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Haoliang Huang opened discussion of the paper by Carlo Lamberti: My
question is about carbon species in "palladium carbide", since when the Pd was
exposed to acetylene, the changes were observed in XANES but not in XRD. Is it
possible that such carbon species just the acetylene, or its fragment, absorbed on
Pd, or Pd-C solid solution, rather than forming a palladium carbide phase. Have
you used XPS to confirm the oxidation states of carbon? It may be more applicable
for alumina supported or unsupported Pd.

Carlo Lamberti answered: When the Pd/C system was exposed to C,H, at
100 °C we observed changes in all the three techniques (XRPD, EXAFS and
XANES: data in the 0-40 and 100-140 min ¢-intervals in Fig. 5 (DOI: 10.1039/
c7fd00211d)). Conversely, when, after a long exposure to C,H, at 100 °C, we
exposed the Pd/C catalyst to H, (data at ¢ = 80 min in Fig. 5 (DOIL: 10.1039/
c7fd00211d)), we observed a change in the Pd K-edge XANES (orange
triangle) but no changes in the XRD and Pd K-edge EXAFS (gray circle and black
square, respectively). This has been interpreted in terms of the removal of C
species from the surface of the Pd nanoparticle, while C atoms in the bulk of
the NPs were unaffected by H,. We are unfortunately unable to discriminate
between physisorbed C,H, and carbonaceous fragments at the NP surface. We
recently performed an in-depth C 1s XPS study of different carbon supports and
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Pd/C catalysts™” but not under reaction conditions. Our XPS studies were
aimed at the support characterization only. Unfortunately, I do not believe that
it would be possible to discriminate the C 1s signal of the C atoms forming the
surface and bulk Pd-carbide to that coming from the vast majority of C atoms of
the support. As you suggested such in situ C 1s XPS study would be more
interesting on a carbon-free support as y-Al,O;. In the recent past we per-
formed a combined XRPD/XAS study on alumina supported Pd NPs;* in that
case the quality of the XRPD data was not as good as in the present case because
of the presence of the broad, but intense, diffraction peak of y-Al,0;. Your
suggestion to use this system to further investigate the Pd carbide phase with C
1s XPS is worth trying.

1 A. Lazzarini, A. Piovano, R. Pellegrini, G. Leofanti, G. Agostini, S. Rudic, M. R. Chierotti,
R. Gobetto, A. Battiato, G. Spoto, A. Zecchina, C. Lamberti and E. Groppo, Catal. Sci.
Technol., 2016, 6, 4910-4922.

2 A. Lazzarini, R. Pellegrini, A. Piovano, S. Rudic, C. Castan-Guerrero, P. Torelli,
M. R. Chierotti, R. Gobetto, C. Lamberti and E. Groppo, Catal. Sci. Technol., 2017, 7, 4162—
4172.

3 A. L. Bugaev, A. A. Guda, K. A. Lomachenko, V. V. Srabionyan, L. A. Bugaev, A. V. Soldatov,
C. Lamberti, V. P. Dmitriev and J. A. van Bokhoven, J. Phys. Chem. C, 2014, 118, 10416-
10423.

