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spects for accelerating materials
science with automated and autonomous
workflows

Helge S. Stein a and John M. Gregoire *ab

Accelerating materials research by integrating automation with artificial intelligence is increasingly

recognized as a grand scientific challenge to discover and develop materials for emerging and future

technologies. While the solid state materials science community has demonstrated a broad range of high

throughput methods and effectively leveraged computational techniques to accelerate individual

research tasks, revolutionary acceleration of materials discovery has yet to be fully realized. This

perspective review presents a framework and ontology to outline a materials experiment lifecycle and

visualize materials discovery workflows, providing a context for mapping the realized levels of

automation and the next generation of autonomous loops in terms of scientific and automation

complexity. Expanding autonomous loops to encompass larger portions of complex workflows will

require integration of a range of experimental techniques as well as automation of expert decisions,

including subtle reasoning about data quality, responses to unexpected data, and model design. Recent

demonstrations of workflows that integrate multiple techniques and include autonomous loops,

combined with emerging advancements in artificial intelligence and high throughput experimentation,

signal the imminence of a revolution in materials discovery.
Introduction

Grand missions, such as combating climate change through
proliferation of renewable energy technologies, necessitate
technological advancements for which discovery of functional
materials is oen a prerequisite.1,2 Historically, transformative
materials discoveries have been the result of serendipity from
experimenting in a related area and/or decades of systematic
materials development.1 Early examples of automated synthesis
and screening techniques were implemented3–11 to accelerate
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both processes,12 for example in the identication of a hyster-
esis-free shape memory alloy.13 Continued automation of
materials experiments is motivated by potential benets
including lowering per-experiment costs and eliminating
human error, and to enable active learning-driven experiments
that identify and explore the most promising regions of mate-
rials parameter space.12,14 In solid state materials science,
advancements in automation have largely been driven by the
combinatorial materials science community, where compre-
hensive exploration of a high dimensional materials parameter
space requires a substantial number of synthesis and screening
experiments. While these efforts have provided automation of
individual research tasks for a wide variety of materials and
functional properties, manual execution of several experiment
Dr John Gregoire leads the High Throughput Experimentation
group at Caltech where he is also the Thrust Coordinator for
Photoelectrocatalysis in the Joint Center for Articial Photosyn-
thesis, a U.S. DOE Energy Innovation Hub. His research team
explores, discovers and understands energy-related materials via
combinatorial and high throughput experimental methods and
their integration with materials theory and articial intelligence.
The group seeks to accelerate scientic discovery by automating
critical components of materials discovery workows, from
synthesis and screening to data interpretation.
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steps, as well as manual design of experiments and data inter-
pretation, result in partially-automated workows. The
emerging vision of autonomous materials discovery12,15 requires
a higher level of automation. Establishment of an autonomous
workow is referred to as “closing the loop” since complete
task-to-task integration is required to allow computer-
controlled iteration. Initial14,16 and ongoing progress towards
realizing such closed-loop systems can be tracked by the level of
process automation and integration in a workow.

Sanchez-Lengeling and Aspuru-Guzik17 recently described
the advent of closed-loop experimentation as a paradigm shi
in materials and molecular discovery. The illustration of Fig. 1
provides the high level template of a closed-loop workow, and
in the present work we critically review the progress towards
this vision in solid materials experiments. The integration of
sequential automated processes is challenging due to the need
for mutually compatible parameters and planning, with
requirements spanning from a commensurate sample format,
to a protocol for decision-making based on results from the
prior experiment, and to the identication of measurement
failure. To facilitate the analysis of where process integration
has been successfully implemented as well as the remaining
challenges, we present a framework and ontology for the auto-
mation of the materials experiment lifecycle.

