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oubly aromatic trinuclear [Pd2Ru]
+

complexes†

Maksim Kulichenko,‡a Nikita Fedik,‡a Anna Monfredini,‡b Alvaro Muñoz-Castro,c

Davide Balestri, b Alexander I. Boldyrev *a and Giovanni Maestri b

Following an ongoing interest in the study of transition metal complexes with exotic bonding networks, we

report herein the synthesis of a family of heterobimetallic triangular clusters involving Ru and Pd atoms.

These are the first examples of trinuclear complexes combining these nuclei. Structural and bonding

analyses revealed both analogies and unexpected differences for these [Pd2Ru]
+ complexes compared to

their parent [Pd3]
+ peers. Noticeably, participation of the Ru atom in the p-aromaticity of the

coordinated benzene ring makes the synthesized compound the second reported example of ‘bottled’

double aromaticity. This can also be referred to as spiroaromaticity due to the participation of Ru in two

aromatic systems at a time. Moreover, the [Pd2Ru]
+ kernel exhibits unprecedented orbital overlap of Ru

dz2 AO and two Pd dxy or dx2�y2 AOs. The present findings reveal the possibility of synthesizing stable

clusters with delocalized metal–metal bonding from the combination of non-adjacent elements of the

periodic table which has not been reported previously.
Introduction

For more than a hundred years of its existence, aromaticity has
proven itself to be an extremely useful and reliable concept1–6

which enables the explanation of bonding patterns in many
non-trivial chemical systems. Being widely utilized, the concept
was signicantly extended beyond classic organic compounds
since the introduction of Hückel's 4n + 2 rule in 1931.7,8 Inter-
estingly, the expansion of aromaticity to a wide range of inor-
ganic and all-metal systems led to heated discussions9–11 in the
scientic community. In 2018 Saito et. al. made a game
changing discovery which put an end to all doubts regarding
aromaticity and its transferability throughout different
branches of materials chemistry. They managed to synthesize
a doubly aromatic compound [C6(SePh)6]

2+ that possesses cyclic
s-symmetric and p-symmetric aromatic rings.5 This milestone
indicates that other types of aromaticity apart from the
conventional p-type are not elusive. Obviously, even a hundred
years later, the paradigm of aromaticity is undergoing
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alterations and expansions. All-metal aromaticity12–19 is a well-
known concept that enables describing the bonding proper-
ties of all-metal compounds similar to those involving main-
group elements.20,21

As a matter of fact, the majority of metal aromatic structures
can exist only in laser beams and only for a very short time.
Among transition metal (TM) complexes, TM triangles were
recently found to be aromaticity carriers that can mimic
aromatic donor ligands.22–26 All-metal aromaticity in stable
triatomic hetero-metallacycles was reported for Ga3,27 Au3,28

Zn3,29 Pd3,22 and Pt3 complexes as well as in Zn2Cu and Pd–Pt
mixtures (Fig. 1).23 Being caught in the bulk as stable liganded
cations, they are not limited by the short lifetime which, opens
a wide range for the exploitation of their unique stereo-
electronic properties in catalysis and materials chemistry.26,30

We recently showed that triangular metal complexes exhibit
a spectacular ability to convert unsaturated linear organics into
tricyclic complexes. This is achieved through selective C–C
activation which prior to our discovery was inaccessible by other
discrete Pd catalysts.31 Remarkably a trinuclear framework of
noble metals can also effectively catalyze alkynes to cis-alkenes
through a “green” route without additional organic solvents.26

Moreover, trinuclear all-metal cores could be easily tailored by
organic ligands to deliver diversity and stability. Beyond clus-
ters, s-aromaticity could be a driving force for stabilization in
periodic systems. For instance, MoS2 was recently shown to
possess TM-based triangular s-aromatic bonds delocalized over
three Mo atoms inside every hexagonal ring.32

In this work we report the synthesis and bonding analysis of
hetero-metallacycle [RuPd2]