Paul Sermon asked: I was intrigued by the long periodicity (3 min) structural
and catalytic oscillations that you see. IR thermography (IRT) reveals intriguing
synchronous exothermic oscillations with a 20 s frequency in growth-defined
biological systems over a wide area (see Fig. 1a)."™* Do you have an explanation
for the long 3 min periodicity that you find? Could you elaborate on the gradual
transition of lattice parameters in your Fig. 2a, because when crystallite size
effects in the PdH, system were investigated for unsupported Pd blacks some
years ago,’ in the o and B« o plateau transitions, as one varied pu) (and
hence x), there coexistence of o and B domains, as shown in Fig. 1b (but also seen
by others).®
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Fig. 1 (a) Exothermic synchronised oscillations seen by IRT over macroscopic
distances (cm) when Penicillium grows on a moist, naturally-colonised surface
(multigrain bread). (b) Plots of py2-x in PdH,-fcc lattice parameter at 333 K for 86 nm
unsupported Pd black (where the Ax width of the hysteresis loop was larger than for
a 10 nm sample).®
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Carlo Lamberti replied: Concerning the periodicity, it is dependent on several
factors: the catalyst itself, the amount of catalyst in the capillary, the flow and the
feed. In this regard, very recently, Rupprechter and coworkers' observed multi-
frequential oscillations during hydrogen oxidation over rhodium, imaged in situ
by using photoemission electron microscopy. Depending on the observed
Rh(h, k1) surface investigated, the observed periodicity ranged from few to several
minutes. Concerning the second part of your question, we never claimed to be the
first one observing the o« B transition upon interaction of Pd nanoparticles (NPs)
with H,. We believe that our study, combining almost simultaneous XRPD and
EXAFS data collections, coupled with independent volumetry measurements
(Fig. 2a—c) is a complete and consistent set of data and that (to the best of our
knowledge) we have been the first to interpret the different behavior of the XRPD
and EXAFS isotherms in terms of a crystalline/amorphous core/shell model of the
Pd NPs (DOI: 10.1039/C7fd00211d).2

1Y. Suchorski, M. Datler, 1. Bespalov, J. Zeininger, M. Stoger-Pollach, ]J. Bernardi,
H. Gronbeck and G. Rupprechter, Nat. Commun., 2018, 9, 600, and references therein.

2 A. L. Bugaev, A. A. Guda, K. A. Lomachenko, V. V. Shapovalov, A. Lazzarini, J. G. Vitillo,
L. A. Bugaev, E. Groppo, R. Pellegrini, A. V. Soldatov, J. A. van Bokhoven and C. Lamberti,
J. Phys. Chem. C, 2017, 121, 18202-18213.

Andrea Russell enquired: Have you considered using the Pd L-edge to further
explore the effects of hydride formation? See for example the paper by van Bok-
hoven’s group.”

1 M. W. Tew, J. T. Miller and J. A. van Bokhoven, J. Phys. Chem. C, 2009, 113, 15140-15147.

Carlo Lamberti responded: This is indeed an excellent suggestion. Pd L;- and
L,-edges XANES spectra would be more informative on the unoccupied d-density-
of-states (DOS) of Pd than the K-edge one, which mainly probes the p-DOS.
Obviously, such measurements will be much more demanding on the experi-
mental ground because of the much lower penetration depth of 3 keV photons
with respect to 24 keV ones; moreover, they could not be coupled with XRPD data
collection and will not allow the extraction of an EXAFS signal. Notwithstanding
these limitations, they can nicely complement the present study.

Andrea Russell asked: I have also studied the formation of hydrides in Pd
nanoparticles using XRD and EXAFS, but from an electrochemical perspective.'”
Whilst we saw an effect in the electrochemistry of a moving boundary between the
alpha and beta phases of the hydride, we didn’t interpret these data in terms of
a core-shell argument as you have done. Do you have any additional information
to support the core shell model you’re proposing?

1 A. Rose, S. Maniguet, R. J. Mathew, C. Slater, J. Yao and A. E. Russell, Phys. Chem. Chem.
Phys., 2003, 5, 3220.
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2 A. Rose, O. South, S. Diaz-Moreno, J. R. Owen and A. E. Russell, Phys. Chem. Chem. Phys.,
2005, 7, 366.

Carlo Lamberti answered: Many thanks for having pointed out two very rele-
vant studies in this topic."” Our interpretation in terms of a core-shell structure
of the nanoparticles (NPs)® has been further supported by the analysis of the
higher shells in the EXAFS signal in the frame of the multiple scattering
approach, which is mandatory in the case of fcc NPs (DOI: 10.1039/c7fd00211d).
Upon increasing the shell order, the response of the EXAFS analysis become
closer and closer to that of XRPD, which reflects the order of the NPs at the long-
range scale. Now, the relative elongation of the first (blue triangles) and third (red
circles) shell along the 22 °C-isotherm of Pd-hydrate formation in a bulk sample
(Pd black) matches, within the experimental incertitude, that obtained from
XRPD (gray circles), see Fig. 2a. Conversely, for Pd NPs (Fig. 2b), the relative
variation of the first shell clearly behaves differently from that of the third shell,
which in turns is very close to the curve obtained from XRPD data.