The exploration of vast materials spaces (i.e. composition,
structure, processing, morphology) via combinatorial materials
science has yielded a wide variety of discoveries and advance-
ments in fundamental knowledge14,18–20 and has additionally
produced experiment databases with unprecedented breadth of
materials andmeasured properties, as exemplied by the recent
publication of the High Throughput Experimental Materials
database (HTEM)21 based on photovoltaics materials and the
Materials Experiments and Analysis Database (MEAD)22 based
on solar fuels materials. These compilations of raw and
Fig. 1 High level comparison of paradigms for materials/molecular scien
closed-loop discovery utilizing inverse design and a tightly integrated w
Figure reproduced from Science, 361, 6400, 360–365 with permission f

This journal is © The Royal Society of Chemistry 2019
analyzed23 data from individual combinatorial materials
science laboratories complement the suite of computational
materials databases60,61 as well as a rapidly growing number of
materials data repositories including the Citrination platform,24

the Materials Data Facility (MDF),25 and text mining of the
literature.26 For the purposes of the present analysis of auto-
mating12,16,27 materials science workows, these databases serve
as successful examples of experiment automation and as
resources that can be used to accelerate experiment planning,
for example by training machine learning models to identify
promising materials. In such planning, it is important to note
complementary search goals of optimizing a given material
property and establishing relationships that represent funda-
mental materials knowledge. Mapping composition–structure–
processing–function relationships28–30 is a tenet of combinato-
rial materials research,28–30 which contrasts with direct imple-
mentation of active learning to optimize31 one or a few
properties without requiring acquisition of data to elucidate the
underpinnings of the materials optimization. Indeed the
experiment workow and its operation must be designed to
meet the specic research goals, although workow automation
is important for acceleratingmany different modes of discovery.

We discuss the lifecycle of materials science experiments
and the three primary stages of workow acceleration, (i) the
integration of new techniques into traditional research tasks to
accelerate process throughput, (ii) the integration of research
tasks into a cohesive workow to mitigate bottlenecks, and (iii)
integration of tasks with automated analysis and decisions to
close experiment loops and enable autonomous iteration
thereof. We nd that the solid state materials science commu-
nity has demonstrated tremendous progress in the rst stage,
substantial progress in the second stage including high
throughput workows, and seminal demonstrations in the
third stage with relatively simple workows, making concurrent
ces. Left: current paradigm exemplified with redox flow batteries. Right:
orkflow to enable faster identification, scale-up and manufacturing.
rom The American Association for the Advancement of Science.
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advancement of both the level of autonomy and extent of the
workow a priority research direction.
Fig. 2 (a) Overview of core research tasks with arrows indicating the
cyclic execution of a traditional materials science experimental
workflow. (b) Acceleration of each task in a workflow can be obtained
by incorporating acceleration technique(s), as represented by these 6
types of accelerators.
The experimental materials science
research lifecycle

At a high level, the experiment lifecycle† for functional mate-
rials discovery consists of a set of core research tasks:
synthesis, processing, characterization and performance
evaluation. This set transcends the specic techniques used to
perform each task, and their generality is evident in their
consistent discussion in reviews,1,32 laboratory workow
descriptions,6,33,34 and database designs for high throughput
materials science.5,6,10,32,35–37 Oen unmentioned, though
virtually always performed, are the additional core research
tasks of planning, data management, data interpretation, and
quality control. Individual and sequences of experiments
require these tasks, with the extent and style varying with
research strategy. In a traditional materials experiment, the 4
experiment tasks are performed manually, as are the
complementary 4 tasks, for example planning via a stated
hypothesis and data management via lab notebooks. The
corresponding workow can be represented as shown in
Fig. 2a and represents the foundation on which more
advanced and accelerated workows are built. As noted above,
the rst stage of workow acceleration involves implementa-
tion of techniques we refer to as “accelerators” into one or
more of the workow tasks. Classifying all possible accelera-
tors is more subjective than the above classication of work-
ow tasks, and for the present work we nd the 6 accelerators
noted in Fig. 2b enable effective annotation of experimental
workows from the literature. Some accelerator-task combi-
nations are readily achievable, for example parallelization of
processing by annealing multiple materials in a furnace. Other
combinations may not be meaningful, such as active learning
of data management. Of the many combinations that are both
meaningful and impactful, some have been effectively realized
while others are opportunities for further experiment accel-
eration, as summarized below for each accelerator.
Automation and parallelization

Automated execution of a serial experiment typically involves
incorporation of robotics into a traditional experiment. Par-
allelization typically involves development of custom instru-
mentation to performmany experiments simultaneously. Both
approaches are commonly used in combinatorial materials
science where accelerated synthesis techniques include co-
sputtering,6 co-evaporation,10 ink-jet printing,38 combinatorial
ball-milling,39 high-throughput hydrothermal synthesis,40,41

and bulk ceramic hot-pressing.42 Similarly, the acceleration of
the characterization of materials properties and evaluation of
performance for a target functionality have been the focus of
† There are different terms to describe the sequence and interplay of basic
research tasks such as materials pipeline, materials highway, or materials
platform.

