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The development of drugs to treat cancer is hampered by the inefficiency of translating pre-clinical in vitro

monoculture and mouse studies into clinical benefit. There is a critical need to improve the accuracy of

evaluating pre-clinical drug efficacy through the development of more physiologically relevant models. In

this study, a human triculture 3D in vitro tumor microenvironment system (TMES) was engineered to accu-

rately mimic the tumor microenvironment. The TMES recapitulates tumor hemodynamics and biological

transport with co-cultured human microvascular endothelial cells, pancreatic ductal adenocarcinoma, and

pancreatic stellate cells. We demonstrate that significant tumor cell transcriptomic changes occur in the

TMES that correlate with the in vivo xenograft and patient transcriptome. Treatment with therapeutically

relevant doses of chemotherapeutics yields responses paralleling the patients' clinical responses. Thus, this

model provides a unique platform to rigorously evaluate novel therapies and is amenable to using patient

tumor material directly, with applicability for patient avatars.

Introduction

Cancer remains a leading cause of death, despite enormous
efforts to find cures. One of the significant challenges in can-
cer therapy is the development and application of models that
recapitulate in vivo biology and are predictive of clinical out-
comes. Traditional in vitro systems do not accurately predict
efficacy or safety of anticancer therapies in humans.1 Retro-
spectively, this is unsurprising given the difference between
the environment of cancer cells grown in 2-dimensional space
and those within the complex tumor microenvironment. New
in vitro models are being developed to address the deficien-
cies in current systems, including spheroids, organoids,
organotypic tumor models, and novel ex vivo systems, all of
which have significant promise. However, as with all model
systems, there are limitations; these systems do not capture
the full complement of tumor biology, including vascular he-
modynamics or shear forces and transport.

In vivo mouse xenograft systems remain the gold standard
for pre-clinical studies. However, in vivo xenografts from
long-cultured tumor cell lines have significant limitations
and historically have a poor correlation with human clinical
outcomes.2 New models of patient-derived xenografts (PDXs)
may have predictive value, having shown some success in
predicting the clinical response of drugs in development.3

PDXs preserve the histopathology, tumor heterogeneity, gene
expression, and genetic mutant tumor drivers.4,5 However,
PDXs have significant limitations, including the time and
cost to generate, as well as low tumor take rates and the
selection for the most aggressive tumor subtypes.6 Recently,
it has also been shown that PDXs can undergo significant se-
lection of preexisting subclones driven by the mouse
microenvironment.7

3D in vitro systems for cancer, derived from murine or hu-
man-induced pluripotent stem cells (iPSCs) and patient tu-
mors, have been used for drug screens and to effectively iden-
tify molecular pathways involved in disease progression.8,9

3D spheroids are the most widely used 3D culture system,
and have been used as a preclinical cancer therapy screening
tool. While these systems have clear advantages over stan-
dard 2D static tissue culture, these models do have limita-
tions, including the lack of vascular systems that regulate ox-
ygenation, as well as nutrient and waste removal.10 Some 3D
systems use microvessel fabrication to generate a vascular
system using either a predefined ECM scaffold or enabling
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microvessel self-assembly.11 These systems often have re-
stricted vessel size and random vessel networks, creating dis-
ordered and non-physiologic flow.

Ex vivo explant systems preserve the tumor microenviron-
ment by histologic analysis.9,12 However, the explants survive
only for a few days and the most sophisticated ex vivo sys-
tems require autologous and exogenous serum and growth
factor supplementation. Recent results with patient explants
are encouraging and indicate that the responses may reflect
responses in the clinical setting.13 These ex vivo systems im-
prove retention of the cancer tumor microenvironment; how-
ever, they still lack integration of vascular shear stress and
biological transport, which have been shown to be critical ele-
ments for preclinical models of tissue and organ behavior.14,15

Herein we describe the development and validation of a
novel tumor microenvironment system (TMES). We have de-
veloped a multi-cellular 3D in vitro system for pancreatic duc-
tal adenocarcinoma (PDAC). This system combines microvas-
cular endothelial cells exposed to tumor capillary
hemodynamics, stromal cells, and low passage, patient-
derived PDAC cells. We demonstrate through transcriptomic
analysis that PDAC cells in the TMES are similar to the
in vivo xenograft transcriptome and the patient transcrip-
tional program. Previous work indicated that the FAK inhibi-
tor, PF-562271, distinguished between the 2D and in vivo
PDX states; PF-562271 inhibited growth only in in vivo xeno-
grafts and not in 2D in vitro PDAC cultures. Here we show
that PF-562271 effectively inhibited PDAC growth in the
TMES indicating in vivo-like drug responses. Additionally,
PDAC tumor cells from patients were inhibited by a human
therapeutically relevant dose of gemcitabine to levels para-
lleling the patients' clinical responses. Finally, we demon-
strate that protein–protein interaction networks representing
differential expression states between the patient tumor and
the TMES are more similar than the networks between the
patient tumor and either PDXs or 2D cultures. In sum, the
TMES provides a unique platform to rigorously test the con-
tributions of the cellular and molecular components of the
TMES to therapeutic responses.

