs treatments. Freshwater
snails B. aeruginosa24 and Peringia ulvae119 also accumulated
higher levels of Ag from Ag+ than from particulate Ag. This
ingestion discrepancy could be related to the different uptake
pathways between MNPs and dissolved metal ions. The
former could be potentially internalized via endocytotic
pathways: clathrin-mediated endocytosis, caveolae-mediated
endocytosis, or macropinocytosis. Meanwhile the dissolved
ions from MNPs can enter cells via transporter channels,
including the proton-coupled Na+ channel.120 Furthermore,
MNPs tend to agglomerate, aggregate and form a bio-eco-
corona in natural water, and thus their bioavailability would
be substantially reduced.89,121 However, some research
showed the contrary. For example, B. aeruginosa accumulated
a higher concentration of Ag from sediments spiked with Ag+

than AgNPs.24 Upon the same total metal sediment
concentrations, CuO NPs were more bioavailable than

Fig. 1 The schematic diagram illustrates the overview of the environmental transformations and the biological fate of transformed MNPs in
freshwater environments. MNPs may undergo physical, chemical, and biological transformation processes. The MNP transformation differs mainly
according to their intrinsic properties (e.g., size, surface charge, coating and concentration) and environmental conditions (e.g., pH, IS, NOM,
related values are referenced from ref. 21, 56 and 64). The transformed MNPs may accumulate in some typical freshwater invertebrates, such as
filter-feeding bivalve molluscs, gastropods molluscs and crustacean arthropods, and contribute to the trophic transfer of MNPs.
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aqueous Cu to deposit-feeding snail P. antipodarum,122 which
is inconsistent with bioaccumulation results with B.
aeruginosa.27 This discrepancy may result from differences in
experimental design, particularly the exposure duration (56 d
for the former vs. 28 d for the latter) to CuONPs. The
elimination rate of CuONPs may be lower than that of
dissolved Cu2+ over time. In addition, no significant Cu
accumulation difference in Planorbarius corneus was found
between matrix-embedded CuO NPs and controls with
realistic low concentrations, which might make detecting Cu
from the matrix and biological tissues more complicated.123

The physicochemical properties of the exposure media
(e.g., NOM) can also affect the MNP bioaccumulation. Sikder
et al. indicated the importance of (PtNPs) size and interfacial
interactions with NOM on Pt bioavailability.48 Both dissolved
and PtNPs (size range from 20 ∼95 nm) show good
bioavailability to L. stagnalis. In the absence of NOM, the
larger Pt NPs have higher bioavailability than the smaller
ones, while it is the opposite in the presence of NOM.48 This
may be explained by the surface adsorption of NOM on larger
particles, making them susceptible to rapid precipitation and
forming larger agglomerates, and suggests that PtNPs' in vivo
transformation could have higher adverse effects on
organisms than the dissolved metal ion form.

Diet-borne exposure plays a significant role in the
bioaccumulation and toxicity of NPs in aquatic organisms,
compared with single waterborne scenarios.105,111,124–127 For
example, dietary exposures to ZnONPs and AgNPs suppressed
the assimilation efficiency of the snail L. stagnalis.125,128 The
reduced bioavailability of MNPs may be explained by the
agglomeration/aggregation of the MNPs onto diatom mats or
detrimental effects on digestion.125 Recent work highlights
the higher Ag bioaccumulation potential in the Ag+ treatment
compared with Ag2SNP exposures, but no biomagnification
was observed from the freshwater snail Physa acuta to the
planarian Girardia tigrina.129 To fully mimic the real
environmental scenario with a food chain with more than
three species, another study constructed a freshwater
ecosystem (including clam C. fluminea, snail P. acuta, and
water flea D. magna) and determined the bioaccumulation
and biomagnification of CeO2NPs via long-term exposure.
Results found that bioaccumulated Ce in all tested species
was negatively correlated with its trophic level, showing no
biomagnification of CeO2NPs through this food web.32

Conversely, the significant biomagnification of CeO2NPs was
reported in terrestrial food chains.130 These findings implied
that biomagnification of NPs in the natural environment
might be complicated and affected by several factors, such as
NPs' intrinsic characteristics and prey–predator
dependence.131 Future studies addressing mechanisms
underlying the trophic transfer of NPs are urgently needed.

3.3 Crustacean arthropods

Current studies about MNP bioavailability in freshwater
crustacean taxa have mainly focused on Daphnia spp.

Daphnia, the common water flea, is widely used as a model
aquatic organism in toxicity studies.132 So far, MNP
accumulation studies have been mainly performed with TiO2-
NPs,133–136 AgNPs25,137,138 and ZnNPs.103

Current studies have indicated that MNPs (e.g., TiO2NPs
and CuONPs) mainly accumulated in the gut tissue of D.
magna.18,133 As filter feeders, D. magna can trap MNPs inside
the body upon filtration and appendage movement of D.
magna can also contribute to NP ingestion if there was NP
adherence to the carapace.18 Fan et al. investigated the effects
of TiO2NPs' properties on the BCFs for the first time.136 They
reported a higher BCF at lower concentrations (0.1 and 1 mg
L−1) than at a higher dose (10 mg L−1) regarding TiO2NP
exposure in D. magna.136 Under a higher concentration
scenario, TiO2NPs might form larger aggregates and thus not
be taken up by D. magna.

The diet has been demonstrated as the most critical route
of uptake and bioaccumulation for trace metals. Exposure to
MNP contaminated diet can suppress the feeding behaviour
in Daphnia spp. Previous findings suggest that Daphnia spp.
decrease AgNP intake during dietary exposure.137 Possible
explanations for the feeding rate reductions may include the
accumulation of MNPs in the gut or higher sedimentation of
contaminated algae to the bottom of the container resulting
in lower availability for filter-feeding.139 AgNPs were not
eliminated from Daphnia over the depuration period (48 h),
leading to further possible transport of AgNPs along the food
chain.25 Indeed, it is well established that MNPs, such as
AgNPs,137 TiO2NPs

133–135 and AuNPs,140 can be transferred
from freshwater algal diet to Daphnia spp. Moreover, the
trophic transfer showed size dependence in the Chen et al.
experiment133 which found that TiO2NPs' biomagnification
factors (BMFs) decreased with increasing MNP size.
Generally, due to the higher specific surface area, smaller
TiO2NPs are more prone to attach to the algal cell than larger
ones, causing the latter to be of lower bioavailability.133

To summarize, the bioavailability of MNPs relates to the
subsequent toxicity to aquatic organisms; thus it is crucial to
know the accumulation of MNPs in organisms to understand
and predict their toxicity. The high potential of
internalization and accumulation of MNPs in freshwater
invertebrates has been mainly shown in bivalvia, gastropoda,
and crustacean arthropods. Uptake of the MNPs occurs with
different processes known as endocytotic pathways, clathrin-
mediated endocytosis, caveolae-mediated endocytosis,
macropinocytosis, etc. Moreover, the bioavailability of MNPs
is influenced by the physicochemical characteristics of MNPs
(e.g., size, concentration, and surface chemistry) and the
employed experimental conditions (e.g., exposure time and
routes).

4. Toxicity of MNPs to freshwater
invertebrates

MNPs exhibit some unique characteristics compared to their
bulk forms, such as a high surface-to-volume ratio and
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abundant reactive sites on the surface, which along with their
mobility, lead to unexpected environmental hazards. In the
last decade, specific physicochemical properties such as size,
shape, and surface functionality of MNPs have influenced
their toxicity.16,43,141 Furthermore, various aquatic organisms
have been studied to demonstrate MNPs' toxic effects. In this
part, we reviewed MNPs' toxicity related studies published
after the year 2011 from the Web of Science (https://www.
webofscience.com/wos/woscc/basic-search) and Google

Scholar (https://www.scholar.google.com). Furthermore, we
chose three major groups of freshwater organisms within
section 3 to discuss and present a compilation of different
toxicological measurements for various MNPs in Tables 1–3.

