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We investigated the role of periphyton biofilms for the fate of three
common herbicides, i.e. bentazone, metazachlor and metribuzin, at
low, environmental levels and 100 times higher, during a 16 days
laboratory experiment. We found that herbicide water concentrations
were stable during the first 8 days, whereas substantial declines (>78%)
occurred between days 8-16 for all three herbicides. These rapid
declines were explained only to a small extent (<8% of the total
herbicide loss) by biofilm sorption. As herbicide concentrations in light
and dark treatments without biofilms were similar, and the applied
light regimen did not cover the UV-spectrum, herbicide photolysis was
ruled out as a possible explanation for the observed declines.
Furthermore, based on the compounds’ characteristics, also volatili-
zation was judged negligible. Therefore, we conjecture that the
observed declines in herbicides were due to biodegradation and
subsequent evasion of **CO, that was driven by enzymatic action from
heterotrophic microbes. We reason that heterotrophic microbes used
herbicide molecules as labile organic C-sources during C-limitation.
Future studies should identify the microbial communities and genes
involved in biodegradation in order to understand better the role of
biofilms for the self-purification of surface waters.

Introduction

Freshwater periphyton biofilms are complex assemblages of
algae, bacteria, fungi, protozoans, and meiofauna embedded in
a matrix of extracellular polymeric substances, EPS.' Biofilms
are sites of high biological activity and play important roles in
primary production,’ as a basal food resource for higher trophic
levels,> and for carbon and nutrient cycling in freshwater
ecosystems.® Biofilm EPS consists of microbial polysaccharides,
lipids, proteins, nucleic acids, and heteropolymers that are
essential for biofilm integrity and stability.* This EPS, as well as
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Interactions with freshwater biofilms cause rapid
removal of common herbicides through
degradation — evidence from microcosm studiest

* and Willem Goedkoop

Environmental significance

Biofilms are complex communities of bacteria, algae, fungi and other
microorganisms that grow on virtually all submerged surfaces and fulfil
key ecological roles such as primary production and carbon and nutrient
cycling. Thus, biofilms have high biological activity and availability of
sorption sites, which make them important drivers of the environmental
fate of contaminants. In this study we focus on herbicides, which are the
largest group of pesticides commonly found in surface waters. Our find-
ings show that biofilms rapidly mineralize the herbicides bentazone,
metazachlor and metribuzin, rather than accumulate them for longer
periods, which underlines the importance of biofilms in the self-
purification of surface waters.

the microbial cells in biofilms, represent a large surface area
with efficient sorption sites for both heavy metals>® and organic
contaminants.”® For example, Tien and Chen® found that
copper, nickel, chromium and lead were enriched by a factor
ranging 1.6 x 107> to 7.15 x 10 > L kg™ " in biofilms, while
Rooney et al.® reported bioconcentration factors (BCFs) between
12 and 6864 for 20 organic pesticides in biofilms. As the
detection frequency of current-use pesticides in biofilms was 4-
fold larger than in sediments, while also better reflecting
ecological risks (e.g. for invertebrate communities), Mahler
et al.*® suggested that pesticide monitoring should also involve
biofilm as a complement to sediment. These studies emphasize
the key role of biofilms for the fate of pesticides in aquatic
ecosystems.

Modern pesticides are used in crop protection worldwide,
with almost 6 million tons of active ingredients applied in 2017,
of which 7% (by weight) were herbicides.'* Through leaching or
spray drift, pesticides commonly enter surface waters where
they pose a risk to non-target aquatic organisms." For example,
pesticides negatively affect the abundance of invertebrates,"* as
well as the density, antioxidant defence and photosynthetic
efficiency of diatoms,™ although the latter may reflect short-
term inhibition.”® Herbicides are commonly more water-
soluble than insecticides and fungicides and thus comprise
a large fraction of the pesticides frequently detected in surface
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water monitoring.'*"” Herbicides in surface waters are
submitted to both abiotic (e.g., photolysis, hydrolysis) and biotic
(microbial) degradation, the latter usually being quantitatively
more important. Microbial degradation of pesticides includes
the enzymatic transformation by heterotrophic microbes via
conjugation and complexation, resulting in compounds that
have either increased or decreased persistence.*® Heterotrophic
microbes degrade pesticides as these are relatively labile
molecules that constitute a source of organic carbon, nutrients,
and other elements necessary for growth'. Knowledge of
herbicide behaviour and fate in aquatic ecosystems is impor-
tant, especially as their use is expected to increase with climate
change® and a growing human population.*

