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l screening of dark chemical
matter and food chemicals uncover potential
inhibitors of SARS-CoV-2 main protease†

Marisa G. Santibáñez-Morán, a Edgar López-López, b Fernando D. Prieto-
Mart́ınez, a Norberto Sánchez-Cruz a and José L. Medina-Franco *a

The pandemic caused by SARS-CoV-2 (COVID-19 disease) has claimed more than 500 000 lives

worldwide, and more than nine million people are infected. Unfortunately, an effective drug or vaccine

for its treatment is yet to be found. The increasing information available on critical molecular targets of

SARS-CoV-2 and active compounds against related coronaviruses facilitates the proposal (or

repurposing) of drug candidates for the treatment of COVID-19, with the aid of in silico methods. As part

of a global effort to fight the COVID-19 pandemic, herein we report a consensus virtual screening of

extensive collections of food chemicals and compounds known as dark chemical matter. The rationale is

to contribute to global efforts with a description of currently underexplored chemical space regions. The

consensus approach included combining similarity searching with various queries and fingerprints,

molecular docking with two docking protocols, and ADMETox profiling. We propose compounds

commercially available for experimental testing. The full list of virtual screening hits is disclosed.
1. Introduction

Coronaviruses (COVs) per se can infect humans and other
animal species. Some of them cause a variety of previously
studied diseases such as Severe Acute Respiratory Syndrome
(SARS) and Middle East Respiratory Syndrome (MERS). SARS-
CoV-2 is an emergent virus that generates the COVID-19
disease1 which is currently considered a “pandemic” accord-
ing to the World Health Organization (WHO), with more than
ten million conrmed cases and more than 500 000 deaths
worldwide (as per June 30th, 2020).2

SARS-CoV-2 has a complex architecture, and as happens with
different viruses, there are several proteins involved in viral
internalization and replication. The life cycle of SARS-CoV-2
starts with the viral recognition of its spike protein by
a cellular receptor (ACE receptor and TMPRSS2). Aer that, the
internalization and uncoating process is mediated by
membrane proteins. Once into the host cell, RNA replication,
and biosynthesis of viral polypeptides are carried out (RdRp –
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ribosomes). Finally, the processing of precursors proteins by the
main protease (3CLpro or Mpro) and the assembly of these,
contributes to the generation of new viruses.3–5 These main
targets offer a venue for the development of new treatments via
rational drug design. Examples include spike protein, RNA
polymerase, and chymotrypsin-like cysteine protease (3CLpro or
Mpro) which are presented in Fig. 1.3–5 Of these, the main
protease (Mpro) is a promising target for the design and
proposal of new therapies due to the lack of homologous
proteins in humans.6 Also, its selective inhibition would take
advantage of the natural life cycle of SARS-CoV-2, avoiding its
replication and dissemination. Several research groups are
actively pursuing Mpro as a molecular target to identify drug
candidates for the treatment of COVID-19.

Computational methods represent an approach with the
power of efficiently lter large and diverse compound libraries
to select potential candidates for drug development.7,8 Recently
published works show a tendency towards drug repurposing
and to search structurally different libraries (e.g., with broad
scaffold diversity), and natural products.9–13 Moreover, the
search for novel compounds commercially available or with the
possibility of being synthesized has had a vital rebound (e.g.,
screening part or the entire ZINC database).9,14–16 Table 1
summarizes representative examples of virtual screening (VS)
studies directed to different molecular targets, including SARS-
CoV-2 Mpro. Most of these efforts relied on structure-based drug
design (SBDD). Few others include similarity searching and
quantitative structure–activity relationship (QSAR) modeling.17

In this sense, there are many compounds suggested by
RSC Adv., 2020, 10, 25089–25099 | 25089
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Fig. 1 Schematic life cycle and main studied targets of SARS-CoV-2. (A) Cellular recognition; (B) internalization and uncoating process; (C)
biosynthesis of viral proteins and RNA replication; and (D) assembly of new virions.
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View Article Online
computational methods that could be evaluated quickly with in
vitro techniques. However, the use of computational consensus
methodologies could improve the performance of each
technique.