4.1 Bivalvia molluscs

Bivalve molluscs are used as sentinel species for
nanotoxicology owing to their high ability for the cellular

Table 1 Overview of the toxic effects of MNPs on bivalves according to species, and type of MNPs

Species

MNPs

Time End pointsa Ref.Type Size (nm) Conc.

Bellamya aeruginosa AgNPs 20 1, 10, 100 μg g−1 14 d ↑GSH (HP, F, gonad, DG), ↑SOD (HP),
↑POD (F), ↓CAT (HP, gonad)

24

Coelatura aegyptiaca AgNPs 8–19 12.5, 25
and 50 mg L−1

6 d ↑MDA, ↓GSH, ↓CAT, ↑NO concentration 145

Corbicula fluminea AgNPs 27.66 ± 0.80 0.1, 0.5, 2 mg L−1 14 d ↑SOD, ↑CAT, ↑GPx in the mediate concentration
↑GSH ↑GST ↓GPx in the highest concentration,
↓ammonia excretion and ↓feeding rates

160

Elliptio complanata AgNPs 80 0.8, 4 and 20 μg L−1 48 h ↓HSP72 protein, ↑digestive gland lipid peroxidation,
↑metallothioneins, ↑DNA strand breaks

152

Elliptio complanata AgNPs 80 0.8, 4 and 20 μg L−1 48 h ↑Lipid peroxidation, ↑phagocytosis activity,
↓cytotoxicity activity

151

Sphaerium corneum AgNPs 15 5, 25, 50, 100
and 500 μg L−1

28 d ↓Reproduction, ↑ROS, ↑CAT, ↓GPx, ↑GST,
↓Na+/K+-ATPase activity

37

Ceriodaphnia cornuta AgNPs 10–50 20, 30, 40
and 50 μg mL−1

24 h ↑Mortality and abnormal swimming behavior 89

Dreissenna bugensis AgNPs 70–80 10 and 50 μg L−1 48 h ↓PK-LDH, ↓F-actin, and ↓protein-ubiquitin (UB) 158
Caelatura aegyptiaca Ag/SNCs 10–25 12.5, 25

and 50 mg L−1
6 d ↑MDA, ↑NO concentration, ↓GSH, ↓CAT 149

Corbicula fluminea AuNPs 10 0.5, 1,5,12, 24 ppm 4 h ↑Endocytosis gene expression, ↑oxidative stress
gene expression, ↑immune system gene expression,
↑apoptosis gene expression

222

Unio ravoisieri Au/TiO2NPs 10 100 and 200 μg L−1 7 d ↓CAT, ↑GST, ↓AChE, ↑H2O2 223
Unio tigridis Al2O3NPs 40 0, 1, 3, 9 mg L−1 14 d ↓SOD, ↓CAT, ↑GST, ↑GPx 224
Corbicula fluminea CeO2NPs 20–25 10, 100 μg L−1 6 d ↑DNA tail length, ↑Casp-3 activity in the

highest concentration
153

Dreissena polymorpha CeO2 NPs 3–4 1 mg L−1 21 d ↓piGST mRNA expression, ↑hemocyte lysosomal
system size, ↓CAT, ↓GST, ↓[LOOH]

112

Dreissena polymorpha CeO2NPs 1385 (dH) 100 μg L−1 14 d ↑ETS, ↓ROS, ↓SOD, ↓CAT, ↓GPx, ↓GST, 147
Dreissena polymorpha CeO2NPs 3 ± 1 10 and 100 μg L−1 4 d ↓CAT, ↑GST, ↓haemolymph [Na+] 225
Dreissena bugensis CuONPs 79 ± 10 2, 10 and 50 μg L−1 96 h ↑Poly-ubiquitinylated protein, ↓LPO, ↓DNA

strand breaks, ↓AChE
150

Lamellidens marginalis CuONPs 34 ± 4.5 0.5, 1, 5 mg L−1 14 d ↓Hemocyte count, ↓phagocytic efficacy, ↑SOD
↓nitric oxide generation, ↓ total protein content
in hemocytes, ↓CAT, ↓PhO

148

Unio tigridis CuONPs 40 0, 1, 3, 9 mg L−1 14 d ↓SOD, ↓CAT, ↑GST, ↑GPx 224
Limnoperna fortunei TiO2NPs 20 1, 5, 10

and 50 μg mL−1
4 h ↓SOD, ↓CAT, ↓protein sulfhydryl content 143, 157

Limnoperna fortunei TiO2NPs 21 1, 5, 10
and 50 μg mL−1

4 h ↑Tail DNA 159

Unio tumidus TiO2NPs <150 1.25 μM 14 d ↓ROS, ↓PhO ↑SOD, ↑lipofuscin accumulation,
↑TBAR, ↑GSH, ↑GSSG, ↑GSH/GSSG,
↑lactate/pyruvate, ↑ALP, ↑cathepsin D total
activity, ↑cathepsin D free (outside lysosome)
activity, ↓lysosomal membrane stability

226

Unio tigridis TiO2NPs 21 0, 1, 3, 9 mg L−1 14 d ↓SOD, ↓CAT, ↑GST, ↑GPx 224
Unio tumidus ZnONPs 50–100 3.1 μM 14 d ↑Glycogen, ↓glucose, ↓lipids, ↑pyruvate,

↓lactate, ↓lactate/pyruvate, ↑ATP
162

a Glutathione (GSH), superoxide dismutase (SOD), POD catalase activity (CAT), malondialdehyde (MDA), glutathione peroxidase (GPx),
glutathione-S-transferase (GST), reactive oxygen species (ROS) production, acetylhydrolase (AChE), hydrogen peroxide (H2O2), lipid
hydroperoxide (LOOH), mitochondrial electron transport system (ETS), lactoperoxidase (LPO), alkaline phosphatase (ALP), phenoloxidase-like
(PhO) activity, nitric oxide (NO), adenosine triphosphate (ATP), pyruvate kinase-lactate dehydrogenase (PK-LDH).
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Table 2 Overview of the toxic effects of MNPs to gastropods according to species, and type of MNPs

Species

MNPs

Time End points Ref.Type Size (nm) Conc.

Bellamya
aeruginosa

AgNPs 20, 40 and
80

1, 10 and 100 mg g−1 14 d ↑Oxidative stress, ↑GSH, ↑SOD, ↑POD,
↑CAT

24

Biomphalaria
alexandrina

AgNPs — 3–100 mg mL−1 24 h Molluscicide, cercaricide,
and anti-parasitic effect

227

Cipangopaludina
chinensis

AgNPs 20–60 20 and 60 mg L−1 14 d ↑Bioaccumulation on biofilm. NP impacts on
ecological receptors and food chains

170

Biomphalaria
glabrata

AgNPs 115.17 ±
55.57

1.0, 2.5, and 5.0 mg
L−1

30 d ↓Reproduction rate; ↓egg per egg masses,
↓egg masses production per snail

106

Lymnaea stagnalis AgNPs 10.3 ± 3.4 25 nM L−1 24 h The presence humic acid ↑uptake AgNPs PVP
in contrast with cysteine but did not eliminate
uptake of 25 nM L−1

228
12.8 ± 4.4

Lymnaea stagnalis AgNPs 100 5, 10 and 50 mg L−1 72 h ↑Memory formation (10 mg L−1). Blocks memory
formation (50 mg L−1). Memory recall is context-
specific, thus snails trained in AgNPs do not