+ complexes. These clusters are
Chem. Sci., 2021, 12, 477–486 | 477
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Fig. 1 (a) Homonuclear triangular complexes with delocalized bonding involving d-block transition metals; (b) reported examples of corre-
sponding heterobimetallic species involving adjacent elements of the periodic table; (c) present work: combination of Ru and Pd in a cluster with
delocalized metal–metal bonding.
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bench-stable in the solid state and their metal cores display
a doubly aromatic character (Fig. 1c) with an encapsulated TM
triangle. This triangle is a direct descendant of a recently
discovered family of pure and mixed Pd and Pt triangular
cations (Fig. 1a and b),22,23,25,26 whose noble-metal core is an
analogue of the cyclopropenyl cation. It is worth noting that
reported examples of heterobimetallic triangles featuring
delocalized metal–metal bonding are limited at present to
combinations of neighboring atoms of the periodic table.29,35

Our ndings thus show that this limit could be overcome. This
opens a new avenue for the potential combination of a variety of
transition metal nuclei into stable triangular metal-aromatic
frameworks.

The central unit of the newly obtained structure is a Ru atom
which is the vertex of the [RuPd2]

+ triangle being the rst
example of mixed triangles among these metals. Moreover, Ru
is involved in both s- and p-aromaticity. s-aromaticity is real-
ized as the d-AO based multicenter bond which is delocalized
over the inner [RuPd2]

+ triangle with considerable contribution
from the sulfur electron density. Besides, transition metals are
known to interact with the electron cloud of benzene which, in
turn, leads to the charge transfer and formation of conjugated
electron density between the TM and benzene. The second type
of aromaticity, p-aromaticity, is caused by this interaction and
represented via d-AOs of Ru interacting with the benzene elec-
tron cloud. The doubly aromatic behavior is supported by MO
478 | Chem. Sci., 2021, 12, 477–486
and AdNDP (Adaptive Natural Density Partitioning) analyses.
This doubly aromatic bonding pattern can also be described in
terms of spiroaromaticity33,34 where, according to the original
notation, aromatic rings are fused by sharing a single atom
rather than by a mutual bond. Indeed, as we will see later, Ru is
a full participant in the benzene p-cloud while not being
a structural part of the six-membered carbon ring.

Doubly aromatic species have been a topic of perpetual study
both in computational design35–41 and photoelectron spectros-
copy experiments yielding novel but “non-bottled” short lived
clusters.42–45 However, to the best of our knowledge, none were
obtained as stable phases in the bulk except for Saito's.5 Thus,
the liganded triangular TM-based complex reported here is the
second “bottled” example of double aromaticity which is
another milestone towards expansion of the aromaticity
concept throughout the chemistry space. Moreover, this is the
rst reported system with the Ru atom taking part in two types
of aromaticity simultaneously.
Experimental methods

Pd(dba)2, ruthenium dimers, phosphines and silver salts were
purchased from commercial sources and used as received.
Sodium thiolates were obtained by reducing the corresponding
thiols with sodium hydride. Solvents were degassed by bubbling
N2 for at least 30 minutes prior to use. Reactions and ltrations
© 2021 The Author(s). Published by the Royal Society of Chemistry

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d0sc04469e


Edge Article Chemical Science

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 2

3 
d’

oc
tu

br
e 

20
20

. D
ow

nl
oa

de
d 

on
 1

4/
2/

20
26

 1
4:

31
:5

4.
 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n 
3.

0 
U

np
or

te
d 

L
ic

en
ce

.
View Article Online
were carried out under N2 using the standard Schlenk
technique.