Results

We applied a technology that recapitulates in vivo-like hemo-
dynamics and transport of a multicellular microenvironment
in an in vitro system15,16 to the development of an in vitro
tumor microenvironment system (TMES). As shown in
Fig. 1A, primary human microvascular endothelial cells were
plated above a synthetic membrane and primary pancreatic
stellate cells and PDAC cells were co-plated below the mem-
brane. Physiological hemodynamics derived from tumor sinu-
soidal flow rates were applied to the endothelial cells (ECs)
through a cone- and -plate viscometer while medium was
continuously and independently perfused on the upper and
lower sides of the membrane. The shear stress and flow used
in the TMES induce significant changes in endothelial cell
morphology, orientation in the direction of the shear forces,

and upregulation of flow responsive genes.16 This is illus-
trated in Fig. 2. In this study, four waveforms were tested: 1)
constant shear of 2 dyne per cm2 found in many microfluidic
models, 2) tumor terminal arteriole derived from Doppler

Fig. 1 Development of an in vitro tumor microenvironment system
(TMES) to mimic human in vivo tumor biology. (A) Schematic of TMES.
Endothelial cells are plated above the transwell and pancreatic stellate
cells and pancreatic ductal adenocarcinoma cells are plated below the
transwell. Tumor-derived hemodynamic force is applied above the
transwell to the endothelial cells through rotation of the cone. The up-
per and lower chambers are independently perfused with media to re-
capitulate interstitial flow. (B) PDX PDAC 366 cells (green; anti-
cytokeratin 18) were grown in the TMES for 7 days with pancreatic
stellate cells (red; anti-fibroblast), nuclei stained with DAPI. 4× com-
posite image. (C) Left panel is IHC of PDAC 366 clinical sample, right
panel is immunofluorescence stained as in (B) of PDAC 366. 20× im-
ages. Scale bar 100 microns. (D) Principal component analysis of
RNAseq data from pancreatic tumor cells grown in the TMES, xeno-
grafts, and static 2D cultures.
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ultrasound of a solid tumor,17,18 3) common carotid artery,
and 4) internal carotid sinus. ECs elongated in the direction
of shear stress with the tumor terminal arteriole and com-
mon carotid artery waveforms. Elongation was quantified by
shape factor (SF), which is often referred to as circularity and
is a tool to quantify endothelial cell elongation.19 There were
no significant differences between the static, constant shear
stress, or the internal carotid sinus conditions. The differ-
ences between the common carotid artery and internal ca-
rotid sinus waveforms indicate that the system is able to re-
produce the same changes in EC morphology previously
observed.16 The significant difference between the SF from
the terminal arteriole and the constant 2 dyne per cm2 condi-
tions suggests that the terminal arteriole waveform improves
upon microfluidic models that lack high, pulsatile shear
stress.20–22 The pulsatile shear stress can vary in different re-
gions of a tumor, particularly when comparing the periphery
to the central region.17,23 We chose the shear stress waveform
representing a tumor terminal arteriole since the vascularity
represented by color Doppler US signals of the tumor termi-
nal arteriole waveform and histologic specimens correlate
well.17,18

For our initial studies, we used cells cultured from PDAC
PDXs 366, 608, and 449 (ref. 4 and 5) along with human pri-
mary stellate cells and human microvascular ECs under tu-
mor arteriole shear and flow. After seven days in the TMES,
PDAC and pancreatic stellate cells organize and grow into
multi-cell layers and display a disordered acinar structure
similar to the histopathology of pancreatic cancer (Fig. 1B).

When the original H&E-stained patient sample for PDAC 366
was compared to immunofluorescence of PDAC 366 donor
cells grown in the TMES (Fig. 1C), there was a similar disor-
dered growth of tumor and stromal cells.

To determine in an unbiased manner if tumor cells grown
in the TMES are more like tumor cells grown in 2D static cul-
ture or the in vivo patient-derived mouse xenografts, we
performed next-generation sequencing of RNA (RNAseq) to
compare the transcriptome of three PDAC tumor donors
grown under three different conditions: 1) static 2D cultures,
2) orthotopic xenografts in athymic mice,5 and 3) the TMES.
To enrich for tumor cells from the TMES, we developed a
negative plating mask that enables plating of pancreatic stel-
late cells on 64% of the membrane but occludes the stellate
cells from 9 precise 15 mm diameter areas representing 36%
of the membrane that can then be cut at the end of an exper-
iment (Supplemental Fig. S1†). This technique allows enrich-
ment for tumors cells of >95% for subsequent analysis.