171

Physella acuta AgNPs 24–190 0.001, 0.01, 0.1, 1,
10, 100 mg L−1

96 h and 28
d

↑Mortality; ↓egg production; ↓snail size at
first reproduction, ↑behavior changes

176

Potamopyrgus
antipodarum

AgNPs 15 0.10–1000 mg L−1 28 d ↓Reproduction. AgNPs in low concentrations
can modulate 17a-ethynylestradiol activity

229

Potamopyrgus
antipodarum

AgNPs 13 100 μg g−1 2 wk ↓Growth, ↓reproduction 230

Racesina luteola AgNPs 32.4 ± 2.6 4.01, 12.03 and
24.05 mg L−1

96 h ↑Oxidative stress; ↑CAT; ↓GSH; ↓GST; ↓GPx;
↑MDA; ↑DNA damage

231

Biomphalaria
alexandrina

AuNPs — 100–200 mg mL−1 24 h Modulation and prevention of the infectivity
of cercariae and miracidia

227

Bellamya
aeruginosa

CuONPs 41.6 ± 4.6 180 mg g−1 28 d ↑Oxidative stress, ↑SOD, ↑CAT, ↑GST, ↑MDA 232

Potamopyrgus
antipodarum

CuONPs 6 ± 1 0, 30, 60, 120 and
240 mg g−1

8 wk ↓Growth rate, ↓feeding rate, ↓reproduction,
and ↑bioaccumulation

122

Bellamya purificata CeO2NPs 25 60 mg L−1 15 d High bioaccumulation factor. No mortality 233
Lymnaea stagnalis CuONPs 7 Db: 4–50 mmol g1

and 50–175 nmol g−1
3–5 h (Db) Bioaccumulation associated to toxicity.

Toxicity: Db exposures > Wb exposure
125

Wb: 4–16 nM
to 31 mM

24 (Wb)

Racesina luteola CuONPs 43.5 ± 1.5 7 and 21 mg L−1 5 d ↑Oxidative stress; ↓GSH, ↓GPx, ↓GST. ↑LPO,
↑SOD (lower concentration, 1 d); ↓SOD (5 d).
↓CAT (2 d); ↑CAT (5 d, lower concentration).
DNA damage mediated by oxidative stress

168

Bellamya
aeruginosa

CuONPs 10 180 μg g−1 7, 14, and
28 d

↑SOD, ↑CAT, and GST↑ (7 d), ↓SOD, ↓CAT,
and ↓GST (>14 d)

27

Biomphalaria
glabrata

CdTeNPs 3 50, 100, 200, 400 nM 24 h Malformations and mortality of embryos and
adult snails depending on the concentration.
↑Cytotoxicity (hemocyte apoptosis)

234

Biomphalaria
glabrata

γ-Fe2O3NPs 5.7 1.0, 10, 100 mg L−1 10 d No effect on fecundity, fertility, mortality of
adults, similar hatching rate, no malformation
in embryos

177
28 d

Biomphalaria
alexandrina

SiO2NPs 80 50, 100, 200, 400, 600,
800, 1000, 1200 ppm

3, 6, 12, 24,
36 h

Non-embryonated egg masses (1400 ppm/24 h),
embryonated pre-hatched one (1450 ppm/12 h).

235

Bellamya
aeruginosa

TiO2NPs 11.6 ± 2.4 5 and 25 mg kg−1 21 d ↑LPO, ↑PC, ↓Na /K -ATPase, ↑DNA damage 236

Cipangopaludina
chinensis

TiO2NPs 5–10 1818.2 mg L−1 17 d Bioaccumulation through trophic transfer during
plant consumption. ↑Uptake and bioaccumulation

237

Cipangopaludina
chinensis

TiO2NPs 10–20 2 and 6 mg L−1 14 d Biomagnified through aquatic food chains. NPs
show greater movement in the sediment than
in the water in a simplified food chain.
↑Bioaccumulation in
the semistatic exposition

238

Racesina luteola TiO2NPs 34.1 ± 2.7 9 and 28 mg mL−1 7 d ↓GSH, ↓GST, ↑MDA, ↓SOD, ↓CAT (9 mg mL),
↑CAT (28 mg mL).

239

Racesina luteola TiO2NPs 34.1 ± 2.7 28, 56, 84 mg mL−1 96 h ↓GSH, ↓GST, ↑Oxidative stress, ↑MDA 172
Racesina luteola ZnONPs 22 10, 21 and

32 mg mL−1
96 h ↓GSH, ↓GST, ↓GPx, ↑MDA, ↑CAT. genotoxicity

mediated by oxidative stress
166

Biomphalaria
alexandrina

ZnONPs 17.5 25–600 mg mL−1 24 h ↑MDA, ↑NO, ↓GSH, ↓GST, ↓SOD, ↓PTN, ↓Alb,↑Ch,
↑AST, ↑ALT, ↑ALP,↑CAT

169
21 d
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Table 3 Overview of the toxic effects of MNPs to crustacean according to species, and type of MNPs

Species

MNPs

Time End points Ref.Type Size (nm) Conc.

Daphnia magna AgNPs 18.2 ± 10.1 0.5, 1, 3, 5,
10 μg L−1

48 h ↑AChE, ↓ROS, ↑GSH, ↑CAT 178

Daphnia magna AgNPs 6.3–8.4 50, 100, 200,
300 μg L−1

21 d ↑Mortality (dose–effect) 240

Gammarus
fossarum

AgNPs 20, 23 and 27 1, 3 μg L−1 72 h ↓Haemolymph osmolality, no significant
in antioxidant responses, defense
mechanisms, cellular damage, energy
reserves and ventilatory activity

180

Daphnia magna AgNPs 40 and 110 2 μg L−1 24 h Citrate-coated AgNPs were more toxic than
PVP-coated AgNPs, and 40 nm AgNPs were
more toxic than 110 nm AgNPs

76

Gammarus
fossarum

AgNPs 40 0, 0.5, 5 μg L−1 15 d ↑Catalse and chitinase gene expression,
↑digestive lysosomal system, ↓locomotor activity

23

Gammarus
fossarum

AgNPs 20, 40 and 80 1, 2, 4, 8,
10 μg L−1

72 h ↑CuZnSOD gene expression 241

Daphnia lumholtzi AgNPs 9.8 ± 0.8 0.1, 0.5, 1, 2,
5 μg L−1

21 d ↑Time to first brood, ↓number of offspring
per female, ↓survival

183

Daphnia lumholtzi AgNPs 9.8 ± 0.8 0.2, 0.5 μg L−1 21 d ↓Reproduction rate 242
Ceriodaphnia
cornuta

AgNPs — 4, 5, 10, 15 and
20 μg ml−1

24 h ↑Mortality rate, ↑DNA damage 243

Moina macrocopa AgNPs 20 and 40 0.011 and
0.022 mg L−1

48 h ↓AChE, ↓SOD, ↑CAT, ↑GST, ↓trypsin activity,
↓β-galactosidase activity, ↑phosphatase activity

179

Paratya
australiensis

AgNPs 10.56 ± 2.27,
9.27 ± 1.29,
13.68 ± 0.76

30 μg L−1 28 d ↑TBARS, ↑CAT 138

Ceriodaphnia
cornuta

AgNPs 23 ± 2 10, 20 40 and
50 μg L−1

24 h ↑Mortality, abnormal swimming, ↓heart rate,
↓thoracic limb movement

186

Daphnia magna AgNPs 65 3.5, 8.1, 0.43,
1.05 μg L−1

24 h ↓Sensory development, damage repair genes 244

Daphnia magna AgNPs 5–50 10, 20, 30, 40
and 50 μg L−1

48 h ↓Survival 233

Cypridopsis vidua AgNPs — 10, 50, 150, 250,
350, 450, 550
and 1000 mg L−1

48 h ↑Immobilization 245

Ceriodaphnia
cornuta

Sn-AgNPs 10–50 1, 2, 5, 10, 20, 30,
40 and 50 μg ml−1

24 h ↑Mortality, abnormal swimming behaviour 89

Daphnia magna Al2O3NP <50 3.12, 6.25, 12.5
and 25 mg L−1

21 d ↓Survivors, ↓body length, ↓age at first brood,
↓neonates per surviving adult, ↑ROS, ↑CAT, ↓SOD,
↓GSH, ↑MDA, ↓average swimming distance
of neonates (48 h)