Computational methods

The computational characterization of the experimental struc-
ture and its truncated model was performed using the
Gaussian16 soware package.46 The experimental structure was
optimized using the PBE0-GD3BJ47,48 hybrid functional
accounting for Grimme's dispersion correction. This method
was shown to produce reliable energetics (compared to
CCSD(T)/CBS or large basis sets) and geometries for a wide
range of organometallic systems containing heavy elements.49

We employed the mixed basis set 6-31+G*50 for all “organic”
elements (H, C, S, and P) and Def2-TZVPP51 with ECP for heavy
elements (Pd and Ru). Optimized structures were revealed to be
energy minima without any imaginary frequencies. The opti-
mized geometry did not differ substantially from the experi-
mental one, especially in the triangular core. The differences
between experimentally resolved bond lengths and calculated
ones were within 0.03 Å. The same holds true for the truncated
model. We assume that this indicates a proper selection of the
level of theory. Some slight discrepancies between experimental
and calculated structures are related to the gas-phase approxi-
mation (i.e., absence of crystal packing effects) and reduction of
stereochemical “pressure” during optimization. Overall, the
optimized structure preserves the shape and bonds in the all-
metal core, while conformational rotations of organic substit-
uents are not important. To be completely unbiased we con-
ducted a bonding study on top of the experimental and
theoretical geometries and, as we expected, it yielded the same
results. It is widely known that transition metals and related
complexes tend to exhibit multireference character; however, all
structures computed in the article are closed-shell singlets,
according to internal wave function stability tests (stable¼ opt).
Additionally, CASSCF(6,6)52,53 calculations were performed for
the truncated model system in the ORCA4.2 package,54,55 and
the coefficient of the Hartree–Fock solution was found to be
0.910 while coefficient at second conguration was only 0.031.
In addition, the HOMO occupancy in the model system is equal
to 1.89|e|. Thus, we can say without a shadow of a doubt that the
structure studied (and its model system) are closed-shell
singlets. Chemical bonding analysis was performed using the
AdNDP56 (Adaptive Natural Density Partitioning) code which is
an extension of the NBO57–59 and enables assignment of multi-
center nc–2e bonds (n > 2). AdNDP was successfully applied for
bonding deciphering in a variety of chemical systems including
solids and even solvated ions.60–67 We previously showed that
AdNDP is a tool almost independent of method/basis set
combinations.12,68 Recently, we also found that relativistic
effects have a negligible12 effect on bonding pictures, thus
signicantly simplifying calculations for transition metals and
their complexes. Several functional/basis–set combinations
were tested for the bonding picture to be unbiased: PBE0/Def2-
TZVP,47 MN15-L/Def2-TZVP, PBE0/Sapporo-TZP, MN15-L/Sap-
poro-TZP,69,70 M06-2X/Def2-TZVP,71 and PBE0/cc-pVDZ.72 All of
them gave essentially the same results.
© 2021 The Author(s). Published by the Royal Society of Chemistry
The induced magnetic eld (Bind) upon application of an
external magnetic eld (Bext)73,74 was obtained as a grid of the
nucleus independent shielding tensor (sij), where Bii

nd ¼ �sij-
Bextj , resulting in shielding behavior at the center of the ring as
useful magnetic criteria of aromaticity.75–78 For convenience, the
i and j suffixes are related to the x-, y- and z-axes of the molecule-
xed Cartesian system (i, j ¼ x, y, z). The values of Bind are given
in ppm in relation to Bext calculated within the GIAO formalism
as implemented in the ADF2019 code79 employing the OPBE
functional80 and frozen core STO-TZ2P basis set, leaving valence
electrons to be treated variationally.

Results and discussion

The reaction of low-valent palladium and platinum precursors
allows synthesis of the corresponding heterobimetallic triangles
in the presence of a tertiary phosphine, a disulde and a silver
salt. However, the process is not selective, leading to the
formation of four triangular complexes (Fig. 2a).23 This can be
observed by analyzing the reaction mixture using MS analysis
through the isotopic ngerprint of two homonuclear Pd3

+ and
Pt3

+ complexes and of two heterobimetallic Pd2Pt
+ and PdPt2

+

species (see the ESI†). The isolation of pure species requires
a rather lengthy sequence of multiple chromatographic sepa-
rations on silica gel, limiting in turn the synthetic viability of
the method. According to literature studies, the assembly of an
M3

+ complex could be in principle achieved through the reac-
tion of a suitable dimer with a mononuclear precursor.28–30,81,82

We tried to test this approach using an oxidized dimer and
a low-valent monomer for selective preparation of hetero-
bimetallic complexes. We thus mixed a model Pd(II) dimer with
bridging thiolates (A)83 with the platinum(0) precursor Pt(dba)3
(dba ¼ dibenzylideneacetone) under our model conditions.
Gratifyingly, the desired heterobimetallic complex Pd2Pt

+

species became the most abundant product (Fig. 2b), conrm-
ing the working hypothesis.