9642 | Chem. Sci., 2019, 10, 9640–9649
extensive methods development in the past two decades, with
notable demonstrations including electrochemical testing,43–46

X-ray diffraction,47–49 processing,9,50,51 optical spectroscopy,52,53

electric properties,65,66 shape memory,13,54 and phase
dynamics.9 These advancements in experiment automation
have undoubtedly led to discoveries that would not have been
made in the same time frame using traditional techniques.
Automation and parallelization-based removal of synthesis
and characterization bottlenecks introduces new challenges
for further acceleration of materials discovery, which are
generally being addressed with data and data science-related
accelerators.
Data repositories

As noted above, the emergence of experiment databases from
high throughput experimentation offer opportunities for data-
based accelerations. The established uses of data repositories
for accelerating research tasks include the data interpretation
for crystallography by matching X-ray diffraction patterns to
those from a database,55 planning synthesis based on phase
diagrams,56 and planning catalyst performance evaluation
using computational databases of Pourbaix stability.57,58 Data-
driven discoveries are typically enabled by a data repository
produced via careful data management. While guidelines such
as FAIR59 exist, these general guidelines focus on data dissem-
ination and do not express the data management requirements
for establishing autonomous loops, which require fully auto-
mated data ingestion and seamless communication between
experimental tasks.
This journal is © The Royal Society of Chemistry 2019
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Machine learning

Acceleration by Machine Learning (ML) models encompasses
a broad range of applications of computer science algorithms to
perform regression, classication or embedding tasks. The
recent literature abounds with discussions of the existing and
potential impact of ML in materials research. Given recent
reviews covering this topic,62 the present discussion focuses on its
role in experiment workows. ML-based acceleration of research
tasks typically involves either research planning or data inter-
pretation through evaluation of MLmodels trained on prior data.
Representative examples include selection of composition spaces
for exploring metallic glasses based on ML predictions of glass
forming ability70 and identication of ultraincompressible
materials.71 ML methods have also been developed to accelerate
data interpretation in areas including phase mapping from XRD
patterns,18 microscopy data,51 signal identication in spectros-
copy data,73 annotation of microstructure images,74 and visuali-
zation of complex compositions.34,73 ML methods can also be
developed into active learning and reasoning techniques,
although due to their different roles with respect to experiments,
those techniques are discussed separately, as detailed below.
Active learning

Active learning involves the choice of the next experiment based
on an acquisition function that typically requires a prediction
for a gure of merit and the uncertainty thereof.75 ML models
are used for the prediction and uncertainty estimation, with
a distinguishing feature of active learning being the need to
update the model in real time during execution of the experi-
mental workow. Active learning is a key component of closed-
loop workows that can ultimately yield self-driving laborato-
ries.44 Algorithms such as Phoenics63 have been specically
developed for chemistry experiments and integrated into
workow management soware such as ChemOS.64 The carbon
nanotube (CNT) autonomous research system (ARES) project,65

which is discussed further below, is an example of a closed-loop
system of a workow where tasks such as data interpretation are
readily automated. There have been additional implementa-
tions of active learning in materials science to accelerate indi-
vidual tasks, for example by acquiring only the necessary X-ray
diffraction patterns for phase diagram characterization.66

Sophisticated examples of active learning in related elds
including functional genomics,67 separations optimization,64

and multi objective molecular optimization for small molecule
drug discovery.68 While many optimization-oriented searches
are amenable to acceleration via active learning, its utility for
materials discovery has yet to be sufficiently explored and
demonstrated, making the above examples a springboard for
assessing the ability of active learning to accelerate complex
experimental workows and the generation of fundamental
understanding in materials science.
Automated reasoning