The goal of this work is to propose active compounds against
Mpro from SARS-CoV-2 and related coronaviruses. One of the
novelties of the present study relies on the probed chemical
space: food chemicals and molecules in the Dark Chemical
Matter (DCM), which to the best of our knowledge, have been
explored for SARS-CoV-2 on a limited basis. Thus, the rationale
Table 1 Representative virtual screening studies to identify drug candid

Target Experimental methods Libraries

Mpro Deep docking ZINC 15
Mpro Pharmacophore model,

molecular docking, and dynamics
Marine na

Mpro Pharmacophore screening and
molecular docking

ZINC

Spike protein Homology modeling and
molecular docking

FDA

Mpro, PLpro and
RdRp

Homology modeling, molecular
docking, and dynamics

DrugBank
medicine

ACE2 Molecular docking Literature
products)

Mpro Molecular docking Literature
products)

Mpro Molecular docking FDA
Mpro Molecular docking, and dynamics ZINC
Mpro Similarity search and QSAR

modeling
DrugBank
experimen

Mpro Molecular docking and dynamics DrugBank
candidates

Mpro and TMPRSS2 Homology modeling and
molecular docking

ZINC

Mpro Induced t docking In-house

a Computational hits. b Active hits.

25090 | RSC Adv., 2020, 10, 25089–25099
was to expand the search of chemical space and suggest mole-
cules for experimental screening. Active compounds could be
later optimized to increase activity. As a screening strategy, we
started with similarity searching using different ngerprints to
pre-select compounds using data fusion strategies. Selected
compounds from similarity searching were screened with
molecular docking with two different soware. The nal selec-
tion of computational hits was based on consensus scoring,
information of protein–ligand contacts, and the ADMETox
(absorption, distribution, metabolism, excretion, and toxicity)
ates for the treatment of COVID-19

Compounds screened/outcome Ref.

1.3 billion/1,000a 9
tural products 14 064/17a 10

50 000/10a 15

3300/12a 18

and traditional Chinese 1973/57a 11

compilation (natural —/5a 12

compilation (natural 80/8a 13

486/20a 19
606 million/12a 20

(marketed, withdrawn,
tal, and investigational)

9615/41a 17

(approved and drug
in clinical trials)

2201/5a 21

34 500/8a 14

10 000/6b 22

This journal is © The Royal Society of Chemistry 2020
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prole of compounds. Additional criteria used to guide the
selection of hit candidates for testing included predictions by
machine learning (ML) models for SARS-CoV-2 activity devel-
oped by Collaborations Pharmaceuticals, Inc and freely
available.23
Fig. 2 General workflow of the virtual screening approach used in this w

This journal is © The Royal Society of Chemistry 2020
2. Materials and methods

Herein we combined ligand- and structure-based methods to
virtually screen compounds from two primary molecular data-
bases and select hit candidates for testing. Ligand-based
methods were based on similarity searching using the
ork.

RSC Adv., 2020, 10, 25089–25099 | 25091
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principles of data fusion.24,25 Structure-based approaches were
based on molecular docking and consensus scoring.26 The
selection of hit compounds was also made considering the
predicted ADMETox prole as well as prediction by ML models
made freely available by Collaborations Pharmaceuticals. Fig. 2
outlines the main VS strategy and hit selection. Overall, two
main general approaches were considered that are distin-
guished by the type of reference compounds used in the simi-
larity searching. In one method (le-hand side of Fig. 2), three
HIV-1 protease inhibitors approved for clinical use were used as
queries. As elaborated below in Section 3.1, the three
compounds have shown in vitro activity against SARS-CoV or
SARS-CoV-2. In the second approach, (right-hand side of Fig. 2)
1052 compounds with potential affinity for SARS-CoV-2 Mpro or
SARS-CoV Mpro were used as queries. The workow in Fig. 2 is
described in more detail in the next subsections.
2.1 Screening and reference databases

Table 2 summarizes the fourmajor types of data sets considered
in this study.