Focussing on this nding, we then thought to exploit this
strategy to assemble novel heterobimetallic triangular
complexes. Among these species, reported examples featuring
metal aromaticity are limited at present to neighboring
elements in the periodic table, such as palladium and platinum
for group VIII or copper and zinc among rst-row elements.23,29

We thus believed that the synthesis of a heterobimetallic tri-
nuclear complex incorporating two different, nonadjacent
transition metals would be a challenging and prominent goal.
In a preliminary experiment, Ru(II) dimer B was mixed with an
equimolar amount of Pd(dba)2, diphenyldisulde and triphe-
nylphosphine in chloroform (0.01 M). Analysis of the crude
mixture by MS revealed that no traces of any putative Ru2Pd
species formed (10). Much to our surprise, however, the diag-
nostic isotopic pattern of an unexpected [RuPd2]

+ complex
appeared instead (1). To the best of our knowledge, no example
of mixed heterobimetallic triangles of ruthenium and palla-
dium have been described yet.

We therefore tried our best to characterize this unexpected
product and to test the generality of the reaction. Upon
a lengthy series of frustrating experiments, we found that the
Chem. Sci., 2021, 12, 477–486 | 479
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Fig. 2 (a) The unselective reaction of Pd(0) and Pt(0) precursors for the synthesis of heterobimetallic triangles; (b) the stepwise assembly from
a dimer and a monomer that triggered the present unexpected findings.
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best conditions were achieved by mixing Pd(dba)2 with 2 equiv.
of Ruthenium(II) dimer B, 3 equiv. of sodium thiolate, 1 equiv.
of a tertiary phosphine and 3 equiv. of a silver(I) salt in toluene
(Fig. 3, Table 1, see the ESI† for details). The reagents were
mixed under a nitrogen atmosphere at room temperature for
two hours. Upon a routine work-up, purication of the resulting
mixture by column chromatography on silica gel followed by
crystallization of the fraction rich in the desired complex by
means of vapor diffusion led to the formation of dark green
crystals of [RuPd2]

+ complex 1. Upon purication, these species
became bench-stable in the solid state. In contrast, they tended
to decompose in solution within a few days. Try as we might, we
Fig. 3 Synthesis of heterobimetallic [RuPd2]
+ complexes.

480 | Chem. Sci., 2021, 12, 477–486
were unable to achieve higher yields of the pure hetero-
bimetallic complexes (see the ESI† for details), although the
synthetic method proved rather general varying either the thi-
olate, the phosphine or the silver salt (Fig. 3 and Table 1). The
main byproducts of the reaction are the homonuclear Pd3

+

complex and a Ruthenium dimer in which thiolates replaced
the chlorides of B.84 The latter has a very similar polarity
compared to the heterobimetallic cluster, thus hampering
straightforward purication of the desired complex. This is
conrmed by the low isolated yield of pure complex 1a (13%,
entry 1), for which the purication was particularly hindered.
The replacement of p-tolyl with a phenyl group on the thiolate
© 2021 The Author(s). Published by the Royal Society of Chemistry
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Table 1 Synthesis of heterobimetallic [RuPd2]
+ complexesa

Entry R R0 X Yield (%)

1 Ph Ph SbF6 13 (26b)
2 4-Me-C6H4 Ph SbF6 32
3 4-F-C6H4 Ph PF6 16
4 4-Me-C6H4 4-Me-C6H4 SbF6 6
5 4-Me-C6H4 4-Br-C6H4 SbF6 20
6 4-F-C6H4 4-Cl-C6H4 SbF6 14
7 4-Me-C6H4 4-Cl-C6H4 SbF6 36

a Reaction conditions: on a 0.16 mmol scale, 0.01 M in toluene, under
N2 at room temperature for two hours; isolated yields with column
chromatography on silica gel and crystallization by vapor diffusion.
b 1H NMR yield.