We first explored the underlying structure of the RNAseq
data using principal component analysis to determine the re-
lationships between the different tumor growth conditions
(Fig. 1D). The PCA revealed that the patient donor over-
whelmingly determines the transcriptome, independent of
the environment in which the tumor cells are grown. To iden-
tify aspects of common and shared differential biology seen
across the multiple experimental growth conditions (2D,
TMES, PDX), we employed a statistical intersection-union test
to identify both the excess of similarity in differential expres-
sion exhibited between the contrasts of TMES to 2D and

Fig. 2 Shear stress regulates endothelial cell morphology. (A) Representative images for each condition. (B) Two seconds of each waveform, or
shear pattern, used in the experiments. (C) A histogram of the shape factor of each cell measured separated by condition. Significance is indicated
by the bars (****p < 0.0001).
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xenograft to 2D (the response similarity index, or RSI). The
RSI demonstrates (Fig. 3A and B) that the PDX and the TMES
models showed strong concordance and relatively little dis-
cordance relative to the 2D model, even though the tumor
cells in the TMES were first passaged in 2D before introduc-
tion into the TMES. In Fig. 3A and B, purple indicates tran-
scripts that are concordantly regulated and green indicates
discordance; there are many more concordant (purple) tran-
scripts than discordant (green). This indicates that, relative
to 2D culture, the TMES confers many of the same molecular
attributes as the PDX.

Functional profiling of the concordant and discordant
transcripts reveals that for PDAC 366 and PDAC 449, the
TMES and PDXs regulate the cell cycle and associated pro-
cesses similarly, whereas for PDAC 608 the TMES and PDX
regulate mitochondrial biology and metabolic processes simi-
larly (Fig. 3C). Interestingly, all three PDAC patient donor tu-
mor cells showed the same discordant biological processes
around gene translation, largely due to differences in the ex-
pression of ribosomal protein mRNAs. To explore the differ-
ences between the PDAC donor cells revealed by the RSI anal-
ysis, we examined the molecular subtypes of the PDAC cells
in the TMES as defined in ref. 24 (Fig. 4A). PDAC 366 and
449 samples are best classified as squamous subtype. PDAC
608 is classified as pancreatic progenitor although it is not
strongly distinguished from the immunogenic subtype. The
similarity of the concordant biological process reflected in

the transcriptome of PDAC 366 and 449 is driven by the un-
derlying molecular subtype: squamous. PDAC 608, being a
different molecular subtype, yields different concordant bio-
logical processes between the TMES and PDX conditions.
This is supported by functional phosphoprotein and total
protein based analysis of tumor cells from the TMES
(Fig. 4B). Reverse phase protein array (RPPA) pathway activa-
tion analysis of PDAC 366, 449, and 608 under conditions
identical to the RNAseq show that the signaling architecture
of PDAC 366 and 449 are more similar than 608, consistent
with PDAC 608 being a different molecular subtype.

The role of FAK (Focal Adhesion Kinase) in PDAC, as
both a driver of progression and metastasis as well as a
therapeutic target, is established.4 Importantly, these stud-
ies showed that the FAK inhibitor, PF-562271, was effective
at reducing the tumor volume of the PDX PDAC 608 but
not proliferation of PDAC 608 cells grown in 2D static con-
ditions even though in vitro FAK was completely inhibited.4

Thus, FAK inhibition with PF-562271 provides us with a
drug response that distinguishes the in vitro-state from the
in vivo-state. We examined the ability of PF-562271 to in-
hibit the growth of PDAC 608 cells in the TMES (Fig. 5A)
using a concentration of PF-562271 equivalent to the Cave

plasma concentrations following in vivo dosing in mice.25

Consistent with PF-562271 inhibiting PDX PDAC 608
growth, growth in the TMES was inhibited by 49% when
tumor cells were measured by unit area and inhibited by

Fig. 3 The PDAC TMES transcriptome resembles the xenograft transcriptome. (A) Xenograft vs. TMES scatterplots of significant (p < 0.01) log2
fold changes relative to static cell culture. Points are colored by their response similarity (RSI), where darker, more saturated colors indicate
transcripts that show greater evidence for joint differential expression on both axes. Purple indicates transcripts that are concordantly regulated
between the two conditions, whereas green indicates discordance. (B) Histograms of RSI values (>0.2 and ≤0.2) in (a). n = 6 for TMES and 2D
static samples and n = 3 for xenografts. The asymmetry between concordant and discordant RSI values indicates that expression changes in
xenografts and the TMES tend to be concordant. This demonstrates that the TMES recapitulates much of the transcriptional profile of a xenograft
model. (C) Functional profiling of the concordantly (purple) and discordantly (green) regulated transcripts.
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67% by EdU incorporation indicating that the TMES re-
sponse to the FAK inhibitor paralleled the response ob-
served in the in vivo PDXs and not the 2D in vitro cultures.
Interestingly, FAK expression is significantly elevated in
PDAC 608 in the TMES when compared to 2D static culture
(Supplemental Fig. S2†). This data may suggest that ele-
vated FAK expression may account for the increased sensi-
tivity to PF-562271. However, it is important to note that
FAK was effectively inhibited in 2D cultures and xenografts
in the previous study4 and in the TMES in this study, indi-
cating that FAK expression and inhibition alone is insuffi-
cient to account for the in vivo-like inhibition of growth ob-
served in the TMES with PF-562271.

To expand on these observations, we tested additional
drugs that showed efficacy in the PDAC PDX models.26 In

prior studies, trametinib (singly, or in combination with
lapatinib) was shown to inhibit growth of PDAC PDX 608 and
366. Treatment with either lapatinib or trametinib alone or
in combination using a concentration equivalent to the Cave

Fig. 4 The PDAC TMES reveals molecular subtypes. (A) The silhouette
width of each PDAC PDX line in the TMES system when clustered with
data from Bailey et al. Each vertical line represents a sample (some
lines contain technical replicates), and each point within a line
represents a categorization of that sample with respect to the Bailey
et al. data. Positive silhouette widths (values greater than 0) indicate
that a sample is well categorized, whereas negative widths indicate
poor categorization. (B) Cluster analysis of RPPA data from PDAC PDX
tumor cells grown in the TMES. 366 and 449 cluster together.