One of the screening databases was the public food chem-
ical database (FooDB) with 23 883 compounds.28 The chemical
diversity and coverage of chemical space of FooDB have been
reported revealing that food chemicals are structurally diverse
and have, in general, large molecular complexity.30 DCM was
the other screening database. DCM is a collection of 139 352
compounds that had shown no activity when tested in at least
100 screening assays.29 Even though DCM has a low activity
prole against common targets, the rationale of screening this
collection was to explore regions in chemical space currently
overlooked. Moreover, DCM has yielded active molecules in
other assays31,32 probing the value of screening this region of
the chemical space. The structures of FooDB and DCM were
curated and standardized, employing RDKit, CDK (Chemistry
Development Kit), and ChemAxon tools. The largest compo-
nent of molecules with more than one fragment was retained,
compounds containing an atom type other than H, C, O, N, S,
P, F, Cl, Br, I, B, Si, and Se were removed. The tautomer with
Table 2 Main screening data sets and reference compounds considere

Dataset Content overview and sizea

Actives N3, alpha-ketoamides 11a, 11r, and
carmofur, cinaserin, disulram, eb
PX12, shikonin, and tideglusib

FooDB 22 880 compounds

Dark chemical matter (DCM) 139 329 compounds

ZINC (top-ranked hits) 10 top-ranked virtual screening hits
using deep docking/Glide and SARS
Mpro (PDB ID: 6LU7)

a Aer data curation.

25092 | RSC Adv., 2020, 10, 25089–25099
the lowest energy for each remaining compound was
generated.

Active compounds from the study of Jin et al.22 were used as
a reference. These were the peptide-like inhibitor N3, carmofur,
cinaserin, disulram, ebselen, PX12, shikonin, tideglusib, and
alpha-keto amides (11a, 11r, 11s).27 Lopinavir, nelnavir, and
ritonavir were other reference compounds for the molecular
docking performed in AutoDock Vina.

To identify additional potential hit compounds, we included
the top 10 ranked virtual screening hits from the study of Ton
et al.9 Authors of that work screened the ZINC database against
the SARS-CoV-2 Mpro (PDB ID 6LU7) using the docking program
Glide. The rationale of using this set was to explore further the
predicted prole of top-ranked compounds using different
docking programs (i.e., Vina and MOE, vide infra).

2.2 Similarity searching

Eight two-dimensional molecular ngerprints (Molecular
ACCess System-MACCS-keys (166-bits), Morgan 2 [ECFP4-like],
Morgan 3 [ECFP6-like], FeatMorgan, AtomPair, Torsion,
Layered, and Pattern) were generated for all the queries, the
22 880 compounds in FooDB, and 139 329 molecules in DCM.

In the rst virtual screening approach (Fig. 2), nelnavir,
lopinavir, and ritonavir were used as independent queries (vide
infra). The molecular similarity between each of the queries and
each of the molecules in FooDB and DCM was estimated with
the Tanimoto coefficient.33 The compounds with a Tanimoto
coefficient higher than themedian plus two standard deviations
were considered as a hit. The molecules labeled as hits
according to more than one molecular ngerprint (consensus
hits), were selected. The consensus hits for the three queries
were additionally analyzed by molecular docking.

In the second approach (Fig. 2), 1052 compounds with
potential affinity for SARS-CoV-2 Mpro or SARS-CoV Mpro were
selected from published molecular docking studies9,19,27,34,35,59

and used as queries. The structure le with the chemical
structures of the 1052 compounds is available in the ESI.†
Mean-fusion similarity scores and max-fusion similarity scores
were determined using the eight molecular ngerprints and the
d in this work

Rationale Ref.

11s,
selen,

Reference compounds used in docking to
compare docking scores and predicted binding
modes

22 and
27

Large library of food chemicals. Smaller food
chemical data sets have been screened

28

Large screening library underexplored.
Likelihood to shade light into the darkness of
the COVID-19 pandemic

29

of ZINC
-CoV-2

Further consensus of published computational
hits with other docking programs (Vina and
MOE)

9

This journal is © The Royal Society of Chemistry 2020
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Tanimoto coefficient.36 Compounds with max-fusion similarity
scores and mean-fusion similarity scores higher than the
median plus two standard deviations for more than one
ngerprint were selected as consensus hits and evaluated by
molecular docking.