In this laboratory study, we assess the role of periphyton
biofilms for the fate of common herbicides in inland surface
waters. We hypothesized that the herbicide water concentra-
tions would be slowly declining during our 16 d experiment,
driven by sorption to biofilms. We also hypothesized that the
high biological activity in biofilms could contribute to acceler-
ating the degradation of sorbed herbicides. We envision that
our results provide an insight in the sorption characteristics of
herbicides to biofilms and their behaviour and fate in fresh-
water ecosystems.

Materials and methods
Herbicide selection

Our study addressed the fate of metazachlor, metribuzin and
bentazone, three herbicides that are commonly found in water
from agricultural streams.'*"” These compounds are commonly
applied in cultures of rapeseed, potatoes and carrots to prevent
weed growth. Metazachlor is an inhibitor of cell division, while
bentazone and metribuzin are photosynthesis inhibitors.
Beside their common occurrence in inland waters, these
herbicides were selected based on their similar and low log K,
values and their availability as '*C-labeled standards. Applied
exposure concentrations were similar to those found in Euro-
pean inland waters,'®* as well as 100-fold higher (referred to as
‘low’, and ‘high’ concentrations, respectively, Table 1).
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Experiment description

An inoculum of epilithic biofilm was collected from mesotrophic
Lake Erken (59°50'15.6"N 18°38'06.1"E) by brushing the upper
sides of a number of submersed cobbles collected in the littoral
zone and transported back to the laboratory in a cooling box. This
inoculum was used to grow biofilms on unglazed ceramic tiles (3 x
3 cm) covered with L16V medium® at 12 + 0.2 °Cand 16 h: 8 h
light : dark cycle with a light intensity of 924 & 144 lux. The L16V-
medium is a broad synthetic medium that has been used for
culturing multiple species of algae belonging to major taxonomic
groups (e.g: Ahlgren et al. 1990 **). After 9 weeks of growth, biofilms
were well-established, and microscopic analysis showed that green
algae made up 90% of the total biovolume, while diatoms and
cyanobacteria accounted for 8% and 1%, respectively (detailed in*).
These biofilms were used for exposure to pesticides as described
below.

At the start of the experiment (¢ = 0) four biofilm-covered
tiles each were placed in experimental units (ie. 1 L glass
beakers, n = 4) containing 0.25 L of autoclaved L16V medium
with additions of '*C-labeled herbicides (IZOTOP Institute of
Isotopes Co. Ltd., Budapest, Hungary). Blanks (n = 4) were set
up similarly, but did not receive herbicide additions. Experi-
mental units were placed randomly on a table and provided
with continuous, gentle aeration using glass Pasteur pipettes
and aquaria pumps. After 0.5, 2, 4, 8 hours and then after 1, 2, 4,
8, 12, and 16 days, 500 uL water samples were collected with an
automated pipette from each of the experimental units and
transferred to 20 mL scintillation vials. Biofilm samples were
collected from by removing single tiles from the same experi-
mental units after 1, 8 and 16 days. Biofilms were detached from
tiles with rubber cell scrapers, transferred to 20 mL scintillation
vials, suspended in 2 mL of tissue solubilizer (Soluene 350,
PerkinElmer), placed in an oven at 60 °C for 4 h and allowed to
cool to room temperature.