Fig. 4 The crystal structure of Pd2Ru complex 1a; ellipsoid drawn at
50% probability, hydrogen atoms and SbF6

� anion omitted for clarity;
top view (up) and side view (down); Pd (red), Ru (green), S (yellow), P
(orange), and C (gray).
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proved benecial to this end, allowing us to isolate 1b in 32%
yield (entry 2). The replacement of SbF6

� with PF6
� as the

counterion was tolerated by the process (1c, entry 3). The lowest
yield (6%) was obtained with p-tolyl groups both on the phos-
phine and on the thiolate, suggesting that the presence of
electron-donating groups on all ligands could hamper the
formation of the cationic complex (1d, entry 4). Thiolates with
different halides at their para position were also tested, giving
comparable results (entries 5–7, 14–36% for 1e–g). The present
method is limited to aromatic substituents on phosphines and
thiolates, attempts with aliphatic ones being unsuccessful.

The behavior in solution of [RuPd2]
+ complexes has both

analogies and differences compared to their homonuclear peer
[Pd3]

+. In contrast to C3-symmetric M3
+ complexes for which

NMR analyses showed a single set of resonances corresponding
to the asymmetric unit of the cluster, those for the present
[RuPd2]

+ ones show different sets of signals. Phosphines
generate two coupled doublets in the 31P NMR spectrum, as well
as two patterns of signals in the 1H NMR spectrum, for the
resonances of their Ar–H fragments. Thiolates follow suit. In
particular, those between palladium and ruthenium nuclei give
resonances that are shied downeld compared to that of the
thiolate between the two palladium atoms. The UV-vis absorp-
tion spectra of Pd2Ru

+ complex 1a is similar to that of the M3
+

ones in the region up to 400 nm, in which both display two
intense bands (3 around 104 M�1cm�1). However, an additional
difference emerges at higher wavelength, as the present heter-
obimetallic species display a new, weaker band in the visible
region at around 600 nm (3¼ 3.8� 103 M�1cm�1, spectra in the
ESI†).

Regarding solid-state analysis, crystals of 1a were then
analyzed using X-rays (Fig. 4). The complex has a metal core
composed of two Pd atoms and one Ru atom, which are coor-
dinated to two phosphines and a p-cymene, respectively. Three
thiolates act as bridging ligands between the metal atoms. The
cluster has an overall positive charge that is balanced by a non-
coordinating counteranion that lies far away from the metal
core. In contrast to the Pd3

+, Pt3
+ and PdxPt3�x complexes,

[RuPd2]
+ complex 1a has no C3 symmetry anymore. Indeed, the

Pd–Ru distances are 2.7430(6) and 2.7692(7) Å, respectively, and
the Pd–Pd one is 2.7379(7) Å. The three angles of the triangular
core are 59.56(2)�, 59.74(2)� and 60.69(2)�. These results show
© 2021 The Author(s). Published by the Royal Society of Chemistry
that the central metallic core of the [RuPd2]
+ complex is no

longer a perfect equilateral triangle but slightly deviates from it.
The Ru–S–Pd and Pd–S–Pd angles are 73.52(5)�, 73.68(5)� and
72.45(5)�, respectively. The arrangement of ligands is in sharp
contrast with that observed in Pd3

+ complexes, where all the
heteroatoms, which complete the rst coordination sphere of
palladium nuclei, are essentially coplanar with respect to the
metal core. Regarding the [RuPd2]

+ complex, the three thiolates
point above and below the plane of the triangle, with dihedral
angles of 95.27(4)�, 97.33(4)� and 96.88(4)�, respectively. The six
metal–sulphur distances show little difference among them,
ranging between 2.28 and 2.32 Å. These values are comparable
with those observed in related homonuclear triangular clusters.
Phosphines are slightly less tilted compared to the metal core,
with dihedral angles of 150.15(5)� and 157.66(5)�. The
palladium-phosphorous distances are nearly identical (2.279(5)
and 2.282(4) Å, respectively) and display values similar to those
of Pd3

+ complexes. The C–C distances between C(sp2) atoms of
the cymene unit range within a narrow interval (between 1.39
and 1.42 Å). Ruthenium–carbon ones follow suit (2.20–2.25 Å).
These results suggest that the aromatic carbocycle coordinates
with the metal in an h6 fashion.