For complex measurement workows where competing interpre-
tations of the data need to be considered or a model needs to be
This journal is © The Royal Society of Chemistry 2019
reinterpreted given the most recent measurements, the data
interpretation, quality control, and planning tasks are not readily
automated with existing algorithms, motivating the development
of automated reasoning to accelerate these tasks with AI methods
that mimic and/or supersede human execution of these tasks (i.e.
“superhuman performance”69). Examples of automated incorpo-
ration of physics and chemistry-based models into such tasks
include tuning the morphology of a thin lm based on a structure
zone diagram51 andne-tuning the composition to obtain a desired
doping type in semiconducting metal oxides based on spinel
doping rules.70 The opportunity for AI development in this area is
the topic of a recent perspective,69 and among the promising
research directions is the establishment of generative models that
expand the purview of active learning to design materials based on
desired properties.71 While inverse design has been successfully
demonstrated for discovery of functional materials,70–73 integration
into automated workows remains a challenge for solid state
materials research. The corresponding high level challenge for
closed-loop experimentation of solid state materials is that the
scope of a given automated synthesis tool is oen quite limited
compared to the scope of materials that may be predicted by an
active learning or inverse design algorithm. In organic synthesis,
for example, there has been more success in developing workows
that encompass the entirety of the synthesis scope of interest,
enabling deeper integration of automated reasoning.17
Integration of tasks into a workflow

The most common type of accelerated discovery workow
consists of an automation-accelerated synthesis and an
automation-accelerated characterization or performance evalua-
tion, followed by extensive manual analysis, interpretation, and
planning of both additional characterization experiments and
future iterations of the workow. Most commonly the highly
automated instruments require manual interfacing (e.g. align-
ment, measurement parameter setup, supervision for quality
control), where an increased human involvement corresponds to
a lower degree of integration. To simplify the present discussion,
we consider two classes of task integration with the dis-
tinguishing feature being whether expert involvement is
required, which designates the integration as “expert mediated”
and indicates the integration is incomplete. This level of inte-
gration is prone to creating bottlenecks due to the scarcity of
experts. Technique integration by robotics is not distinguished
from integration by trained technicians in the present work
because the resulting impact on workow throughput requires
more in-depth evaluation of the specic workow.

To further illustrate how accelerated materials experiments
have been integrated, we inspect four reported projects and
construct the corresponding workows in Fig. 3. Each workow
exhibits unique aspects that collectively frame the state of the
art in accelerated materials discovery and illustrate the intri-
cacies of workow acceleration. The scope of each workow
schematic is the sequence of tasks described in the respective
publications, and the largest demonstrated equivalent of
traditional experimentation is provided for each workow.
Chem. Sci., 2019, 10, 9640–9649 | 9643
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The primary example of closed-loop discovery in solid state
materials science is the ARES project for carbon nanotube
synthesis. Nikolaev et al.14 demonstrated optimization of
carbon nanotube growth with a workow that mitigates expert-
mediated integration and features acceleration by automation
and active learning. Automated control of growth temperature,
pressure, and atmospheric conditions enables a unique growth
condition in each experiment, with a series of experiments
performed by spatially addressing an array of seeds on
a substrate. Processing and characterization are intertwined as
laser illumination provides both heating and excitation for
Fig. 3 Workflow diagrams of accelerated materials experimentation span
Nikolaev et al.,14 (b) Yan et al.,20 (c) Kusne et al.,66 and (d) Li et al.,29 each wo
task-to-task integration. The productivity for a single pass through the wo
experiments for (a)–(c) and duration of traditional experiments for (d).
iterations per workflow execution (bold), and in (a) and (c) the percentag

9644 | Chem. Sci., 2019, 10, 9640–9649
Raman spectroscopy, producing spectrograms that are analyzed
to determine the nanotube growth rate.14,65 With this materials
characterization also providing the gure of merit, the workow
contains no further performance evaluation. The automated
data management and interpretation enables closed-loop
operation for up to approximately 100 growth experiments
planned by active learning-based selection of growth condi-
tions. Expert intervention in this closed loop occurs occasion-
ally (estimated to be 1–3%) to assess the quality of the active
learning and adjust the objective as necessary. Upon exhaustion
ning a range of techniques, strategies and research goals. Based on (a)
rkflow involves accelerated tasks with various levels of automation and
rkflow is noted, corresponding to the number of equivalent traditional
Feedback loops are each labelled with the approximate number of
e of iterations involving expert mediation is also approximated (italics).