184

Daphnia magna CeO2NPs 5 10 and 100 μg L−1 48 h ↓CAT (ceria@chitosan type), ↓GST
(ceria@alginate type), ↑ROS (ceria@alginate type),
↑swimming activity, ↑swimming velocity
(ceria@alginate type)

182

Daphnia sp. CuONPs 45 ± 3 0.1, 1, 5, 10 and
25 mg L−1

24 h ↓Number of motile counts 246

Daphnia magna CuONPs <50 0.5, 1, 1.5, 2, 2.5
and 3 mg L−1

120
h

↓Survival 247

Daphnia magna CuONPs <50 0.07 and 15 mg L−1 14 d ↑Mortality (Wb), ↓average number of neonates
produced per adult at high concentration (Fb),
↓total number of broods produced per adult
(Wb) at the high concentration, ↓total number
of broods produced per adult (Fb) at the
low concentration

126

Daphnia magna CuONPs 110.34 ± 56.58,
38.27 ± 23.05

0.01, 0.05, 0.1, 0.5,
1, 2, 3, 5, 25, 50,
75 and 100 mg L−1

48 h ↓Survival 248

Daphnia magna SiO2NPs, Fe3O4

NPs
20–30, <20 5, 50, 100, 250,

and 250 mg L−1
96 h ↑Mortality rate 249

Daphnia magna TiO2NPs 29 ± 8 1, 10, 100 ppm 48 h ↑Mortality, ↑swimming distance 187
Daphnia magna TiO2NPs <25 0.1 and 1 mg L−1 2 d No significant ROS increase and MT induction. 250
Ceriodaphnia
dubia

TiO2NPs 9.5 ± 1 (anatase),
26 ± 3
(rod-shaped rutile)

025, 0.5, 0.75, 1,
1.25, 1.5, and
1.75 toxic unit

48 h ↑Mortality rate 251

Daphnia similis TiO2NPs <25 1 and 10 mg L−1 96 h ↓Growth rate 181
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internalization of MNPs. Table 1 describes the different
bivalve species used in nanotoxicology studies and their toxic
responses. Most articles reported the concentration effect in
freshwater bivalves, focusing on short-term toxicity with an
exposure time between 2 h and 14 d. Numerous studies
indicate that MNPs impose bivalves' toxicity mainly through
the functional parameters, such as immunotoxicity, oxidative
stress, DNA damage, lysosomal damage in bivalve tissues,
and protein expression changes (Table 1). In particular, the
bivalve immune system represents a significant target for
MNPs.110 Biochemical parameters are widely used to monitor
the physiology of aquatic species to assess the impact of
MNPs as early-warnings biomarkers. In invertebrates,
parameters involved in antioxidant defenses (e.g., glutathione
peroxidase, GPx; superoxide dismutase, SOD; catalase, CAT),
oxidative stress (e.g., lipid peroxidation, LPO), and
detoxification (e.g., glutathione S-transferases, GST) are
commonly analyzed.142 In the literature, hepatopancreas,
digestive gland, gonad, and hemocyte cells are the frequently
tested organs to assess the effects of MNPs (e.g., AgNPs,
CeO2NPs, CuONPs, and TiO2NPs).

Currently, reactive oxygen species (ROS) and free radical
production may account for the mechanism of cytotoxic
effects exerted by MNPs in bivalves.143,144 The MNPs may
release extracellular metal ions, which penetrate the cell and
induce oxidative stress by free radicals or ROS production
and/or metallothionein (MT) induction. The oxidative stress
induced by MNPs mainly includes the disruption of the
antioxidant defense system (SOD, CAT, GPx, GST),24,37,145–148

LPO,149–152 increased protein modification (e.g.,
ubiquitination),150 and DNA damage (DNA strand
breaks).150,152,153 Oxidative damage induced by MNPs in
bivalves depends on the size, composition, concentration,
and exposure time (Table 1). The MNP's size is the dominant
factor determining the oxidative stress change and is
associated with its high surface area. For example, 80 nm
AgNPs induced greater MT levels, LPO, and DNA strand
breaks in the digestive gland of freshwater mussel Elliptio
complanata, compared to 20 nm AgNPs.152 The above result
suggests a more critical release of dissolved Ag from larger

AgNPs. However, the relationship between the hydrodynamic
diameter and morphology of MNP aggregates and oxidative
stress in bivalves has not been well-established. Notably,
previous studies also showed that smaller sizes could enter
cells via endocytosis more easily than larger sizes,76,154 and
might generate severe effects on organisms.76,155 Oxidative
stress induced by MNPs also depends on types of tissues and
cells. For example, the gills of C. aegyptiaca are more
susceptible to oxidative stress induced by AgNPs than the
hepatopancreas.145

The immune system of bivalves is a sensitive target of
MNP toxicity. Hemocytes are the most investigated cell type
among the analyzed species (Table 1). Generally, upon
exposure and crossing the epithelium of digestive gland
tubules, MNPs can translocate from the digestive system into
the circulatory hemocytes.143 Furthermore, the endocytic and
lysosomal pathways are the major subcellular fate of MNPs in
bivalve species.156 For example, TiO2NPs have been
demonstrated to internalize into the hemocytes of the golden
mussel Limnoperna fortunei, which can penetrate and be
phagocytosed by hemolymph cells, being able to damage the
hemocyte membrane.157 The TiO2NPs can induce a redox
imbalance in mussel cells, decrease SOD and CAT activities,
and induce protein sulfhydryl content decrease after TiO2NP
exposure.157 MNPs induce ROS production that leads to
changes in the immune system due to inflammatory
processes (reduction in phagocytic activity and hemocyte
viability). Changes in phagocytosis activity, cell viability/
density, stimulation of lysosomal enzyme release, ROS
production, mitochondrial damage, and DNA damage were
observed in bivalve hemocytes after exposure to different
ENMs, such as AgNPs, CuNPs, and TiO2NPs.

37,148,158,159

Behavioural biomarkers, such as the feeding rate and
valve opening, are essential tools to assess the MNPs' toxicity
in bivalves. As exposure concentrations of AgNPs are elevated,
the ammonia excretion and feeding rates of C. fluminea
diminished initially and then increased.160 This tendency
indicated that lower concentration exposures (0.1 and 0.5 mg
L−1) induced ROS accumulation in the body, which resulted
in a certain degree of oxidative damage in cells. In contrast,

Table 3 (continued)

Species

MNPs

Time End points Ref.Type Size (nm) Conc.