The molecular similarity analyses were generated in KNIME
employing the RDKit node for molecular ngerprints genera-
tion and the CDK node for the similarity calculation.37,38
2.3 Molecular docking

To enhance the likelihood of nding active compounds, two
docking programs with different algorithms were used, namely;
Autodock Vina, version 1.1.2,39 and Molecular Operating Envi-
ronment (MOE) v.2019.40 As explained hereunder, the docking
protocols for each program were validated with experimental
information available.

Docking with Autodock Vina was conducted with two
crystallographic structures obtained from the Protein Data
Bank (PDB),41 namely, SARS-CoV-2 Mpro (PDB ID 6LU7)22 and
the structurally related SARS-CoV Mpro (PDB ID 5N5O).42 Both
structures are co-crystallized with a peptide-like (N3) and an
alpha-ketoamide (11s) inhibitor, respectively. The crystal
structures were prepared in Autodock Tools. The grid-box was
constructed based on the binding site of the alpha-ketoamide
inhibitors 11a and 11s. The ligands were normalized, their
clean 3D form was generated, hydrogens were added, and
molecules were optimized using the Universal Force Field
(UFF) in KNIME. The results were visualized in PyMol (version
2.3).

Induced t docking protocol for the Mpro (PDB ID 6LU7) of
SARS-CoV-2 was carried out with MOE soware v.2019. The
protein was prepared with the “Quick prepare” tool using the
parameters assigned by the PFROSST force eld. The peptide-
like inhibitor N3 was removed, and their binding site was
used to direct the docking. Triangle matcher method was
rened with the induced t protocol, and the other parameters
were established by default. This protocol was validated using
experimental information recently published by Jin et al.22 The
binding poses were successfully reproduced. The binding
scores showed a correlation of 0.703 with the in vitro inhibition
values of the data set.
2.4 ADME/Tox proling

Early consideration of ADMET/Tox properties is fundamental
in current drug discovery efforts. Due to the availability of
several free chemoinformatic resources,43 herein we employed
SwissADME44 to calculate more than 40-related properties
including descriptors associated with drug-likeness, solu-
bility, blood-brain barrier (BBB) permeability, Pgp substrate,
inhibition of CYPs, Bioavailability Score, PAINS alerts, and the
number of violations to empirical rules (Lipinski, Veber, Egan,
Brenk). The full list of ADME/Tox related properties calculated
with SwissADME is in the ESI.† We have used SwissADME to
prole other compound databases of pharmaceutical
relevance.45
This journal is © The Royal Society of Chemistry 2020
3. Results and discussion

We describe the results of similarity searching, molecular
docking, and ADMETox followed by the combined analysis to
select hit compounds for experimental testing.
3.1 Similarity searching

As previously stated, Mpro is a promising drug target due to its
importance in COVs life cycle (Fig. 1, vide supra). The recent
publication of the SARS-CoV-2 Mpro crystal structure showed
a 96% similarity with the SARS-CoV Mpro and the conservation
of the active binding site. To search for SARS-CoV-2 Mpro

inhibitors in underexplored regions of the chemical space, we
assessed the molecular similarity of FooDB and DCM databases
with compounds that potentially inhibit SARS-CoV Mpro or
SARS-CoV-2 Mpro. As a rst approach, three HIV-1 protease
inhibitors approved for clinical use, namely; lopinavir, ritona-
vir, and nelnavir were used as queries or reference
compounds. Lopinavir and ritonavir have shown activity against
SARS-CoV46,47 and are currently under clinical trials for the
treatment of COVID-19. In addition, molecular dynamics pre-
dicted binding affinity of both molecules for the active site of
SARS-CoV Mpro48 and there is recent evidence of in vitro activity
of lopinavir against SARS-CoV-2.49 Another protease inhibitor
with in vitro activity against SARS-CoV,50 nelnavir, has been
predicted to have high binding affinity to the SARS-CoV-2 Mpro

by molecular dynamics.51,52 Thus, nelnavir was also included
as a reference for the similarity search. Despite those observa-
tions, there is still no conclusive evidence of the effectiveness of
these drugs in the treatment of COVID-19 (ref. 53–57) which
encourages the identication of other existing molecules that
target SARS-CoV-2.