This journal is © The Royal Society of Chemistry 2019
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Fig. 4 Visualization of the landscape of materials experiment work-
flow in terms of the scientific complexity of automated tasks and the
workflow automation complexity, which is based on the number,
variety, speed, and difficulty of experimental steps in the workflow. The
advancements in combinatorial materials science and high throughput
experimentation (CMS/HTE) have been largely along this latter (hori-
zontal) axis, and initial demonstrations of autonomous loops have
made progress on the former (vertical) axis with automation of more
intellectually challenging research tasks. The nominal location of the 4
workflows from Fig. 3 are noted by stars. While research will push the
frontier of automated experiments along both axes (arrows with
italics), the most complex scientific tasks will remain the responsibility
of human experts for the foreseeable future.
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of the array of CNT growth seeds, manual intervention is
required to change samples and restart the workow.

The photoanode discovery pipeline in Fig. 2b represents the
tiered screening by Yan et al.20 that includes both theory and
experiment-based down-selection of candidate metal oxides.
With respect to the experiments, the computational screening is
an accelerant and represented as such in the planning task. The
Materials Project database60 serves as the primary repository, with
additional calculations specic to photoanode screening, and
while these calculations are critical to the success of the work,
they are not fully integrated into the experimental workow.
Synthesis, processing, characterization, and performance evalu-
ation are accelerated using automation, with tens to thousands of
materials being synthesized or measured automatically. While
this sequence of tasks is in principle amenable to more autono-
mous operation, setup and selection on meaningful experi-
mental conditions are chosen by an expert, resulting in expert
mediated linkages in the workow. The heavy use of paralleli-
zation and automation is supported by automatic data manage-
ment and quality control, with data interpretation requiring
expert mediation. A key attribute of this workow is the estab-
lishment of automated techniques for a large breadth of experi-
mental tasks, from synthesis to performance evaluation, that can
operate on libraries with up to ca. 2000 unique materials.74 The
research strategy involves collection of combinatorial materials
datasets that facilitate data interpretation and scientic
discovery, as well as evaluation of every prediction from the
computational screening to assess its efficacy. These aspects of
the research limit the value of further task-to-task integration and
application of active learning, with the broader message being
that the impact of the closed-loop concept varies with research
strategy and goals.

The workow of Fig. 3c describes a different implementation
of combinatorial materials science for studying functional
materials where synthesis, processing and performance evalu-
ation are accelerated by parallelization and automation with
expert-mediated integration similar to that of Fig. 3b. The
unique aspect of this work is the use of an active learning loop
in the middle of the workow to accelerate the mapping of
phase boundaries in a composition library, demonstrating the
use of active learning in a sub-workow to accelerate a bottle-
neck experiment (and save valuable beamline time). The
synchrotron X-ray diffraction (XRD) characterization described
by Kusne et al.66 includes on-the-y data interpretation and
automated selection of the next composition for XRD
measurements, with occasional expert supervision of the
clustering-based identication of pure-phase patterns.

The atomic-scale phase evolution workow by Li et al.29

illustrated in Fig. 3d uses a specialized nanometer sized reactor
to assess phase stability with ca. 1 hour of experiment time
yielding the same data as over 500 days of annealing in tradi-
tional bulk experiments. Using data repositories of phase
diagrams and stability ranges of multicomponent complex
metal alloys to plan synthesis, an array of 36 reactors is
deposited, for example with equiatomic mixtures of the Cantor
alloy Cr–Mn–Fe–Co–Ni.75 The loop in this workow is based on
the step-wise annealing of the reactor array with subsequent
This journal is © The Royal Society of Chemistry 2019
atom probe tomography (APT) characterization aer each pro-
cessing step. Each APT characterization involves destruction of
one of the reactors, and the number of reactors is made to be
several times larger than the number of processing steps due to
routine failure of the APT measurement. The critical advance-
ment enabled by a small autonomous loop is the real-time
monitoring of APT data acquisition with well-integrated
quality control. Data interpretation is performed by compar-
ison to external data and visualization is done through
a machine learning model.30,76 The richness of the APT data
coupled with signicant annealing time reduction yields high
throughput knowledge generation even though the workow
contains mostly expert-mediated integration of tasks. Increased
autonomy in the workow would only be warranted aer
substantial advances in automated data interpretation.