Daphnia similis TiO2NPs <25 7, 75, and
750 mg L−1

24 h ↓CAT, ↓AP, ↓SOD 181

Daphnia magna ZnONPs 20–40 0.009, 0.014, 0.027,
0.058, 0.131 mg L−1

21 d ↓Average brood size, ↑time to first brood,
↓broods per female

252

Daphnia pulex ZnONPs 61 ± 12 0.06 mg L−1 24 h ↓Na+ /K+ ATPase, ↓RNA-binding protein,
↓rRNA methyltransferase, ↓signal recognition
particle receptor, ↓signal peptidase

253

Daphnia magna ZnONPs 10–30 0.2, 1, 5, 10, 25,
50 ppm

72 h ↓Alive account 103

Daphnia magna ZnONPs <50 0.1 and 0.3 mg L−1 21 d ↓Survival probability 254
Daphnia magna ZnONPs 63 ± 11 0.1 mg L−1 14 d ↓Survival, ↓body length and embryo numbers

of the first brood, ↓SOD, ↓GST, ↓CAT, ↓MDA
124
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the organisms' antioxidant enzyme defense system had not
yet been activated. When the concentration of AgNPs
increased to 2 mg L−1, the antioxidant enzyme defense
system produced many enzymes to eliminate ROS, protecting
the body from oxidative damage and increasing feeding and
excretion capacity.160 Bioenergetic-related traits provide
essential advantages for environmental stress assessment as
they permit integration of the physiological effects of
environmental stressors with different mechanisms of action
and provide a direct link between the physiological change
and the organism's fitness.161 ZnONP exposure (14 d)
significantly decreased the glycogen, glucose, and lipids of U.
tumidus.162 Meanwhile no damage to proteins and lipids was
found in marine clam Ruditapes philippinarum subjected to
environmentally relevant ZnONP concentrations for a seven
day exposure period.163 The species difference may reflect a
short exposure time insufficient to trigger a stress response
in the latter study. It also emphasizes the need for more
investigations of long-term exposures to MNPs to assess their
biological and toxic impacts.

4.2 Gastropod molluscs

Toxic effects in gastropods induced by MNPs depended on the
size, aggregation capacity, target cell and tissue. In general,
small MNPs have a high surface area and dissolution potential,
enter the cell membrane, and cause oxidative stress.76 On the
other hand, small particles may also tend to aggregate or be
more readily absorbed by organic matter or the sediment
present in the environment.42 For example, the toxicity of larger
AgNPs (40 and 80 nm) to B. aeruginosa was higher than small
AgNPs (20 nm) after a 14 d exposure period.24 The small CeO2-
NPs (3.8 vs. 185 nm) induced a high accumulation rate and
trophic transfer potential since small MNPs were more
bioavailable in the water column.164 In contrast, the larger
MNPs remained associated with the sediment.

The primary mechanism of action and toxicity of MNPs to
gastropods is mainly associated with the oxidative stress-related
mechanism.16 As we reviewed in Table 2, oxidative stress is the
primary effect in gastropods among the toxicity induced by
MNPs. MNPs led to an imbalance between ROS production and
the capacity of the antioxidant defense system (SOD, CAT, GPx,
and GST), and increased LPO of different tissues (e.g.,
hepatopancreas, digestive gland, mantle) and hemolymph
cells24,165–167 (Table 2). Furthermore, MNPs can also induce
protein carbonylation (PC),167 increase the total lipids and
cholesterol levels as well as aspartate aminotransferase (AST),
alanine aminotransferase (ALT), and alkaline phosphatase
(ALP),167 inhibit the Na+/K+ ATPase,27 and induce DNA
damage.165,166,168,169 The oxidative damage induced by MNP
exposure in gastropods also was concentration and exposure
time-dependent, which has been demonstrated for AgNPs,
CuONPs, TiO2NPs, and ZnONPs.24,27,170,171 Generally, prolonged
exposure and higher concentration of MNPs induced more
significant oxidative damage. For example, short-term exposure
(7 d) to CuO-NPs led to oxidative stress of freshwater snail B.

aeruginosa. In comparison, long-term exposure (>14 d) led to
oxidative damage, which means prolonged exposure will
enhance the MNPs' ecotoxicity risk to organisms.27 Moreover,
exposure under high concentration (21 μg L−1) induced more
significant oxidative stress of freshwater snail Lymnaea luteola
than 7 μg L−1.172 Cell and tissue-specific responses to oxidative
damage induced by MNPs were reported for snails. Among the
most studied organs concerning oxidative stress induced by
MNPs is the digestive gland, possibly due to its higher
accumulation capacity and role in metal detoxification. The
digestive gland of B. aeruginosa exposed to AgNPs was more
susceptible to oxidative stress than gonads, visceral mass, and
foot/muscle.24 A similar tissue-specific response also was
observed in B. aeruginosa exposed to CuONPs.167 The hemocytes
are immune cells representing the first line from external
stressors by rapidly initiating the immune response. Hemocytes
are also well-known as the most studied cells to assess the effect
of oxidative stress caused by MNPs. The hemocytes of B.
Alexandrine demonstrated oxidative stress after ZnONPs, while
the visceral mass response was observed only at the highest
level.

Another possible toxicity mechanism of MNPs is linked to
the release of metal ions in freshwater. However, the Croteau
group predicted that around 80% of the bioaccumulation of
Cit-AgNPs by L. stagnalis was driven by uptake of particulate
Ag.173 The freshwater snails L. stagnalis and Physa acuta
exposed to waterborne Ag showed comparable uptake rate
constants for Ag+ and AgNPs.128,174 However, notably, the Ag+

elimination rate was not as high as the AgNP form,
suggesting that the ion form may have more time to trigger
the stress.174 Unlike the endocytosis pathway for MNPs, the
uptake mechanism of the metal ion is mainly via ion
transport channels, such as the proton-coupled Na+

channels.127 The uptake pathway is a vitally important factor
in determining the intracellular fate and toxicity of the AgNPs
in the estuarine mud snail Peringia ulvae.120 MNPs usually
are endocytosed by the clathrin-mediated pathway, which
directs towards lysosomal degradation.120 Meanwhile the
conclusive demonstrations of intracellular fates of metal ions
remain elusive.

Fecundity has been suggested to be the most sensitive
endpoint to assess the likely effects of contaminant exposure in
freshwater organisms. For egg-clutches per snail Biomphalaria
glabrata, there was significant inhibition after AgNP
exposure.175 Similar low egg production was observed in the
snail Physa acuta under AgNP exposure.176 In P. antipodarum,
after nine-week CuONP exposure, ∼70% of the snails stopped
their reproduction.118 On the other hand, the hatching success
of the snail P. acuta was more sensitive to silver in the ionic
form than the AgNP exposure.175 The egg masses have mucous
components, and compared with AgNPs, Ag+ may penetrate
through the egg mass membrane more easily, while AgNPs may
be embedded on the egg mass surface which lowered their
penetration.106 However, γ-Fe2O3 NPs generate no effects on the
fecundity, hatching rate and mortality of B. glabrata, and no
malformation in embryos.177
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4.3 Crustacean arthropods

AgNPs and Daphnia spp. were the most studied MNPs and
crustacean arthropod species, as summarized in Table 3. At
present, most of the results have been analysed following the
OECD guidelines for the short-term in vitro assay method.
Primary outcome measures include mortality, time to first
brood, number of offspring per female, reproduction rate,
and swimming behaviours (Table 3). Biomarkers for early-
warning purposes are also extensively used (Table 3).

One of the most widely accepted toxicity mechanisms
proposed for AgNPs is the generation of ROS, which can lead
to lipid peroxidation inducing, finally, oxidative stress.178

Implementation of biochemical biomarkers (e.g. SOD, CAT
and GST) is considered a promising tool for ecotoxicological
applications as early warning indicators, which play a
significant role in relieving ROS-associated stress. AgNPs
enhanced the SOD, CAT and GST activity of Moina
macrocopa.179 Similar results were also found in D. magna
under AgNP exposure.178 Meanwhile no significant
alterations in antioxidant responses, defense mechanisms
and cellular damage were be detected in G. fossarum.180 In
addition, many other opposite results have also been
reported.124,181,182 An apparent increase in AChE activity in D.
magna and M. macrocopa was observed upon exposure to
AgNPs.178,179 However, CeO2 NP exposure did not affect the
AChE activity in D. magna.182 Whether the alteration of
antioxidative stress enzymes affects freshwater invertebrates'
cholinergic system needs further research.