Fig. 5 The PDAC TMES reproduces in vivo drug responsiveness. (A
and B) Cells were grown in the TMES for four days and then dosed for
3 days with DMSO (0.058%) or 5.8 μM PF-562271 (FAKi) and (A) cell
number was determined using Picogreen signal as a surrogate with a
standard curve (*p = 0.0004) or (B) EdU positive tumor cells were
scored to determine proliferating fraction (*p = 0.00005). Picogreen
measures total cells (tumor and stellate) and EdU was co-imaged with
anti-cytokeratin 18 to measure EdU incorporation only in tumor cells.
(C and D) Cells were grown in the TMES for four days and then dosed
for 3 days with DMSO (0.058%) or 4.2 μM lapatinib (L), 36 nM
trametinib (T), or the combination of the two (L + T) and (C) cell num-
ber was determined using luciferase signal as a surrogate with a stan-
dard curve (*p < 0.007 compared to DMSO; **p ≤ 0.001 compared to
either lapatinib or trametinib alone) or (D) EdU positive tumor cells
were scored to determine proliferating fraction (*p < 0.0002 com-
pared to DMSO; **p < 0.004 compared to lapatinib alone; ***p =
0.001 compared to trametinib alone). n = 3, with 5 independent mea-
surements across the transwell from each replicate.
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in mice27,28 significantly inhibited tumor cell number and
DNA synthesis in the TMES when compared to control. The
combination of lapatinib and trametinib inhibited growth in
the TMES for both endpoints when compared to lapatinib al-
one (Fig. 5B and C). When the combination was compared to
trametinib alone, PDAC 366 in the TMES exhibited no signifi-
cant differences in either cell number or EdU incorporation.
This result was mirrored in PDAC 366 grown as a PDX
(Fig. 5B and C).26 The combination of lapatinib and
trametinib differed from trametinib alone in the TMES com-
pared to the PDX for PDAC 608; however, the efficacy differed
depending on the endpoint.26 Cell number was increased
while EdU incorporation was decreased. Thus, response
achieved with these targeted therapeutics in the TMES was
highly similar to that achieved in an orthotopic PDX mouse
model.

To determine if tumor control could be observed in the
TMES using a clinical standard of care chemotherapeutic for
PDAC, we treated PDAC 366 and PDAC 608 in the TMES with
5.31 μM gemcitabine, the concentration equivalent to the typ-
ical Cave concentration attained in patients (Fig. 6A).29 This

treatment was chosen since gemcitabine was the treatment
the PDAC patients were receiving at the time the 366 and 608
PDXs were generated from their tissue. At this dose in 2D
static cultures, there was identical inhibition of growth and
tumor cell killing of both PDAC 366 and 608 (data not
shown). In the TMES, gemcitabine significantly inhibited tu-
mor cell growth in both PDAC 366 and 608. Inhibition of
PDAC 608 with gemcitabine was significantly greater than
PDAC 366 (p = 0.00276), even though PDAC 366 grew better
in the TMES than PDAC 608. These data are particularly
interesting when considering the patient outcomes.5 The pa-
tient whose tumor established PDAC 366 survived less than 3
months whereas the patient whose tumor established PDAC
608 survived nearly 12 months. Thus, the patient survival
data paralleled both tumor cell growth and gemcitabine re-
sponse in the TMES.

To verify that the primary unique features of the TMES,
physiologic shear stress and flow, were drivers of the
gemcitabine drug response that paralleled patient outcomes,
we reproduced the above gemcitabine experiment omitting
both tumor terminal arteriole shear stress and media inflow
and outflow. (Fig. 6B). We plated microvascular endothelial
cells, pancreatic stellate cells, and either PDAC 366 or PDAC
608 identically to our TMES experiments except we did not
load the transwells onto the flow devices and instead
maintained them under normal tissue culture conditions. In
the absence of shear stress and flow, the majority of endothe-
lial cells did not survive and those that did, survived in
patches and remained cuboidal (data not shown). This indi-
cates that shear stress and flow are required for endothelial
cell survival in the TMES, consistent with previous observa-
tions.30 The number of tumor cells in the 3D static cultures
was quantitatively lower than in the TMES, and the data was
noisy and showed significant batch variability. This is consis-
tent with the tumor cells not growing as uniformly in the ab-
sence of shear stress and flow. No effect of gemcitabine was
observed in PDAC 608, and with PDAC 366, gemcitabine par-
adoxically led to an increase in tumor cells when accounting
for batch variation in the replicates. These data indicate that
consistency in the system and the generation of a stable bio-
logical state requires shear stress and flow.