Themost striking structural difference compared to previous
examples of homonuclear M3

+ complexes (M¼ Pd, Pt) lies in the
metal–metal distances of present [RuPd2]

+ clusters. Although
the atomic radius of Ru is just 0.03 Å smaller than that of
palladium, the Pd–Pd and Pd–Ru distances in 1a are between
0.15 and 0.2 Å shorter than those observed in the structures of
their analogous Pd3

+ peers that share otherwise identical
bridging and ancillary ligands. We speculated that a different
metal–metal bonding interaction could have been present in
Chem. Sci., 2021, 12, 477–486 | 481
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this case to account for this meaningful structural difference,
reasoning that steric demands would fall short in providing any
apparent rationale. In particular, we wondered whether the
present heterobimetallic complex could be described as either
a Pd(I) dimer anked by a Ru(II) fragment or a system in which
the three metals share the formal +4/3 oxidation state because
of a delocalized metal–metal bonding network. Bonding anal-
yses were therefore carried out to gain insights into the factors
that triggered the shrinkage of the core of this heterobimetallic
triangle compared to its Pd3

+, Pt3
+ and PdxPt3�x

+ peers.
Structural optimization did not change the geometry

signicantly with a deviation in bond lengths of about 0.03 Å.
Unlike its Pd3

+ ancestor, the Pd2Ru
+ triangle is not equilateral

but rather quasi-isosceles. Both calculated Pd–Ru triangle edges
are almost identical: 2.788 Å and 2.813 Å are the experimental
ones (2.764 Å and 2.737 Å). The calculated Pd–Pd base is 2.734 Å
while the experimental distance is 2.732 Å.

In order to decipher the bonding picture of the liganded
triatomic hetero-metallacycle [RuPd2]

+, we utilized the AdNDP
localization scheme. The starting point is a simplied truncated
model, i.e., all benzene rings are replaced by methyl groups
except the one coordinated with the Ru atom (Fig. 5A). As will be
shown below, this is a reasonable approximation since all the
interesting bonding features are located around the Pd2Ru core
preserved in the model.

The model of 1a possesses 148 valence electrons meaning
the presence of 74 bonding elements. AdNDP recovered 14 lone
pairs: four on each Pd with occupation numbers (ONs) 1.97|e|,
one on each S with ONs ¼ 1.92|e|, and three on Ru with ONs ¼
1.74–1.96|e|. Then 56 two-center-two-electron (2c–2e) bonds
with ONs ¼ 1.85–1.92|e| were found between every two neigh-
boring atoms except Pd–Pd, Pd–Ru, and Ru–C. This gives us 70
bonding elements in total. Therefore, 4 bonds still remain
unlocalized. Denitely, three of them should involve the
benzene ring (obviously having 6 valence electrons) which, in
turn, involves interaction with the directly linked Ru atom. The
degree of this interaction can be estimated in terms of occu-
pation numbers. As can be seen in Fig. 5, aromatic pi-bonds are
not just highly polarized towards Ru but even have a common
Fig. 5 (A) Truncated model of the synthesized compound. Ru-purple,
pattern recovered by the AdNDP method; (C) s-aromaticity pattern rec
omitted for simplicity.