AgNPs enter into an aquatic system mainly through
ingestion. The overall growth is closely associated with its
digestive capacity to break food into small absorbable
molecules in the digestive tract, and digestive enzymes
perform this task. For example, AgNPs inhibited the digestive
enzymes (trypsin, amylase and β-galactosidase) of M.
macrocopa. Moreover, AgNPs of 40 nm cause more hazards to
the digestive enzyme than NPs of 20 nm. This is likely due to
the rapid clearance of smaller AgNPs from the digestive
system compared to the large ones.179 Experiments
examining chronic stress and its impacts on Daphnia spp.
have focused on growth and reproduction. MNP exposure can
lead to short body length, delayed breeding time, decreased
offspring, etc.126,183,184 The MNPs can physically damage D.
magna by adhering to surfaces such as tentacles, skin, and
cases through physical adsorption. For example, TiO2 NPs
have also been attached to the D. magna shell, forming a
stable ‘shell layer’ that affects the molting process.36

Moreover, after 21 d of exposure, the longevity, growth,
and reproduction of D. magna decreased significantly with
increasing Al2O3 NP concentration from 6.25 to 25 mg L−1.184

The survival, growth and reproduction of Daphnia lumholtzi
were also reduced after AgNP exposure from 0.1 to 5 μg L−1

for 21 d.183 Considering that dietary exposure may pose
different effects than direct routes, the toxic effects of
CuONPs on D. magna were evaluated for two chronic
exposure scenarios, i.e., indirect feeding and direct

waterborne exposure.126 The results evidenced that the total
number of broods produced per adult decreased in the direct
exposure and feeding direction. This indicates that CuONP
exposures could impact the reproduction of D. magna
regardless of the exposure scenario.

The swimming behaviour of Daphnia could be an excellent
biomarker in toxicity assessment.185 Decreased swimming
activity, shorter cumulative distance and loss of trajectory
orientation of swimming were observed in D.
magna.89,182,184,186,187 Such behaviour damage could be
related to the interactions of MNPs with the carapace of the
daphnids and perhaps related to the high energy demand
and nervous system disorders.185 The decreased swimming
capacity after exposure to MNPs may indicate that the
daphnids are directing energy to conserve processes essential
to neutralize the toxicity of the MNPs, leading to reduced
feeding and a decrease in growth and reproduction.185

In summary, the toxic effects of MNPs on freshwater
invertebrates are influenced by the type, size, concentration,
morphology of the MNPs and exposure time. The
mechanisms of toxicity are currently characterized by ion
release and the small size effects of MNPs. In addition, it is
also related to the physiological properties of the test
organisms themselves, as different species could pose
different tolerances to nanomaterials, which induce different
organismal defense systems. The overview of MNP
bioaccumulation with three major freshwater organisms
induced by environmental transformation and the
mechanisms of cell damage by MNPs are illustrated in Fig. 2.

Remarkably, when assessing the deleterious effects MNPs,
the above results are more based on laboratory
simulations.18,104,158,182 However, complex environmental
factors (e.g., pH, NOM, IS, ligands) in natural waters make
the toxicity results more complicated than the laboratory
culture medium. Very few researchers have addressed the
comparison of toxic effects of MNPs in different test media.
One recent study investigated the toxicity of AgNPs to D.
magna in culture medium (M4) and surface water.188 They
found that AgNPs exhibited lower toxicity in surface water
than in M4 medium, showing a higher median effect
concentration (EC50) within 48 h. Furthermore, a higher
survival rate was observed in the surface water medium after
21-day exposure.

As mentioned, NOM may contribute to the aggregation of
MNPs via coating or binding, and di- and multi-valent
cations in natural water may also enhance the
aggregation.42,60 Moreover, NOM exhibited strong Ag+-
binding capabilities, protecting the body from injuries
caused by AgNPs and free Ag+.189,190 Similarly, TiO2NPs and
AgNPs in the standard culture medium displayed more severe
toxic effects (e.g., impaired growth, higher mortality, and
lower reproductive access) on D. magna than those in
synthetic European Class V lowland water.191 The above
results indicate that a suitable medium plays an important
role when accessing the potential hazards of MNPs. Based on
limited information, many presently available research
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studies may underestimate the truth, and additional work is
required to understand possible mechanisms of toxicity in
real exposure scenarios.

In toxicology experiments, exposure concentration is
critical to evaluate physiological endpoints. A recent review
summarizes the measured environmental concentrations
(given by ng L−1) of several common MNPs.192 It could be
argued that the exposure concentrations used in most of the
existing studies are too high to be of physiological
significance. Notably, given that MNP concentration in
natural environments is forecast to increase drastically by the
next century,193,194 MNP pollution may become a major
threat to organisms in the future. Thus, more attention is
required. High concentration exposure provides implications
on further environmental change, and the environmental-
related concentration scenarios can inform us of current
MNP pollution governance. Recent technological
breakthroughs in single-particle ICP-MS (SP-ICP-MS) have
allowed the analysis of size as small as 4.9 nm for AgNPs and
concentration as low as 27 particles per μL.195 Without
technical limitations, environmental-related exposure is
encouraged to be conducted to better reflect more plausible
results.

5. Case study: understanding the
effect of AgNP transformation on the
toxicity in freshwater invertebrates by
meta-analysis

As mentioned above, studies on the toxic effects of MNPs
clarified that ecotoxicity is dependent on the intrinsic
properties of MNPs, the composition of the environmental
media, and the experimental ways (waterborne and
dietborne). Results of the different assays of toxic responses
to MNPs are sometimes controversial. It is worth
investigating the causes of inconsistent results from
experiments. The meta-analysis includes independent results,
is an approach to explore a correlation between target
variables and toxic responses, and identifies the main
variables that potentially contribute to heterogeneity in
conclusions. We selected studies in 2011 to include in our
meta-analyses via Google scholar, using the term “Freshwater
invertebrate AND Nanoparticle OR Bivalve OR Gastropoda OR
Crustacean OR viability OR reproduction OR metabolic stress
OR physicochemical barriers OR Immunocytes OR Stem cells
OR Protein corona OR Cytokine-like protein OR Omic.” This
initial search yielded 1320 papers, 260 duplicates, and 621
citations after the title and abstract screen were excluded.
1060 full texts were assessed, and 84 articles were identified
to be related to quantitative experimental research on MNPs
(Fig. 3). Of these, AgNPs are of particular interest in the
MNP-related toxicological profile (Fig. 4). On top of AgNPs,
TiO2 NPs, ZnONPs, and CuO NPs also attract considerable
attention. Based on these research studies, we chose AgNPs
as a case study and finally, 14 articles were included for

meta-analysis. Oxidative stress is convenient in measuring
ecotoxicity because cells respond to oxidative stress by
exerting several protective responses measured by enzymatic
or genetic expression responses.196

During data assessment, when the original data from the
experiment could not be referred to in the article, the
numerical values were extracted by reading the graphs with a
digital ruler (GetData Graph Digitizer). We extracted the
following information from each study: publication
characteristics (title of the study, first author and publication
year), data on the experimental and control groups (n, mean,
SD), the species, type, size, and concentration of NPs, and
exposure period. A complete list of information extracted is
included in Table S1.†

A random-effects model was chosen for the meta-analysis.
Continuous variables were estimated as standardized mean
differences (SMDs) with 95% confidence intervals (95% CI)
between the experimental and control groups. The absolute
effect sizes (SMDs) was interpreted as follows: SMD < 0.2 =
“negligible”, SMD 0.2 to 0.5 = “small”, SMD 0.5 to 0.8 =
“medium”, and SMD > 0.8 = “large”, as per Cohen's
classification.197 The heterogeneity between studies was
assessed using the Chi-squared test, with inconsistency index
(I2) > 50% and p < 0.1 considered significant
heterogeneity.198 Meta-regression analyses were also
conducted to identify independent sources of between-study
heterogeneity. Then subgroup analyses were performed in
terms of MNP size, concentration and exposure time. Funnel
plots were used to investigate the existence of publication
bias in studies with a total of more than ten included data.
All analyses were implemented in Stata MP 16.0 (Stata Corp.,
College Station, Texas, TX, USA, 2017).