1 A. Rose, S. Maniguet, R. ]J. Mathew, C. Slater, J. Yao and A. E. Russell, Phys. Chem. Chem.
Phys., 2003, 5, 3220-3225.

2 A. Rose, O. South, I. Harvey, S. Diaz-Moreno, J. R. Owen and A. E. Russell, Phys. Chem.
Chem. Phys., 2005, 7, 366-372.

3 A. L. Bugaev, A. A. Guda, K. A. Lomachenko, V. V. Shapovalov, A. Lazzarini, ]J. G. Vitillo,
L. A. Bugaev, E. Groppo, R. Pellegrini, A. V. Soldatov, J. A. van Bokhoven and C. Lamberti, J.
Phys. Chem. C, 2017, 121, 18202-18213.

Andrea Russell enquired: You have interpreted your results in terms of a core-
shell model, with a hydride phase in the shell, to account for the differences
observed in the slope of the plateau regions in the plots in Fig. 2 obtained for EXAFS
compared to the other methods. Have you considered the effects of the particle size
distribution of your catalyst nanoparticles? XRD and EXAFS each have a different
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Fig. 2 Evolution of the first (blue triangles) and third (red circles) shells determined by
EXAFS and lattice parameter determined by XRPD (grey squares) for Pd black (a) and Pd
NPs (b) during hydride phase formation at 22 °C. For a direct comparison, that data were
reported as relative variation: ARpg_pa/Rpa-pa,0 and Aa/ag for EXAFS and XRPD, respec-
tively. Previously unpublished figure, reporting data published in ref. 3.
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inherent bias, with XRD being much more sensitive to the larger particles and EXAFS
being a per-atom technique, which means that even the smallest particles will
contribute. As XRD effectively weights the data by volume, it only takes a few of the
larger particles to emphasise the different perspectives of the two techniques.

Carlo Lamberti replied: With your question you have stimulated discussion
on a very important point in the field of nanoparticle (NP) characterization,
which is the intrinsic sensitivity of the different techniques. Besides XRD and
EXAFS, I will include also TEM in my answer, but first a comment is deserved.
There are several studies on NPs where the authors compare EXAFS and TEM
analyses. In a non-negligible fraction of them, the authors use the mean value of
the particle size distribution <D > obtained in the TEM study to predict the
average coordination number of metal atoms in a particle of diameter <D >: N
(<D >). Finally, they compare the N (<D >) value obtained from the TEM analysis
with the average first shell co-ordination number obtained from the EXAFS
analysis. This approach can be correct only in the ideal case of a NP having
a null standard deviation in the particle size distribution. In all the realistic
cases it is wrong because TEM distributions weights by particles while, as
correctly indicated by Andrea Russell, EXAFS weights by atoms, i.e. by particle
volume. If the NP size distribution is sharp (like the case shown in Fig. 3a-c) the
systematic error is small, and if it is large (like the case shown in Fig. 3g-i) the
error can be macroscopic (compare the blue and green distributions). The
correct approach in the comparison between TEM and EXAFS data is to calculate
the volume-weighted co-ordination number, using the whole NP size distribu-
tion obtained from TEM and not just its mean value. This concept has been well
described in several publications.'™