To explore a possible mechanism underlying the differ-
ence in gemcitabine response in the TMES between PDAC
366 and 608, we analyzed the relative expression levels of
the family of nucleoside transporters which are required
for gemcitabine transport across the plasma membrane
(Fig. 7).31 Highlighted in Fig. 7 are the four SLC transporters
known to import gemcitabine.32 Significantly, analysis of
these four SLCs in the provisional TCGA data on cBioPortal
are amplified or have elevated mRNA expression in 21% of
tumors.33 SLC28A3 was elevated more than 400-fold in PDAC
608 relative to PDAC 366 whereas SLC28A2 was decreased
5-fold. Neither SLC29A1 nor SLC29A2 were significantly al-
tered between PDAC 608 and 366. Since levels of SLC28A3
have been shown to positively correlate with survival after
gemcitabine therapy,32,34 these data suggest that the relative

Fig. 6 The PDAC TMES responds to drugs at human patient doses. (A)
Cells were grown in the TMES for four days and then dosed for 3 days
with 5.31 μM gemcitabine, the dose equivalent to the Cave of
gemcitabine or DMSO (0.058%). Tumor cell number was determined
using luciferase signal as a surrogate with a standard curve. *p ≤
0.00003. n = 3, with 5 independent measurements across the transwell
from each replicate. (B) Cells were grown in 3D static culture for four
days and then dosed for 3 days with 5.31 μM gemcitabine, the dose
equivalent to the Cave of gemcitabine or DMSO (0.058%). Media and
vehicle or drug was replenished every other day. Tumor cell number
was determined using luciferase signal as a surrogate for cell number
with a standard curve. n = 3, with 5 independent measurements across
the transwell from each replicate.
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sensitivity of PDAC 608 to gemcitabine may be explained by
increased cellular uptake of gemcitabine mediated by the
high expression of SLC28A3 in PDAC 608 grown in the TMES.
However, analysis of SLC levels in static 2D culture compared
to the TMES show no difference in SLC28A3, and SLC29A1
and SLC29A2 are both upregulated in static 2D for PDAC 608
(Supplemental Fig. S3†). This indicates that additional as-
pects of the TMES contribute to the differential sensitivity of
gemcitabine between PDAC 366 and PDAC 608.

RSI analysis of the RNAseq data from PDAC 366, 449, and
608 suggested that the transcriptome of tumor cells grown in
the TMES is in vivo-like, demonstrating broad transcriptomic
regulation that is similar to PDX cells. (Fig. 3). For PDAC 449,
we were able to obtain patient material from the time of sur-
gery. RNAseq of patient tumor PDAC 449 enables comparison
of PDAC 449 from four conditions: patient tumor, 2D culture,
PDX, and the TMES. For this analysis, we generated protein–
protein interaction (PPI) networks35 that represent the differ-
ences between the patient tumor and the static 2D, PDX, or

TMES conditions (Fig. 8). The static condition induces the
largest differential PPI network, suggesting that of the three
culture conditions, it is globally the most dissimilar to the
patient tumor. A large number of proteins involved in cell cy-
cle are dysregulated in the static condition, but not in the xe-
nograft or TMES conditions. Together with the observation
that the xenograft and TMES conditions show high similarity
in the regulation of cell cycle-associated transcripts, this sug-
gests that both xenografts and the TMES recapitulate in vivo
growth better than static cell culture. The TMES induces the
smallest differential PPI network suggesting that tumor cells
cultured in the TMES are most similar to the patient tumor,
even more so than the PDX.

Discussion

It has long been appreciated that cancer is in part a result of
complex interactions between tumor cells and normal host
tissue within the tumor microenvironment; however, accurate
in vitro models to study these complex interactions are still
being developed. In this study, we describe the development
and validation of a novel in vitro tumor microenvironment
system that reflects the in vivo pancreatic cancer state. Our
work suggests that this tumor microenvironment system
(TMES) recreates multiple aspects of cancer biology, includ-
ing tumor growth, the in vivo xenograft and patient transcrip-
tional program, and response to chemotherapeutics at con-
centrations that correspond to human therapeutic plasma
levels. Additionally, tumor growth and chemotherapeutic effi-
cacy in our TMES appears to parallel patient's responses.

3D in vitro systems for cancer have been used effectively to
uncover mechanisms of disease progression and for evaluat-
ing drug responses.8,9 3D spheroids are the most widely used
3D culture system. While these systems have clear advantages
over standard 2D static tissue culture, they do have shortcom-
ings. The generation of these spheroids will often use exoge-
nous extracellular matrix, typically Matrigel, which has

Fig. 7 Transcriptome analysis reveals mechanisms of gemcitabine
sensitivity. Solute carrier family mRNAs are strongly regulated between
the 608 and 366 PDAC lines. The magnitude of differential expression
of the SLC transporters range roughly 500-fold in either direction. Four
SLC transporters known to import gemcitabine are labeled. SLC28A3
is upregulated over 400-fold in PDAC 608 compared to PDAC 366 in
the TMES.