Aer the ligands were prepared (as described in the Methods
Section 2.3), 143 consensus hits from FooDB were found to be
highly similar to nelnavir, lopinavir, and ritonavir (i.e., with
similarity values above than the median plus two standard
deviations). From the 143 consensus hits, 40 compounds with
drug-like properties were selected for more analyses. Five
hundred compounds were selected from the DCM database
with signicantly high Tanimoto similarity values to nelnavir,
lopinavir, and ritonavir. DCM compounds are constantly tested
in HTS assays, and therefore, they were considered to have
suitable physicochemical properties for drug development. In
this sense, it is not surprising that a more signicant number of
consensus hits for the three drugs were found in DCM,
considering that the molecular and physicochemical properties
of DCM do not signicantly differ from approved drugs. In
contrast, FooDB was not assembled to be “drug-like.”

A small dataset of 1052 compounds with predicted affinity to
SARS-CoV-2 Mpro was assembled to broaden the search of
potential Mpro inhibitors. Although these alternative reference
compounds are potentially (but not conrmed) active, it has
been suggested that they can increase the likelihood to identify
active molecules. Such an approach is reminiscent of what has
been described as “turbo-similarity searching”.58 As more data
becomes available, a more chemically diverse and larger set
RSC Adv., 2020, 10, 25089–25099 | 25093
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could be integrated. Meanwhile, the top hits reported in six
peer-reviewed molecular docking studies were
included.9,19,27,34,35,59 Aer ligand preparation, 178 and 174
consensus hits from FooDB and DCM were recovered, respec-
tively. Signicant hits were found for ve of the eight molecular
ngerprints, highlighting the advantages of using multiple
molecular ngerprints.60

Four compounds were overlapping consensus hits from both
similarities searching methods. DBB13044 and DBB18117 from
FooDB, and DCM33835 and DCM97265 from DCM database.

The total number of consensus hits further analyzed by
molecular docking and ADMETox in silico proling was 888
compounds (including stereoisomers).

3.2 Molecular docking

Molecular docking of SARS-CoV Mpro was performed with
Autodock Vina (PDB ID 5N5O). The docking scores for the
reference compounds ranged from �8.5 to �4.1 kcal mol�1,
with a mean value of �6.8 kcal mol�1. Of note, lopinavir, rito-
navir, and nelnavir were included as references. A total of 393
compounds, from the hits selected by molecular similarity, fell
above (less favorable) the mean docking score. However,
Fig. 3 Binding modes of three selected hits within SARS-CoV-2 Mpro (P

25094 | RSC Adv., 2020, 10, 25089–25099
reference compounds with docking scores above the mean
value, such as ebselen (�6.2 kcal mol�1) bound to the active site
of SARS-CoVMpro by four hydrogen bonds with residues Lys141,
Gly143, Ser144, and Cys145. Hence, a hard cut-off value purely
based on docking scores was not established. The docking
scores for the reference compounds docked to SARS-CoV-2 Mpro

carried out in MOE ranged from �9.4 to �5.16 kcal mol�1.
Fig. 3 shows the predicted binding mode of representative

hits compounds with Mpro. As discussed hereunder in the
Section 3.4 Hit Selection (vide infra), the selected hit compounds
shown in Fig. 3 had favorable docking scores with Vina and
MOE and had at least one interaction with the catalytic residues
His41, Cys145 and/or Glu166 (key interactions reported).22

According to the docking models, other important key interac-
tions were observed. DBB2790 makes Pi–H interactions with
sidechain of His 41, H-bond interaction with the sidechain of
Cys 145 and H-bonds interactions with the sidechain and
backbone of Glu 166; DCM78683 makes H-bond interactions
with the sidechain of Asn 142 and Cys 145, and DCM111769
makes Pi–H interactions with Glu 166. These proposed
compounds are predicted to preferentially bind to the P1, P2,
and P3 regions.
DB ID 6LU7) as predicted by Molecular Operating Environment.