For each of these workows, the nominal time to execute the
entire workow is on the order of 1 day. The equivalent number
of passes through a traditional workow, or the number of days
of traditional experimentation to produce the equivalent data,
provides the nominal acceleration factor of the workow, which
is only equal to the acceleration factor of knowledge discovery if
the selection of experiments and quality of the resulting data is
equivalent to those of traditional experiments. Assessment of
such data value is beyond the scope of the present discussion
but remains a critical consideration for quantifying workow
acceleration, particularly in settings where the research goals
involve understanding the underlying materials science as
opposed to performance optimization.
Chem. Sci., 2019, 10, 9640–9649 | 9645

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/c9sc03766g


Chemical Science Minireview

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 2

0 
de

 s
et

em
br

e 
20

19
. D

ow
nl

oa
de

d 
on

 1
6/

2/
20

26
 1

1:
32

:3
4.

 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n 

3.
0 

U
np

or
te

d 
L

ic
en

ce
.

View Article Online
Conclusions and outlook

The urgent need for better materials demands faster turn-
around cycles from basic research, such that better, more effi-
cient, more eco friendly, and more economically viable
materials can enter the market sooner than the traditionally
observed 40 years.1 Accelerated materials experiment workows
have been demonstrated to increase throughput by up to a few
orders of magnitude compared to traditional methods.
Surveying the reported workows reveals two primary areas for
workow sophistication, the integration of sequential tasks
without requiring expert involvement and the expansion of
feedback loops to incorporate a larger fraction of the workow
tasks. The ARES workow achieves both of these goals with
a relatively small workow compared to the functional mate-
rials discovery research where the variety of characterization
and performance evaluation experiments increases the number
of workow tasks as well as the demands on data management,
data interpretation, and quality control.

To visualize progress to date and the expected advances from
ongoing research, Fig. 4 illustrates the continuum of materials
workows in terms of the scientic complexity and workow
automation complexity. To elucidate our intended meaning of
scientic complexity, representative tasks spanning minimal
complexity to very complex are listed. Arguably the most impor-
tant aspect of a successful science program is the ability to
identify interesting problems and ask the important questions
that guide research activities. These tasks are beyond the purview
of present autonomous research and will be for the foreseeable
future. Advances in natural language processing for materials
science may automate aspects of scientic communication, but
critical analysis of the literature and communication of the
insights provided by a given experiment will continue to rely on
human intellect for the foreseeable future.

Determining the most effective advancements in a materials
experiment workow requires critical evaluation of bottlenecks
for progress against the research goals. Even when expert
mediation is required between tasks, workow throughput is
oen limited by the manual steps at the front and back ends of
automated experiments. These peripheral activities, which fall
under the intermediate “complicated” level of scientic
complexity in Fig. 4, can be difficult (or currently impossible) to
fully automate due to the routine use of expert knowledge, for
example in judgement of data quality based on extensive
previous experience with related data. Advances in articial
intelligence (AI) for materials encompasses a wide variety of
strategies for addressing these challenges, which will be critical
for expanding the scope of autonomous loops. This approach to
pushing the frontier of materials workows is illustrated by the
“Materials AI” arrow in Fig. 4 and will ideally accompany the
expansion of autonomous loops to include more complex and
a larger variety of experimental tasks. This complementary
approach to pushing the frontier of materials workows is
illustrated by the “Build on HTE” arrow due to the demon-
strated successes in experiment automation from the high
throughput experimentation community. The ability to leverage
9646 | Chem. Sci., 2019, 10, 9640–9649
this existing work makes autonomous workows more readily
extendable into complex automation as compared to the
extremes of complex scientic reasoning.

An outstanding question with regard to the next generation
of experimental workows is how to best combat human biases
that can severely limit innovation.77 Advanced autonomous
experimentation may remove biases within a given search space
through computationally designed experiments. However, the
scope of the search space is limited by both instrument capa-
bilities and active learning strategy, whose designs originate
with human identication of the materials space of interest. To
the extent that human biases disseminate from the “complex”
scientic tasks of Fig. 4, bias removal within an autonomous
workow must be complemented by sociological solutions for
removing bias in decisions beyond the experiment workow.

We are aware of several research groups that are building
autonomous experiments in the "next generation" regime of
Fig. 4, including emerging reports from perovskite synthesis78

and molecular materials for of organic photovoltaics79 and
organic hole transport materials.80 Continuation of these
concerted efforts to increase automation and develop tailored
AI algorithms will enable the materials science community to
realize a paradigm shi in scientic discovery where expert
scientists can dedicate a substantially larger fraction of their
time to performing the critical tasks of identifying important
problems and communicating critical insights.
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