Analyses showed that ROS, SOD, CAT, GSH, LPO and
AChE levels were higher in the experimental group than in
the control group with medium effect sizes (SMD 0.52–3.99, p
= 0–0.008, I2 = 41.3–93.7%). In contrast, GST and GPx were
lower than controls also with large effect sizes (SMD −1.12–
−1.47, p < 0.001, I2 = 85.6–86.5%) (Table S2†). Based on the
significant statistical heterogeneity observed for almost all
the biomarkers (I2 > 50%), the meta aggression results
identified a specific heterogeneity source for each biomarker
(Table S1†). Among the various potential covariates, the size,
coating of AgNPs, exposure concentration, and time were
associated with study heterogeneity (Table S1†). The
subgroup analysis explored the source of heterogeneity by the
particle size of AgNPs (<30 nm and >30 nm), coating (CIT,
PVP, tyrosine and bared), concentration (<30 μg L−1 and ≥30
μg L−1), and exposure time (<14 d and 14 d) (Table S2†). The
SMD values of ROS and CAT indicated that they had been
induced more by AgNPs with >30 nm than smaller sizes (p <

0.01, Fig. S1a and c†). It was worth noting here that the SMD
value for ROS is as high as 16.86.

In terms of coating, PVP and tyrosine decreased the AChE
activity with large SMD values (−8.34 and −8.68, respectively),
while Cit and bare enhanced AChE also with large SMD
values (0.8 and 1.72, respectively) (Fig. S1h†). According to
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our results, lower exposure concentration (<30 μg L−1)
triggered higher toxicity in GST (p < 0.01, Fig. S1d†), while
higher concentration (≥30 μg L−1) had higher activity for
inducing a rise in the LPO (p < 0.01, Fig. S1g†) and decrease
in GPx (p < 0.01, Fig. S1f†). Our result showed that SOD and
GSH in freshwater invertebrates are mainly affected by the
exposure duration, in which acute exposure time (<14 d)
produces a more drastic decrease in SOD activity (p = 0.003,
Fig. S1b†) and GSH activity (p < 0.01, Fig. S1e†).

Lipid peroxidation damage marks the oxidative stress
endpoint, which was observed when the exposure

concentration was higher than 30 μg L−1. The absent toxicity
of lower exposure concentration could be reasoned with the
high tolerability of organisms. On the other hand, a short
exposure time in these studies might also be a part of the
explanations. However, the occurrence of toxic effects is a
complex process influenced by many factors. Ideally,
prolonging the exposure could exert higher toxicity with
increased probability of organism-MNPs contact. However,
these results could also be overestimated, and the
accumulation and elimination process could co-occur with
increasing concentration. For example, a recent study
reported the elimination rates of D. magna as the ZnONP
concentration increased.103 However acute responses are

Fig. 4 MNP research areas sorted by the number of articles published.Fig. 3 Flow chart of the study selection process.

Fig. 2 Overview of MNP bioaccumulation with three major species of freshwater organisms and the mechanisms of cell damage by MNPs
(damage of membranes, DNA and mitochondria; lysosome dysfunction, generation of reactive oxygen species, ROS, disturbance of protein
functions).
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usually determined simultaneously and thus do not track the
cumulative exposures over time.199 This evaluation enables
the prioritization of providing information for pollution risk
assessment. Indeed, limited information is available from
such data without considering the potential chronic effects.
Thus, short time and prolonged exposure for months or even
an entire life cycle is needed to characterise acute and
chronic toxicity.

ROS generation is an appropriate parameter considered as
one of the potential mechanisms for MNP toxicity in
freshwater organisms. In our meta-analysis, size and time are
the most influential drivers affecting ROS production (Table
S1†). In terms of physical properties, the decrease in the
particle size of MNPs usually leads to changes in the
crystalline surface structure, increase in the specific surface
area, and curvature. In terms of chemical properties, the
decrease in particle size of MNPs increases the density of
surface functional groups, surface energy, and surface charge
density. The surface energy and surface charge density also
increase.200 These changes lead to the excess energy and
surface activity of MNPs, leading to interfacial reactions. It
was found that the pore sizes of biological membranes such
as cell membranes (0.4–1 nm) and nuclear membranes (50–
70 nm) are mainly in the nanometer range,201 and the
diameter of cell wall pores is also in the range of 5–20 nm.202

Theoretically, when the particle size of MNPs is smaller than
the size of cell wall pores and biofilm micropores, MNPs can
directly enter the cell and even the organelle.203 Smaller size
MNPs are more quickly absorbed by organisms, thus
accumulating more in the organism, leading to more toxic
results. For example, AgNPs of 20 nm were found to be more
toxic than 40 nm with a lower LC50 value.

179

Although smaller-sized nanoparticles have a larger surface
area, the evolution of MNPs (uptake, aggregation,
elimination) inside the body of an organism under study is a
crucial determinant of the toxicity of variably sized
nanoparticles.204 Snails B. aeruginosa exposed to 40 nm and
80 nm AgNPs were found to show significantly enhanced
oxidative stress compared to those exposed to 20 nm
AgNPs.24 This comprises our present meta-analysis. It can be
explained by the size similarity of AgNPs around 20 nm (18.0
± 7.7 nm) and the sediment (14.60 ± 0.19 nm), and the NPs
being adsorbed readily into sediment particles, which
reduces the bioavailability.24 MNPs are greatly influenced by
the specific NOM type or other natural particles (e.g.,
colloids) present in freshwater. The smaller-sized NPs reacted
rapidly with the substances in the solution, causing
aggregation, which may have caused lower toxicity.7 The
mechanism behind this higher toxicity triggered by larger
size remains more fully elucidated.

6. Development of MNP AOPs in
freshwater invertebrates

Emerging numbers and diversity of chemical pollutants are
urgently needed for toxicological profile access with higher

speed and accuracy, lower resource consumption and fewer
experimental animals.205 To address this challenge, a novel
conceptual framework called the adverse outcome pathway
(AOP) was proposed in 2010 by the US Environmental
Protection Agency205 and adopted in 2012 by OECD for
ecological risk assessment.206 The AOP framework focuses on
identifying the biologically plausible and empirically
supported links between molecular-level perturbations of a
biological system caused by a stressor and an adverse
outcome at a higher level of biological organization (i.e., an
organism or population).206 Generally, the elements of the
AOP include: 1) a molecular initiating event (MIE) where a
stressor interacts with a biomolecule to create a perturbation;
2) a series of related key events (KEs) at the cellular, tissue,
and organ levels that are caused by the MIE and are essential
for the progression to an adverse outcome; and 3) adverse
outcome (AO) at the organismal or population levels.7,205 The
MIE is known to directly trigger ROS production for
nanoparticles, one of the most significant reasons for adverse
MNs effects. Likewise, oxidative stress is a known contributor
to MNP-induced cell damage and toxicity.7,16,141 Possible AO
may be causally related to key events (KEs), for example, MPs
may lead to sequential interactions at the molecular (e.g.,
LPO), cellular levels (e.g., DNA damage, gene expression) and
then the organ levels (e.g., altered physiology, organic
function and histopathology). These KEs may contribute to
the AOs at the organism level expressed (e.g., individual
development, reproductive output and offspring viability) and
population levels (e.g., altered structure or reduced
recruitment).