All samples then received 10 mL of scintillation cocktail
(Ultima Gold®, PerkinElmer) and were kept in the darkness at
room temperature for 24 h to obtain stable scintillation read-
ings. Scintillation counts were made for at least 5 minutes or

Table 1 Herbicides' physicochemical properties and nominal 'low’ and ‘high’ concentrations used for biofilm exposure. Data from Pesticide
Properties Database® include DTsq (half-life of the compound in water), water solubility (at 20 °C), Henry's constant (at 25°) and ECsq (median
effect concentration for growth inhibition of planktonic algae); data from the US EPA?* are empirical log Ko, (Ooctanol-water partitioning

coefficient)

Herbicide properties Metazachlor Metribuzin Bentazone Unit

Group Chloroacetamide Triazinone Benzothiazinone —

CAS nr 67129-08-2 21087-64-9 25057-89-0 —

Position of *C label Phenyl-U-14C Ring-6-14C Carbonyl-14C —

Purity 98.39 99.65 99.82 %

Specific activity 5.5 1.85 1.85 MBq mmol !
log Kow 2.13 1.54 2.34 —

Ktoe 79.6 37.9 59.6 —

DT, in water 216 41 80 days

Water solubility 450 10700 7112 mg L'
Henry's law constant 5.90 x 107° 2.00 x 107° 7.20 x 107° Pa m® mol !
ECso 16.2 26.6 10100 pg Lt

Low treatment 5.4 0.62 1.5 pug L1

High treatment 540 62 150 pg L1

This journal is © The Royal Society of Chemistry 2021
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10 000 CPM using a Beckman LS 6000TA-liquid scintillation
counter. Quench corrections were done using internal standards
ratios (Perkin Elmer). Disintegration rates for samples were cor-
rected for the background values obtained for corresponding
blanks. The QA/QC was performed using Internal Standard Kit,
MC-W for aqueous samples and results are expressed as disinte-
grations per minute (DPM) and corrected for evaporation. Evapo-
ration was quantified by weighing the experimental units before
and after each sampling. Sorption (in)to biofilm is defined here as
the ratio between the herbicide concentration in the biofilm and
that measured in water at the start (expressed as %). We thus
consider the whole biofilm, and do not distinguish among the
different sorption/uptake mechanisms (e.g., diffusion, sorption to
EPS or cellular uptake, etc). Herbicide loss from the experimental
units was calculated as the difference between the DPM measured
in water at the start and the DPM at the end (biofilm + water).
Blanks (no herbicides added) were used to quantify background
radiation. To facilitate comparisons of our results with other
studies, concentrations are also presented as pg L' and ug kg™,
back calculated from DPM based on the specific activity of each
compound (Table 1), using eqn (1) and (2).

_ DPM, x 1.67x10%

Cw A x 1000 x 4 (1)
DPM, x 1.67 x 107 1

where C,, and C, are the herbicide concentrations in water
(ug L") and in biofilm (ug kg™'), respectively.

DPM,, is the upscaled disintegrations-per-minute from
scintillation counting for 250 mL of water (the volume of the
test units), corrected for blanks, evaporation, previous sampling
and external standard recovery; x4 is the multiplication factor
for the conversion of the volume in our experimental units (250
mL) to litres.

DPM,;, is the upscaled disintegrations-per-minute from
scintillation counting for the whole biofilm from one tile, cor-
rected for external standard recovery;

1.67 x 10”8 is the conversion factor from DPM to MBg;

SA is the specific activity of the herbicide in MBq mg™;

Wy is the biofilm wet weight in kg.

In an additional set up, treatments with autoclaved L16V
medium lacking biofilms were deployed in dark and light (629 +
34 lux) conditions, respectively, to quantify the photolysis of
herbicides. For this, water samples were analysed for pesticide
concentrations at the start (day 0) and at the end (day 16) of the
experiment by LC-MS according to the standard methods US EPA
535 % and US EPA 1694.”® LC-MS was used in this experiment
instead of scintillation counting as all **C-labelled herbicides had
been used in the sorption experiment. The nutrient concentrations
in the blanks were determined at start and on day 8, by the stan-
dard methods SS-EN ISO 6878:2005 mod., Bran Luebbe, Method
No G-175-96 for AAIII (Total-P) and SS EN 12260:2004 (Total-N).