Fig. 8 The PDAC TMES is most similar to the patient transcriptome. Protein–protein interaction networks representing differential expression
states between the patient biopsy and each culture condition. Each node represents collections of densely connected proteins (i.e., communities).
The number of proteins in each community is proportional to the node size, and the proportion of up- (red) and down-regulated (blue) genes is
encoded in the node color.
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known problems, including batch to batch variability and
contamination with lactate dehydrogenase-elevating virus.36

Furthermore, the selection of matrix can significantly alter
the biology. Depending on the 3D system, the media formula-
tion is often complex and may require the addition of multi-
ple growth factors, the ROCK inhibitor, or autologous serum,
any of which may alter the biology of tumor cells and poten-
tially affect translatability to patients.12 These limitations not-
withstanding, in vitro 3D organoid models for pancreatic can-
cer have been developed and enabled significant advances in
our understanding of PDAC.8 In vitro 3D organoid PDAC
models have also incorporated pancreatic stellate cells and
uncovered the heterogeneity of cancer-associated fibroblasts
in PDAC.37 The TMES developed in this study incorporates
human primary microvascular endothelial cells experiencing
tumor hemodynamic shear forces, human primary pancreatic
stellate cells, and human pancreatic cancer cells from
patient-derived xenografts. The application of mechanical
shear force to endothelial cells, with a magnitude and period-
icity based on blood flow through tumor vasculature, has the
established effect of recapitulating the in vivo phenotypes of
vascular endothelium.16 The application of the flow device
used herein has previously been successfully applied to devel-
oping models of cardiovascular health and disease, as well as
models of normal and diseased liver.14–16

We recognize the immense potential of immunotherapies
for the treatment of cancer.38 While the TMES currently lacks
immune cell components, a liver model using the same plat-
form has included immune cell components.14 Thus, the
TMES creates a unique opportunity to expressly interrogate
the contributions of immune cells on tumor cell survival, pro-
liferation, and response to therapy in a manner that incorpo-
rates immune cell interactions with the vasculature. The
TMES also provides a platform to interrogate how hemody-
namic variations inherent to blood vessel geometries impact
drug response. We know these variations are critical determi-
nants of the endothelial cell inflammatory phenotype and
can alter vascular permeability.39,40

The role of the tumor vasculature in PDAC is
understudied and poorly understood, underscoring the need
for a model PDAC system that incorporates vascular biology.
PDAC is typically characterized by hypovascularity, vascular
collapse, hypoxia, excessive dense ECM, and poor drug deliv-
ery. However, this characterization is overly simplified and
has created misconceptions on the role and function of tu-
mor associated endothelial cells and blood vessels in PDAC.
The concept that PDAC is hypovascular is driven by 1) clini-
cal imaging data (i.e. CT, MRI) showing PDAC tumors as
low density masses, and 2) immunohistochemistry data eval-
uating microvascular vessel density (MVD) in patients' tu-
mors relative to normal or uninvolved pancreas.41,42 The
interpretation that PDAC is hypovascular is technically cor-
rect, but fails to consider that the pancreas is one of the
most highly vascularized organs in the human body, with
higher blood flow rates than other gastrointestinal organs.
Thus, imaging will show less contrast in tumors, due to the

relatively lower vascularity. However, PDAC still possesses a
MVD comparable to other solid tumors. For example, colon
cancer has a MVD of 3 to 35 for a 200× field,43 melanoma
has a MVD of 32 ± 21 for a 200× field,44 and PDAC has a
MVD of 57.1 ± 20.4 for a 200× field in one study42 and 3.7
to 28.3 in another.45 This should not be surprising since it
is well established that the diffusion limit of oxygen and nu-
trients is a driver of tumor vascularization. Indeed, one
widely referenced study used to support the hypovascularity
of PDAC also showed that PDAC tumor cells were on average
100 microns from blood vessels.41 Moreover, the concept of
vascular distortion in PDAC due to high tumor interstitial
pressure being a barrier to drug delivery is controversial.46,47

PDAC vascularity is a critical driver of disease; a number of
studies indicate that a higher MVD in PDAC correlates with
higher grade and a poorer prognosis.45,48 Thus, the widely-
accepted view that PDAC is a hypovascular tumor has led to
the mischaracterization that there are few blood vessels in
PDAC. The creation of an in vitro model of PDAC such as
that described herein that encompasses the microvascula-
ture creates the opportunity to address this deficiency in
understanding.

The introduction of physiologically relevant tumor hemo-
dynamics and biological transport into an in vitro tumor
model generates an in vivo-like biology demonstrated by the
similarity of the transcriptional program to both the PDX and
patient tumor. This raises the exciting potential that the
TMES could be used for patient avatars. It is vitally important
that we develop functional assays predictive of individual pa-
tient responses. The molecular and genetic revolution that is
currently driving personalized medicine is limited since the
presence of a driver mutation does not dictate a clinical re-
sponse, and when there is a clinical response to a drug
targeting a driver mutation, that response is often not dura-
ble.49,50 However, we do not yet know if the TMES will fully
capture the heterogeneity of patients' tumors. This is a chal-
lenge facing all ex vivo model systems.

Interestingly, while all patient cells tested in the TMES
showed significant transcriptional concordance with in vivo
PDXs, the concordant transcripts of squamous molecular
subtype PDAC 366 and 449 is driven by their shared squa-
mous molecular subtype. PDAC 608, being a different molec-
ular subtype, yields different concordant biological processes
between the TMES and PDX conditions. It is thus possible
that the TMES may model different molecular subtypes to
various degrees.