The AOP framework has been well developed as a tool to
identify key initiators and predict effects induced by
nanomaterials in mammalian species207 and vertebrate
species.208–211 For example, PVP-AgNPs and AgNO3 exposed
freshwater fish Pimephales promelas both affected pathways
involved in Na+, K+, and H+ homeostasis and oxidative stress,
and the MIE of Ag exposure is ROS production.210 ROS
production on gonad tissue of zebrafish was also identified
as the MIE of AgNP exposure, and these were associated with
the mitochondrion-mediated apoptosis pathway.211

Invertebrates perform essential roles in most ecosystems.
Published papers have made progress in using invertebrate
species as model organisms. However, MNPs' environmental
impacts on invertebrates and toxicity mechanisms are yet to
be fully elucidated, and the knowledge about using
invertebrates in the development of AOPs remains scarce.
The short life cycle offers valuable opportunities to study the
impact of chemical exposure at environmentally relevant
concentrations over regular periods.

To date, only a few invertebrate AOPs have been
developed. Those are aimed at abundant organisms with
short life cycles, such as planktonic crustaceans Daphnia,
roundworm Caenorhabditis elegans, and common fruit fly
Drosophila genus.212 A recent study developed two conceptual
AOPs for hazard and risk assessment of ionizing radiation
and associated radionuclides to D. magna.213 The studies
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indicated that multiple toxicity pathways were potentially
involved in the γ radiation-mediated reproductive effects,
such as the DNA damage-oocyte apoptosis pathway and the
lipid peroxidation-ATP depletion pathway.213

AOPs for MNPs in environmental species are virtually
absent in research papers, let alone the freshwater
invertebrates. CuO NPs may generate adverse outcomes (i.e.
reproduction impairment) to soil invertebrates Enchytraeus
crypticus via affecting the Notch signalling pathway with
consequences at cellular division and differentiation.214

Considering their fundamental importance in ecosystem
structure and function, investigations using key invertebrate
species are vital when obtaining data from which to develop
AOPs. Several aquatic invertebrates were identified as
potential model organisms such as D. magna; rotifer,
Brachionus koreanus; copepod Tigriopus japonicus, and L.
stagnalis due to the extensive genomics information available
for these species.215,216

Omics technologies, defined as high-content datasets with
measurements of genes, mRNA, proteins, and metabolites,
have been proved by increased studies on the potential
applications of omics for ecology risk assessments.217,218 It is
thought-provoking how omics data can support a more
predictive approach to the AOP framework, including
facilitating the identification of molecular-level changes (e.g.,
MIEs and early KEs). In real-life scenarios, omics are deployed
for discovering informative biomarkers in organisms. For
example, the Antczak group used transcriptomics to reveal a
calcium-dependent mechanism for narcotic chemical toxicity
in D. magna.219 However, the application of omics in AOPs has
not been widely investigated to date. Omics technologies, if
properly applied, are likely to dramatically increase our ability
to characterize from the molecular responses to the
populational level. Hence, it may provide us with a unique
opportunity to better recognize the consequences of MNP
release into the environment. Fig. 5 shows the flow diagram
illustrating an AOP, representing MNPs triggering molecular
initiating events leading to a sequential series of higher order
effects to produce an adverse outcome. As discussed above in

section 4, the molecular biomarkers in MNP exposure of
invertebrates can help identify different MOAs on the
subcellular level and thus associate them with different AOPs
in environmental risk assessment.

7. Conclusion and perspectives

As MNP-based commodities are increasingly widespread,
further studies are demanded on the effects, interactions,
uptake, translocation and evolution of MNPs in organisms
and the environment.220 Despite significant advances in
understanding the toxicity of MNPs, the field is still in its
infancy, with much to be investigated.

The present review summarizes the environmental impact
of MNPs and potential toxicity endpoints in freshwater
invertebrates. Once released into the environment, the MNPs
are transformed from their previously prepared form. This
transformation remains a challenging issue for the realistic
evaluation of their ecotoxicity.221 Present studies show that
different studies within the same subject vary enormously
and even produce conflicting results. The reasons for these
seemingly contradictory findings are diverse. Therefore, all
possible factors should be considered as much as possible
when conducting ecotoxicological studies on MNPs, e.g.
different environmental conditions and pre-treatment
methods of MNPs.

We summarise some factors that may contribute to
differences in experimental results:

(1) For the same MNP type, the particle size, crystalline
shape and morphology may be different from experiments.

(2) Different pretreatments lead to different degrees of
polymerisation of MNPs in solution;

(3) Different solvents are used.
(4) Variation in experimental environmental conditions,

such as temperature, pH, light intensity, etc.
(5) Experimental organisms being different subspecies, or

in different life cycles, or different routes of administration.
As the MNP research goes deeper, the following five

aspects deserve additional attention:

Fig. 5 Flow diagram illustrating an AOP. The putative MIEs, KEs and AOs are illustrated based on the published research on the toxic mechanisms
of nanomaterials (such as ZnONPs, CuONPs and AgNPs) in organisms. The cellular response (including oxidative stress, DNA damage and gene
expression) and organ damage (i.e. physiology response, organic function and histopathology) are essential integrators of multiple upstream KEs.
Upon the above effects, MNPs could eventually lead to sequential higher-order effects producing adverse outcomes (i.e. influencing the individual
development, reproductive output and offspring viability). If NPs diminish the fitness of organisms, the population dynamics might be affected and
possibly affect ecosystem stability and functioning.
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1) Toxicity testing was performed using bivalves,
gastropods and crustaceans as bioindicators and suitable
model organisms and they were widely used in acute toxicity
studies. However, there exist differences in the physical–
chemical properties between the natural water and lab
culture medium, and toxicity research in natural water needs
to be considered in future investigations.

2) The chronic exposure concentrations in research
materials are higher than environmental-related
concentrations. Moreover, the duration of MNPs' action in
the natural environment is much longer than that simulated
in the laboratory. Therefore, studies on the long-term effects
of low concentrations of MNPs on organisms need to be
strengthened.

3) The data on the bioaccumulation of MNPs by the
above-discussed model organisms are not yet perfect, as the
experimental exposure concentrations vary greatly, and the
methods of representing the results are not uniform, making
it difficult to compare the bioaccumulation capacity between
studies. Hence, there is a need to establish a standard
method for MNP bioaccumulation and to optimize the
establishing exposure concentration criteria; additionally,
MNPs are often not entirely excreted by organisms, and the
morphological transformation, long-term chronic toxicity,
intergenerational transfer and trophic transport of these
residual MNPs need to be studied in depth.

4) The investigations for multiple changes allow a much
better understanding of toxicological pathways than the
single end-point approach. Hence, there is a call to use the
AOP approach to mechanistically link the molecular and
cellular phenotypes to adverse organismal outcomes,
determine the role of environmental stress responses at the
cellular and tissue levels, and translate them into the
organism's fitness consequences.

5) Genomics, transcriptomics, proteomics and
metabolomics have been applied in toxicology for more than
a decade and the omics approach has only been deployed in
aquatic invertebrates of MNP investigations in the last few
years. The integration of multi-omics data shall lead to
deeper biological insights and a more comprehensive
understanding of toxic mechanisms of action. In addition,
multi-omics data can improve the confidence of chemical
dose extrapolation, facilitate chemical identification,
taxonomic characterisation and screening, and play an
essential role in identifying chemical-related exposure, effect
and susceptibility markers.
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