Data analysis

Pearson's correlations were used to assess relationships
between herbicides’ concentrations in water and in biofilms,
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as well as between log K,, and mean biofilm sorption.
Repeated measures ANOVAs were run to test for effects of
herbicide start concentrations and time on log-transformed
herbicide sorption to biofilms, and Tukey HSD-tests were
used for post-hoc pairwise comparisons. Both tests were also
used for investigating differences in biofilm sorption
between compounds. Normality of residuals was assessed
from normal quantile plots.

Results

Herbicide water concentrations in all treatments decreased over
time, but without a corresponding concentration increase in the
biofilms. Herbicide water concentrations were rather constant
during the first 8 days of the experiment, with a CV of 2 to 22%,
but rapidly dropped by 78-98% of the initial concentration after
12 days (Fig. 1). The most dramatic decline was observed in the
bentazone-high treatment, where water concentrations dropped
from 150.5 to 5.4 ug L™ " between days 8 and 12. By the end of
the experiment (16 d), water concentrations of all herbicides
had dropped by more than 94% of their initial concentrations.

Biofilm sorption was generally low, on average less than 0.16
+ 0.18% of initially added concentrations. The highest average
biofilm sorption was 0.51%, reached after 1 day in the
metribuzin-low treatment. Biofilm sorption of bentazone-low
and metribuzin decreased linearly over time, whereas for
bentazone-high and metazachlor there was an increase in
sorption from day 1 to day 8, followed by a decrease between
days 8 and 16 (Table S2t). The initial herbicide concentration
had a significant effect on the biofilm sorption of metazachlor
and metribuzin, but not of bentazone (Table 2). Most notably,
metribuzin sorption was 5 times higher at the low concentra-
tion than at the high concentration (Table S21). Moreover, in
the low-concentration treatments, metribuzin sorption to bio-
films was on average 17-times higher than that of bentazone
and 4-times higher than that of metazachlor (p < 0.0001 for
both), despite the much lower initial concentrations (3-fold and
7-fold lower, respectively). In the high-concentration treat-
ments, metazachlor sorption exceeded that of bentazone and
metribuzin (p < 0.0001 and p = 0.035, respectively), whereas
metribuzin sorption was higher than that of bentazone (p <
0.0001). Although these differences were significant, sorption to
biofilms was generally very low and accounted for only a small
fraction of the total herbicide losses from the water.

The hydrophobicity of the herbicides (log K,) decreased
their average sorption to biofilms, albeit not significantly (r =
0.99, p = 0.0591). The largest fraction (i.e., 8% of total loss) was
recorded in metazachlor-high on day 8 of the experiment. By the
end of the experiment (day 16), biofilm sorption accounted for
at most 0.01, 0.08 and 0.09% of the total loss of bentazone,
metazachlor and metribuzin, respectively. Water concentra-
tions of bentazone and metribuzin were strongly and positively
correlated to those in biofilms, especially in the high-
concentration treatments (i.e., » = 0.84 and 0.87, p = 0.0006
and 0.0002, respectively), despite low sorption, whereas no
correlation was found for metazachlor, when looking at the
different concentration levels separately.

This journal is © The Royal Society of Chemistry 2021
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Fig.1 Herbicide concentrations (mean + SE; log scale) in water (circles and blue lines, ug L™%) and biofilms (triangles and green lines, ng kg™ ww)
during the experimental period in treatments with low and high concentrations of bentazone (upper panels), metazachlor (middle panels), and
metribuzin (lower panels). SE ranged 0.004-0.09 and 0.16—8.89 for biofilms from low- and high-concentration treatments, respectively, and
between 0.02-0.68 and 0.07-55.89 for water from low- and high-concentration treatments, respectively.
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Table 2 ANOVA-effects of herbicide concentration (high and low)
and exposure time on biofilm sorption; n.s. is not significant