This journal is © The Royal Society of Chemistry 2020
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A literature survey revealed that the VS hit DBB2790 (Fig. 3)
has a high structural similarity to compound GC373 (a molecule
with nanomolar activity against Mpro from SARS-CoV-2).61 In
2013 Kim et al. reported GC373 as an inhibitor of Mpro from
feline coronavirus.62 Moreover, the protein–ligand interactions
of both compounds and Mpro are similar. These observations
support the potential antiviral activity of DBB2790.
3.3 ADMETox

For 888 selected hits, the ADMETox-related descriptors were
computed with SwissADME. As described hereunder, some of
these descriptors were used as a guide for the classication of
hit compounds in different priority groups. The main types of
ADMETox descriptors considered were those associated with
drug-likeness, solubility, and cytochromes' inhibition.
3.4 Hit selection

Instead of establishing stringent (and arguably heuristic and
hard) cut-off values, the compounds selected by molecular
similarity were classied into four groups considering their
interactions with the catalytic residues of the SARS-CoV-2 Mpro

(H41 and C145), their commercial availability, ADMETox
characteristics, and their predicted activity by ML. Thereby,
most compounds with suitable proles were classied into
one of the groups. The number of the group is associated with
the priority for acquisition and testing. Table 3 summarizes
the group classication strategy and the number of
compounds that were classied into each group. A further
description of each group is presented below.

Group 1 includes commercially available compounds that
meet our safety criteria (based on the predictions of Swis-
sADME), i.e., they do not have PAINS alerts, do not pass through
the BBB, and do not inhibit CYP1A2, CYP2C19, CYP2C9,
CYP2D6 or CYP3A4. The molecules in this group are predicted
to form hydrogen bonds with at least one of the catalytic resi-
dues of PDB ID 6LU7. Table 4 summarizes the 41 molecules that
fell into this top priority group.

Group 2 comprises ten commercially available compounds
that are predicted to be active by ML, but they violate one of the
other two criteria. They can meet our safety criteria and do not
form hydrogen bonds with the catalytic residues. Else, they can
Table 3 Summary of the classification criteria to prioritize the compound
indicated

Group
Number of
compounds

Commercial
availabilitya

In silico
safety cr

1 41 Available Safe
2 10 Available Safe

Available Not safe
3 34 Not available Safe
4 20 Not available Safe

Not available Not safe

a Compounds reported as “in-stock” in the ZINC database were considered
not pass through the BBB, and are predicted to not inhibit CYP1A2, CYP2

This journal is © The Royal Society of Chemistry 2020
form hydrogen bonds with the catalytic residues but do not
meet our safety criteria.

Group 3 consists of 34 molecules that are not commercially
available but meet the safety criteria and form hydrogen bonds
with at least one of the catalytic residues. These compounds
would be suited for synthesis and testing.

Group 4 contains 20 molecules that are not commercially
available and are predicted to be active by ML. However, they do
not meet the safety criteria or do not form hydrogen bonds with
the catalytic residues. According to our classication,
compounds in this group would have the lowest priority for
acquiring (synthesizing since they are not commercially avail-
able) and testing. Compounds that do not fall into any of these
four groups were considered as non-priority for acquisition.

Table 4 summarizes the in silico prole of representative hit
compounds selected for experimental validation.