482 | Chem. Sci., 2021, 12, 477–486
electron density with this atom. The localization of three elec-
tron pairs over the benzene ring as 6c–2e (without Ru) multi-
center bonds results in polarization towards Ru bonds with ONs
of 1.52, 1.54, and 1.86|e|. The rst two numbers – 1.52 and 1.54
– are basically the lowest bar for acceptable occupation
numbers and we usually do not trust bonds with such low ONs.
Based on our previous work,12,85 such a low occupancy most
likely indicates that the bond should be delocalized over
a greater number of centers. This is the case here because
inclusion of Ru, i.e., consideration of 7c–2e bonds accounting
for C6H6–Ru interaction, yields substantially greater values of
1.88, 1.94, and 1.99 |e| (Fig. 5 B). The contribution of Ru to these
bonds accounts for 20%, 21% and 7% of electron density,
respectively. Besides, the latter ON of 1.99|e| is a perfect local-
ization of 2 electrons which is basically MO “occupation” (in
single reference closed-shell calculations). These observations
give rise to TM-coordinated p-aromaticity inside the system.

One electron pair remains unlocalized to this point. Inter-
estingly, the overall symmetry of the complex is C1 because of
the branched organic ligands. They also tend to slightly distort
the internal Pd2S2Ru kernel. However, if we neglect this
distortion, the Pd2S2Ru core has at least one plane of symmetry,
so it could be approximately considered as belonging to the Cs

group. Therefore, the overall complex is quasi-symmetric and it
has a somewhat symmetric core. The only bonding combination
that satises the ON threshold and does not break the quasi-
symmetry of the compound is the inner triangle-based 3c–2e
s-bond. Therefore, it complies with the classical 4n + 2 rule
which was extended from p-aromatics to s-aromatics.5,86,87

According to this rule, aromatic compounds possess 4n + 2
electrons participating in aromaticity where n is an integer. That
is, in our case 4n + 2 ¼ 2 where n ¼ 0. As we can see in Fig. 5C,
the s-aromatic bond consists of d-AOs of transition metals. In
fact, the electron density of this bond is somehow attracted by
sulfur since the inclusion of neighboring S atoms increases the
ON from 1.30 to 1.83|e|.

The presence of s-aromaticity is further supported by the
shape of the HOMO (Fig. 6). Its quasi-symmetric form is mostly
a 3c–2e bond occupied by the abovementioned 4n + 2 ¼ 2
Pd-green, S-yellow, P-orange, C-grey, and H-blue; (B) p-aromaticity
overed by the AdNDP method. Classical bonding in organic ligands is

© 2021 The Author(s). Published by the Royal Society of Chemistry
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Fig. 6 HOMO of the synthesized system. The isovalue is 0.047.
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electrons and arises from d-AOs of TMs and corresponds to s-
aromaticity. As we can see, Ru is a common atom of two
aromatic systems. This makes the term “spiroaromaticity” valid
because in spiro compounds at least two aromatic rings have
one (and only one) common atom. However, the Ru atom is not
technically a part of the carbon ring plane and is rather p-
stacked with the benzene fragment. Therefore, we feel that
some variations in the terminology may exist for such unique
cases where a few aromatic patterns coexist. Due to the lack of
Fig. 7 Induced magnetic field of 1a denoting Bind
iso and Bind

z oriented perp
contained in the [Pd2Ru]

+ plane and (b) bisecting the Pd–Pd bond. Blue

© 2021 The Author(s). Published by the Royal Society of Chemistry
reports on such systems we will leave it to the reader to dene
the applicability of this term (“spiroaromaticity) based on
a geometry or electron density point of view.

Note the very unusual topology of the HOMO: it is con-
structed by mixing different types of d-AOs. Even visual
assessment gives us a hint that the Ru d-AO is dz2 (d0) while Pd
d-AOs have different angular momentum. A closer look at the
AO coefficients reveals that the greater contribution of Pd atoms
comes from d�2 AOs while for the Ru atom it is indeed d0 AO. To
the best of our knowledge this might be the rst case of such
peculiar orbital overlap. Metal-aromatic triangular complexes
indeed feature the prevalent combination of a single type of d-
AO to form their delocalized MOs.28,29,33–35 Analysis of a full
model, in which all substituents are present, results in essen-
tially the same occupation numbers and bond shapes.