Concentration, Concentration
df =1 Time, df =2 x time, df = 2
Herbicide pvalue Fratio pvalue Fratio pvalue Fratio
Bentazone n.s. <0.0001 23.56 n.s.
Metribuzin <0.0001 228.34 <0.0001 172.11 0.0012 12.52
Metazachlor 0.0119 12.67 <0.0001 127.28 n.s.
Discussion

Our study shows a more than 78% decrease in herbicide water
concentrations in all treatments after 8 days. These rapid
declines were explained only to a small extent (<8% of the total
herbicide loss) by sorption and accumulation in biofilms.
Instead, more than 94% of the added compounds were lost
from the experimental vessels by day 16. We conjecture that this
was due to mineralization and subsequent evasion of '*CO,,
driven by enzymatic action from heterotrophic microbes on
herbicide molecules when labile organic C-sources became
limiting for their growth (¢f.*°). Modern pesticides are relatively
small organic molecules that can be readily used by heterotro-
phic microbes (e.g.***). Our *C-labeled herbicides had one or
multiple *C-atoms well integrated in their molecules (Table 1),
leaving mineralization as the single option for the observed
large loss of label from our experimental units. Likewise, and
for similar time frames as applied in our study, Bohuss et al.**
concluded that biodegradation was the main removal pathway
and that sorption to biofilms explained less than 0.6% of the
total loss of the herbicides atrazine and acetochlor, whereas
Lawrence et al.*® showed similar sorption for triazine herbicides
in river biofilms. As sorption is a prerequisite for biodegrada-
tion, it is likely that even the low sorption observed in our
biofilms was sufficient to induce a rapid microbial degradation
of the herbicides and ultimately their elimination from the
microcosms as CO,.

The observed rapid degradation/mineralization of herbi-
cides in the biofilms implies a rapid turnover of sorbed herbi-
cides and little accumulation. Also other studies**** concluded
that microbial degradation, rather than sorption, was the
primary fate of herbicides (carbamates and diazinon) in 10-14
d experiments with river biofilms. Possibly, the architecture of
biofilms may have changed with herbicide exposure,* thus
altering the availability of sorption sites and allowing rapid
degradation of herbicides in the biofilms. Interestingly, the
rapid mineralization of herbicide molecules in our study
occurred when only two of four tiles remained in our experi-
mental units, implying an increase in degradation rates per
surface area of biofilm, further stressing the adaptation of
biofilm microbiota towards a high efficiency in herbicide
degradation/mineralization. If similar degradation/
mineralization rates occur under field conditions in summer,
then monitoring programs may seriously underestimate the
run-off and/or leakage of pesticides from agricultural soils.
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Beside C also herbicide-N and -S were likely readily taken up
by microbes, as these are key elements in the synthesis of
proteins and specific amino acids* and frequently more
limiting than C. However, although N makes up 11.6-26.1% (by
weight) of the three herbicides tested, while S makes up 14.9%
in metribuzin and 40.0% in bentazone, the contributions of
herbicide-N and -S were a negligible share of the total-N and -S
in the algal growth medium, i.e. less than 0.008% and 0.030%,
respectively, in the high-exposure treatments. These low
numbers, however, should be seen as underestimates of their
relative importance, as N and S originating from herbicides
occur in organic molecules and will have a higher bioavailability
than the nitrate and sulphate molecules in the medium.
Comparisons of herbicide-N and -S with organic molecules in
the periphyton biofilms (e.g. originating from algal exudates/
decay and microfaunal excretions) would give a more justified
estimate of the relative role of herbicide-associated N and S for
the metabolism of heterotrophic microbes. Unfortunately, such
data were not available from our study.