Table 5 summarizes the information of 18 compounds listed
in group 1 from FooDB with their corresponding IDs and
annotated sources. Interestingly, some of the selected hits that
were structurally similar to potential Mpro inhibitors were from
endogenous sources. For instance, angiotensin II (DBB9450)
and angiotensin IV (DBB5554) (a degradation product) were
predicted as binders of the active site of SARS-CoV-2 Mpro. Key
interactions predicted were hydrogen-bonds with His41, Ser46,
Cys145, Gln189 (DBB9450) and Thr26, Met49, Cys145, and
Glu166 (DBB5554). Angiotensin II (ANG-II) is an octapeptide
hormone product of angiotensin I's cleavage by the angiotensin-
converting enzyme (ACE). ANG-II binds to AT1 and AT2 recep-
tors; the activation of AT1 receptors by ANG-II induces vaso-
constriction, vasopressin and aldosterone release, thirst, renal
sodium reabsorption, angiogenesis, vascular aging, and
inammation. ANG-II can be converted to angiotensin 1–7 by
the angiotensin-converting enzyme II (ACE2). The action of
aminopeptidase A and aminopeptidase N produces angiotensin
III and angiotensin IV, respectively.

Angiotensin 1–7 has opposite actions to ANG-II. Because
ACE2 mediates the entry of SARS-CoV-2 to the host cells and
ACE2 activity may be downregulated aer virus infection, the
accumulation of ANG-II could be linked to the development of
severe symptoms of COVID-19 disease. If Mpro inhibitors are
structurally similar to ANG-II, their potential binding affinity for
the active site of ACE2 should be evaluated. Some studies have
s in four groups for testing. The number of compounds in each group is

iteriab
Hydrogen bonds with
H41 or C145

Active according
to machine learning

Present Active/inactive
Not present Active
Present Active
Present Active/inactive
Not present Active
Present Active

commercially available. b Compounds that do not have PAINS alerts, do
C19, CYP2C9, CYP2D6 or CYP3A4.
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Table 5 Representative food chemicals as hits in the virtual screening

IDs FooDB annotation

DBB9450/FDB022383 Angiotensin II, endogenous
DBB5554/FDB022385 Angiotensin IV
DBB2790/FDB023765 Tetragastrin, endogenous
DBB2455/FDB023767 Morphiceptin, endogenous
DBB13825/FDB031192 Tetrahydrofolate
DBB13483/FDB013079 Neotame, articial sweetener
DBB13002/FDB022600 5-Methyltetrahydrofolic acid (5-MTHF)
DBB14163/FDB014504 Folic acid
DBB13917/FDB022702 Aminopterin
DBB13919/FDB022395 Dihydrofolic acid
DBB17132/FDB028374 Phenylbutyrylglutamine,

metabolite of phenylbutyrate
DBB20185/FDB003618 Gamma-L-glutamyl-L-phenylalanine,

so-necked garlic
DBB17114/FDB029352 Indole acetyl glutamine, endogenous
DBB18961/FDB023789 N4-Acetylcytidine, endogenous
DBB18947/FDB022917 5-Methyldeoxycytidine (5-mdc)
DBB19736/FDB012937 Carnosine 44A
DBB19719/FDB022217 Homocarnosine, metabolite
DBB21857/FDB022212 Hydroxyphenylacetylglycine,

endogenous human metabolite
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assessed the ability of ACE2 inhibitors to prevent SARS-CoV
from entering into the cells.64 However, the inhibition of the
ACE2 function could cause overaccumulation of ANG-II and
promote its undesired effects.

Nonetheless, probably, DCM compounds may not elicit
a dual inhibition of SARS-CoV-2 Mpro and ACE2, considering
that these molecules had shown no activity against common
targets evaluated in HTS assays.

Food folates like 5-MTHF, folic acid, dihydrofolic acid, and
tetrahydrofolate (Table 5) were also among the compounds in
the top priority group with observed hydrogen bonds to the
catalytic residues of the SARS-CoV-2 Mpro, and favorable dock-
ing scores (below �7.4 kcal mol�1). Folates are cofactors in
many one-carbon transfer reactions, including nucleotide
synthesis for DNA and RNA synthesis, interconversion of serine
and glycine, methionine generation and methylation of
histones, DNA, proteins, phospholipids, and neurotransmit-
ters. Folate deciency has been linked to neural tube defects,
brain dysfunction, coronary heart disease, and increased risk of
colorectal and breast cancer.65 Since mammalian cells cannot
synthesize de novo folate, naturally occurring food folates and
synthetic folic acid are used in dietary supplements and forti-
ed food.