According to the magnetic criteria of aromaticity, aromatic
species build up a shielding response under an applied external
magnetic eld. Isotropic (Bindiso ) and z-axis oriented (Bindz ) terms
are given to provide a picture of the induced magnetic eld
originating from 3c–2e s-aromatic and 7c–2e p-aromatic
kernels.75–78 The isotropic (Bindiso ) term, which is an average of the
different orientations of the applied eld owing to the constant
molecular tumbling in solution, exhibits shielding regions
ascribed to the heterobimetallic triangular [Pd2Ru]

+ cluster
owing to the presence of the 3c–2e s-aromatic bonding pattern
(Fig. 7a). In addition, the 3 � 7c–2e p-aromatic kernel involving
the cymene unit and Ru also gives rise to a shielding region
endicularly to the [Pd2Ru]
+ plane. Two views are given: (a) contour plot

, shielding; red, deshielding. Ru is blue and Pd is green.
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(Fig. 7b), supporting the incorporation of the coordinated Ru
atom in the p-aromatic system. The shielding regions ascribed
to the different aromatic phenyl rings from PPh3 ligands are
expectedly observed. Upon application of a magnetic eld
oriented perpendicularly to the [Pd2Ru]

+ ring (Bindz ), the ring
current effect is enabled78 depicted as a long-range shielding
cone (Fig. 7b) with a complementary deshielding region at the
ring contour (Fig. 7a). This agrees with the magnetic criteria of
aromaticity providing one more piece of evidence of aromaticity
in the [Pd2Ru]

+ kernel. Moreover, the Pd–S–Pd section shows
a diminished response from the Bindz term (Fig. 7b), suggesting
that the thiolate ligand is not involved in the aromaticity of the
[Pd2Ru]

+ ring.
Thus, the 3c–2e multicenter bond in the [Pd2Ru]

+ kernel
gives rise to the second type of aromaticity in the structure – all-
metal TM-based s-aromaticity. This makes [Pd2Ru]

+ the rst
observed example of mixed trinuclear aromatics involving these
noble metals. Therefore, the examined compound is just the
second example of double aromatics which exist as a stable
solid rather than elusive species in a laser beam. Noticeably, no
Ru-interfaced double aromatics were previously reported even
as short lifetime clusters.

Conclusions

We established a synthetic route opening new perspectives on
obtaining heteronuclear all-metal cores comprising non-
adjacent transition metals from the periodic table. The ob-
tained and characterized [Pd2Ru]

+ compound is the rst
example of a heterobimetallic triangular complex among these
noble metals. Transition metal d-AOs with different angular
momentum form a conjugated s-aromatic system delocalized
over the inner noble metal triangle supported by AdNDP and
magnetic criteria of aromaticity. In addition, the Ru-
coordinated benzene ring gives rise to the second type of
aromaticity within one compound. Interaction of d-AOs of Ru
with benzene p density causes the appearance of 7c–2e p-
aromatic bonds highly polarized towards the Ru atom and
having common electron density with it. This makes the
observed structure the second example of “bottled” double
aromaticity which is accessible as a stable solid in contrast to
the short lifetime aromatic molecules detected only in laser
beams. Moreover, this cluster is the rst reported case of Ru
involved in two types of aromaticity simultaneously making the
term spiroaromaticity also applicable.

Conflicts of interest

There are no conicts to declare.

Acknowledgements

The theoretical work was supported by the National Science
Foundation (CHE-1664379 to A. I. B). The support and resources
from the Center for High Performance Computing at the
University of Utah are gratefully acknowledged. We acknowl-
edge the framework of the COMP-HUB Initiative within the
484 | Chem. Sci., 2021, 12, 477–486
‘Departments of Excellence’ program (MIUR, 2018–2022) and
the SIR program (RBSI14NKFL to G. M.) of the Italian Ministry
for Education, University and Research for funding. A. M.-C
acknowledges the funding from the Fondecyt/ANID 1180683
grant.

References

1 P. von R. Schleyer, Chem. Rev., 2001, 101, 1115–1118.
2 T. M. Krygowski and M. K. Cyrański, Chem. Rev., 2001, 101,
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