The water N : P ratio (by weight) on day 8 was 16 : 1, showing
conditions for algal growth that are close to optimal, i.e. close to
the Redfield ratio,*® whereas the continuous aeration of the test
vessels guaranteed a constant supply of atmospheric CO,.
Earlier studies have also shown that recovery from herbicide-
induced photosynthetic inhibition can be fast," ie. through
rapid, adaptive evolution (cf*°). Moreover, algae have short
generation times, which also facilitates fast recovery. It is
possible, however, that biofilm-associated bacteria were limited
by low-molecular organic C-sources and used added herbicides
as a C-source. While most studies address herbicide effects on
algae (e.g., inhibition of photosynthesis), much less is known
about their effects on and interactions with heterotrophic
bacteria in aquatic systems.*®

Herbicide loss through volatilization and photolysis is likely
negligible in our study. First, the selected herbicides are clas-
sified as ‘non-volatile’ according to Henry's law constants (Table
1), and it is thus unlikely that they partitioned from the water
into the air phase. In line with this, the known metabolites of
the investigated herbicides (Table S1t), are also generally less
lipophilic than their parent compounds (except for metazachlor
oxalic acid), and hence their sorption is not expected to be
higher. Second, photolysis was likely not quantitatively impor-
tant, because the lights in our experiments did not cover the UV
spectrum. Despite differences in light intensity (629 vs. 924 lux)
between our main experiment and additional run to test for
abiotic degradation, the lack of UV-range wavelengths in both
light sources, and thus the lack of energy necessary to break the
chemical bonds within the herbicide molecules*" should have
prevented direct photolysis. The latter is further supported by
our observation that herbicide concentrations in light and dark
treatments without biofilms were similar (Fig S11) and did not
show a decrease in herbicide concentration after 16 days (Fig
S27). Also, observed herbicide declines were between 3 and 18
times faster than expected from their documented hydrolysis
half-life only (Table 1), thus stressing the role of biofilms in this
process. This further supports our conclusion that the observed
rapid declines in herbicide concentrations most likely were due

This journal is © The Royal Society of Chemistry 2021
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to microbial degradation in the biofilms and subsequent
evasion of **CO,.

Potential growth inhibition from herbicide action can lead to
a decline in the excretion rates of low-molecular compounds by
algae and limit the growth of microbial heterotrophs in the
biofilms. The equivalent ratios between the ECs, for algae and
the high exposure concentrations for metribuzin and bentazone
were 2.3x and 0.014 x, implying that negative effects likely were
negligible. The ECs, values are based on tests with single
planktonic species, where the compounds' bioavailability likely
is much higher than in the complex biofilms in our experiment.
Also should the multispecies assemblages of our biofilms likely
have a higher resilience than single-species populations of
plankton algae in standardized tests, further alleviating herbi-
cide effects.

Spiking concentration affected sorption of metribuzin and
metazachlor to biofilms in our study (Table 2). In particular, the
fact that metribuzin sorbed to biofilms to a larger extent (i.e., 5-
fold more) in low than in high concentrations is an important
finding, as it illustrates a high uptake at low environmental
levels, which can affect phototrophic biofilm community
structure*” and pose a risk for transfer to higher trophic levels.*
For bentazone, sorption was similar for the low and high
concentration treatments (Table S27), suggesting saturation at
the lowest concentration due to saturation of algal kinetic
uptake rates.

Conclusions and outlook

Our study highlights the importance of biofilms for self-
depuration of aquatic ecosystems, and suggests that biodegra-
dation is the main degradation pathway for herbicides, mass
balance-wise (sensu**). Our findings illustrate a rapid removal of
herbicides from the water phase, with more than 94% of the
amount eliminated after 16 days. As biofilm sorption only
explained a small fraction of herbicide loss from the water, and
as photolysis and volatilization of herbicides were judged
negligible, we conclude that biodegradation was the main
pathway of herbicide loss from our experimental units. This
implies that modern herbicides likely are short-lived in surface
waters during the growing season, where microbes compete for
low-molecular carbon-substrata (including herbicides). Such
degradation, including complete mineralization, contributes to
the valuable ecosystem service of self-purification of surface
water that biofilm microbes provide and contribute to
a systematic underestimation of pesticide run-off/leakage from
agricultural soils based on water concentrations.
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