Our TMES incorporates a 3D scaffold, multiple cell types,
patient-derived cells, physiological matrices, hemodynamic
mechanical shear stress, and perfusion in an orientation that
recreates many aspects of the in vivo architecture and sup-
ports recapitulation of in vivo biological transport and tumor-
specific hemodynamics. This engineered tumor microenvi-
ronment for pancreatic cancer has the potential to advance
the discovery and development of effective anticancer agents
and identify appropriate agents for individual patients. The
system has applications for 1) patient avatars, 2) drug
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discovery, validation, lead drug development, de-risking, and
3) interrogating mechanisms of tumor stromal interactions.

Methods
Cell culture

Primary human microvascular endothelial cells (ECs) were
purchased from Lonza (USA) and maintained in EGM-2
BulletKit (Lonza CC-3162) up to 8 passages. Primary human
pancreatic stellate cells (HuPaSteC) were purchased from
ScienCell (Carlsbad, CA) and grown according to the manu-
facturer's directions up to 8 passages. Patient-derived lucifer-
ase expressing PDAC cell lines 366, 449, and 608 were cul-
tured as previously described,4,5 maintained for a maximum
of 10 passages, and authenticated against the patient sam-
ples by the University of Virginia Biomolecular Research Fa-
cility with DNA profiling, cytogenetic analysis, flow cytometry,
and immunocytochemistry.26

Tumor microenvironment system

The transwell coculture plating and hemodynamic flow de-
vice setup is explained in detail in ref. 16 and in Fig. 1A.
Briefly, a porous polycarbonate 75 mm transwell membrane
(Corning Inc., NY) was coated with 500 μl of 0.1% gelatin on
the top and 2 mg ml−1 collagen on the bottom surface of the
membrane prior to cell plating. This coating is minimal and
only provides a surface for the cells to adhere. Additional ex-
ogenous matrix hinders the in vivo-like biology generated in
the TMES (data not shown). HuPaSteC cells were plated on
the underside of the membrane at 2 × 104 cells per cm2 and
allowed to adhere overnight. The following day, PDAC cells
were plated at 4 × 104 cells per cm2 on the underside of the
membrane, allowed to adhere for 4 hours and then ECs were
plated on the upper side of the membrane at a density of 5 ×
104 cells per cm2. These cell numbers create a confluent
monolayer of ECs, which elongate in the direction of flow
with appropriate shear force (Fig. 2). Tumor and stellate cells
are initially a sub-confluent monolayer that grows in the
TMES into multiple cell layers into disordered acini-like
structures (Fig. 1B). All cells were plated in DMEM (Gibco
21063), high glucose, sodium pyruvate, 10% FBS, 2 mM L-
glutamine, 100 U ml−1 penicillin–streptomycin, and 1% NEAA.
Transwells were placed in flow media containing reduced se-
rum (M199 supplemented with 2% FBS, 2 mM L-glutamine,
100 U ml−1 penicillin–streptomycin, and dextran) for flow ex-
periments. Tumor hemodynamic flow modeled from tumor
terminal arterioles18 was imparted by the rotating cone above
the EC layer. Tumor terminal arteriole hemodynamics was
modeled with the following waveform: at 0.000 seconds 7.47
dynes per cm2, 0.235 seconds 9.81 dynes per cm2, 0.588 sec-
onds 15.15 dynes per cm2, and then returning to 7.47 dynes
per cm2 at 0.800 seconds and repeating thereafter. Inflow
and outflow tubing accessing the upper and lower chambers
of the transwell allowed for continual perfusion of media to
both the EC and tumor/stellate sides as previously de-
scribed;16 the inflow of media at 52.0 μL min−1 and outflow

at 62.0 μL min−1 provide continuously exchanging media and
creates an equilibrium of 4 ml in the upper chamber and 9
ml in the lower chamber. Cells were grown under tumor he-
modynamics for 7 days. For drug studies, all drugs were
added on day 4. Growth assays, luciferase and Picogreen
(ThermoFisher Scientific), were performed according to the
manufacturer's instructions. Using luciferase to measure
growth yielded a dynamic range of 4 orders of magnitude
and a sensitivity to read less than 100 cells. EdU was pulsed
2 hours prior to the end of the experiment.

Xenografts

Tumors were generated orthotopically on the pancreata of
immunocompromised mice as previously described4,5 and
were performed in compliance with the relevant laws and in-
stitutional guidelines with the approval of the University of
Virginia Animal Care and Use Committee.

Immunofluorescence

Immunofluorescence was performed as described previ-
ously.14 In brief, TMES transwells were fixed in 4% parafor-
maldehyde for 15 minutes, permeabilized in 0.2% Triton
X-100 in PBS for 5 minutes, and incubated with primary anti-
body for 2 hours at room temperature. Primary antibodies
used were anti-keratin 18 (1 : 100) and anti-fibroblast surface
protein (1 : 50) purchased from Abcam (ab24561 and
ab11333, respectively). Goat anti-mouse Alexa Flour 546 and
goat anti-rabbit Alexa Fluor 488 (Life Technologies; A11003,
and A11008, respectively) were used as secondary antibodies
at 1 : 300. EdU incorporation was visualized with the Click-iT
EdU Alexa Fluor 647 imaging kit (ThermoFisher, CI10340).
Nuclei were stained with DAPI (Thermo Fisher Scientific,
D1306) or TO-PRO-3 (LifeTechnologies, T3605).