Nevertheless, recent studies showed that a high intake of
folic acid might be associated with a risk of developing
leukemia and other conditions such as cancer, arthritis, insulin
resistance, and masking deciency of vitamin B12.66 Thus, the
implications of low and high plasma levels of folates in COVID-
19 patients must be evaluated. Our results suggest that folates
could inhibit SARS-CoV-2 Mpro, but their activity in in vitro and
in vivo assays remains to be conrmed. To broaden our
knowledge of the impact of a healthy diet, and the specic
mechanisms through which food chemicals participate in the
This journal is © The Royal Society of Chemistry 2020
progression of COVID-19 disease could be a simple approach
for the prevention and combat of the current pandemic.

Intriguingly, aminopterin (DBB13917), a folic acid analog
that inhibits the dihydrofolate reductase enzyme was also
a potential Mpro inhibitor. Aminopterin is one of the so-called
antifolates that interfere with folate metabolism and in turn
nucleotide synthesis. Currently, an aminopterin analog with
less toxic effects, methotrexate, is under clinical trials for the
treatment of COVID-19 disease (NCT04352465). Methotrexate is
an immunosuppressant used in the treatment of cancer and
inammatory conditions; it is oen concurrently administered
with folic acid.
3.5 Top-ranked hits from deep docking of ZINC

The ten top-ranked compounds from the analysis conducted by
Ton et al. were included in this study (vide supra).9 Even though
the ML model did not predict activity against the main protease
for these molecules, they represent new hits selected from
billions of compounds in the ZINC database. They had good
docking scores in our analyses, and three of them
ZINC1218583693, ZINC1186058814, and ZINC1655436520 met
our safety criteria and had interactions with the catalytic resi-
dues of SARS-CoV-2 Mpro. Furthermore, ZINC1655436520 also
formed hydrogen bonds with residues Phe140, Leu141, Gly143,
Ser144, Cys145, and Glu166 of SARS-CoV Mpro, it is predicted to
have good water solubility and high GI absorption, and it does
not violate Lipinski's, Ghose, Veber, Egan or Muegge rules.
4. Conclusions

Herein we report a consensus structure- and ligand-based
virtual screening of two large chemical databases, namely,
22 880 food chemicals and 139 329 compounds classied as
dark chemical matter to identify potential drug candidates for
the treatment of COVID-19 targeting the SARS-CoV-2 Mpro. This
work is part of our continued effort to identify systematically
bioactive food chemicals.67 We also screened top-ranked hits
identied in a previous VS of 1.6 billion molecules from ZINC
using Glide.9 The similarity searching was done following two
approaches. The rst approach yielded 40 drug-like food
chemicals and 500 DCM molecules with high similarity to nel-
navir, lopinavir, and ritonavir. The data fusion approach
returned 178 food chemicals and 174 DCM compounds. In
total, 888 hit compounds were subject to molecular docking
with two docking programs. The hit compounds were selected
considering docking score, predicted interactions with key
residues, and ADMETox proling. An additional criterion used
as a guide was a prediction by ML models developed by
collaborators in North Carolina, USA.68 Aer the selection
criteria, 105 hits in total were identied, of which several are
commercially available (and with reasonable prices) and ready
for experimental testing. The full list of hit compounds anno-
tated with the in silico prole is available in the ESI.† We
disclose that a preliminary version of this work is available as
a preprint.69 This work contributes to a global effort to screen
compound databases from different sources aimed at
RSC Adv., 2020, 10, 25089–25099 | 25097
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identifying candidate drugs for the treatment of COVID-19. To
the best of our knowledge, this is one of the rst reports to
systematically screen a large food chemical database and one of
the rst to explore the molecules in DCM for COVID-19.
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