RNA-seq quantification

For each PDAC (366, 449, and 608), n = 6 for TMES and 2D
static samples and n = 3 for PDXs. All raw RNA-seq datasets
were pseudoaligned to the human (GRCh38) and mouse
transcriptomes (GRCm38) simultaneously using kallisto
v0.42.4.57 The mouse transcriptome was included to account
for mouse RNA present in the xenograft-derived samples.
Gene-level quantifications were calculated using the Tximport
tool58 with the “LengthScaledTPM” option, and Ensembl
gene and transcript annotations.51 Mouse transcripts were ex-
cluded from the gene-level quantification procedure; thus,
the resultant quantifications were human-specific.

Differential expression analysis

Genes with low transcript abundance were removed from fur-
ther analysis based on a minimum threshold value of 2
counts per million in at least three samples (i.e., the mini-
mum replicate number). We then adjusted library sizes using
the TMM normalization method,59 and applied the voom pro-
cedure to the normalized data.52 We identified extra-
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experimental heterogeneity in the data using the surrogate
variable analysis (SVA) algorithm.60 This technique was ap-
plied to the voom-transformed data, using the combination of
cell line and culture condition as the predictor variable. We
then constructed a set of linear models with shrunken
variance using the limma Bioconductor package. In these
models, cell line, culture condition, and the surrogate
variables were included as fixed effects, while technical varia-
tion was estimated as a random effect using limma's
“duplicateCorrelation” function, blocking on technical repli-
cates. Differentially expressed genes were identified by calcu-
lating contrast p-values derived from limma's moderated
t-statistic, followed by false discovery rate calculation using
the Benjamini–Hochberg procedure for multiple hypothesis
testing. In addition, for every gene in a given contrast we cal-
culated the Bayesian posterior probability that the null hy-
pothesis is false (i.e., the posterior probability that the gene
is differentially expressed).53

Response similarity analysis

When comparing two different contrasts we calculate a value
referred to as the response similarity index (RSI) for each
gene. It is defined as the Bayesian joint posterior probability
of differential expression, signed by the sign of the product
of the log fold changes in the two contrasts.14 Thus, values
near +1 indicate joint differential expression in the same di-
rection (concordance), values near −1 indicate joint differen-
tial expression in opposite direction (discordance), and
values near 0 indicate lack of joint differential expression.
Enrichment of concordantly or discordantly regulated gene
sets was determined using the rank-based gene set enrich-
ment analysis in the limma package.

Molecular subtype analysis

Expression data and molecular subtype labels for various
pancreatic tumors were obtained from Bailey et al.24 We cal-
culated a mean silhouette score for each gene in this dataset
based on the subtype classification reported by Bailey et al.
The top 500 genes by mean silhouette score were selected,
representing the 500 genes that best distinguish the four mo-
lecular subtypes reported. Focusing the analysis on these 500
genes, we quantile-normalized our data with the Bailey et al.
data. For each of our samples we calculated a silhouette score
for each of the four possible classifications. Classifications
that generated the largest silhouette score thus correspond to
the best molecular subtype classification of our data.

Reverse phase protein array

Reverse phase protein array (RPPA) was performed as previ-
ously described.54 For each PDAC (366, 449, and 608), n = 6
for the TMES. Briefly, cell lysates were diluted with 2× Tris-
glycine SDS sample buffer (Life Technologies Corporation,
Carlsbad, CA, USA) before printing on nitrocellulose slides
(Grace Bio-Labs, Bend, OR, USA) and were spotted in
triplicate with the Aushon 2470 contact pin arrayer

(AushonBioSystems Inc., Billerica, MA, USA), in 4-point two-
fold dilution curves.

Analysis of protein–protein interaction networks

Protein–protein interaction networks were obtained from the
STRING database (v10) and the STRINGdb Bioconductor
package.35 Low-confidence edges (edges with a confidence
score >0.7) were removed from the network, resulting in a
high-confidence interaction network. To extract a differen-
tially regulated portion of the global network for a given con-
trast, we mapped the posterior probabilities of differential ex-
pression onto each node in the network. The edges were then
weighted as the product of their incident nodes (i.e., the joint
probability that the incident nodes are differentially
expressed). Edges with weights below a given threshold (0.9)
were then removed, and the giant component of the resulting
network was extracted. The result is a connected network
representing the portion of the global network that is differ-
entially regulated for a given contrast. These networks were
then partitioned into communities using the Louvain algo-
rithm.55 The functional profile for each community was
obtained by performing gene set enrichment analysis using
Fisher's exact test and Reactome gene sets.56

Other statistical analysis

Differences in growth data were assessed with the Mann–
Whitney U test. Multiple hypothesis testing corrections were
applied using the Bonferroni method when applicable. The
shape factor measurements were compared using a Kruskal–
Wallis test with multiple comparisons.
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