Now my answer. First, the TEM study (performed over more than 500 inde-
pendent NPs) on the Chimet catalyst used in this study (DOI: 10.1039/c7fd00211d)
has shown a very sharp particle size distribution: <D > = 26 + 4 A.° The N (<D >)
value obtained from the TEM analysis, taking into account the whole particle size
distribution (as described above), matches with the value obtained in our EXAFS
analysis, meaning that we do not have a bimodal particle size distribution with
very few (that unfortunately would have escaped the TEM sampling) and very big
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Fig. 3 Particle size distribution weighted by number (blue, from a TEM study) and by volume
(green, to be used to estimate the average coordination number N obtained by the EXAFS first
shell analysis) in three different examples of Pt NPs formed inside a Pt-functionalized UiO-67
MOF. Adapted by permission of the Royal Society of Chemistry (copyright 2017).5
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NPs. Second, both X-ray absorption and X-ray scattering are volume-weighted
processes, meaning that the contribution of a single NP to the total absorption
or scattering process is proportional to its volume in both cases. Things change
when with XRD we analyze the Bragg fraction only of the total X-ray scattering (as
we did in our work), because XRD probes only the fraction of Pd atoms charac-
terized by long-range order (the complementary fraction of disordered, or
amorphous, Pd atoms will contribute to the diffuse scattering around the Bragg
peaks). On this basis, I totally agree with your statement that XRD is much more
sensitive to the larger NPs then EXAFS, but the lower contribution of the small
NPs to the Pd(h,k,]) reflections (compared to their contribution to EXAFS) is not
because they are small, but because they are partially (or totally) disordered. Our
model foresees that the disordered (amorphous) part corresponds to the external
shell of the NP. On this basis, I believe that the discrepancy in the XRD and EXAFS
H,-adsorption isotherms reported in Fig. 2a and 2b, (DOI: 10.1039/c7fd00211d)
respectively, should not be related to the presence of small and big Pd NPs, but to
the different order ranges (long- vs. short-) that co-exist in different proportions in
the overall Pd phase. In this regard, the simplest assumption is to imagine, for
each NP, a crystalline core, probed by both EXAFS and XRD, and an amorphous
shell, probed by EXAFS only. Obviously, for each NP, the fraction of Pd atoms
belonging to the crystalline or to the amorphous phase is size dependent, the
former dominating for large NPs, the latter prevailing in small NPs, being the only
one present for NPs smaller than about 10 A in diameter.

1 G. Agostini, R. Pellegrini, G. Leofanti, L. Bertinetti, S. Bertarione, E. Groppo, A. Zecchina
and C. Lamberti, J. Phys. Chem. C, 2009, 113, 10485-10492.

2 G. Agostini, A. Piovano, L. Bertinetti, R. Pellegrini, G. Leofanti, E. Groppo and C. Lamberti,
J. Phys. Chem. C, 2014, 118, 4085-4094.

3 G. Agostini, C. Lamberti, R. Pellegrini, G. Leofanti, F. Giannici, A. Longo and E. Groppo,
ACS Catal., 2014, 4, 187-194.

4 L. Braglia, E. Borfecchia, K. A. Lomachenko, A. L. Bugaev, A. A. Guda, A. V. Soldatov,
B. T. L. Bleken, S. Oien-Odegaard, U. Olsbye, K. P. Lillerud, S. Bordiga, G. Agostini,
M. Manzoli and C. Lamberti, Faraday Discuss., 2017, 201, 277-298.

5 L. Braglia, E. Borfecchia, A. Martini, A. L. Bugaev, A. V. Soldatov, S. Oien-Odegaard,
B. T. Lonstad-Bleken, U. Olsbye, K. P. Lillerud, K. A. Lomachenko, G. Agostini,
M. Manzoli and C. Lamberti, Phys. Chem. Chem. Phys., 2017, 19, 27489-27507.

6 A. L. Bugaev, A. A. Guda, K. A. Lomachenko, V. V. Shapovalov, A. Lazzarini, ]J. G. Vitillo,
L. A. Bugaev, E. Groppo, R. Pellegrini, A. V. Soldatov, J. A. van Bokhoven and C. Lamberti,
J. Phys. Chem. C, 2017, 121, 18202-18213.

Justin Hargreaves asked: How amenable is the diffraction you report to
detailed line profile analysis and could this be a useful supplementary approach?

Carlo Lamberti responded: Your question deals with a very important meth-
odological aspect in nanoparticle (NP) characterization, which is the full extrac-
tion of all information available from an X-ray scattering experiment. Indeed, it is
exactly the diffuse scattering around the Pd(A,k,l) Bragg peaks that contains the
structural information on the amorphous shell of the NPs. Unfortunately, the
large majority of the literature papers that use XRD to characterize NPs limit the
data analysis to the Bragg part of the pattern, and so did we in this study. There
are two major difficulties in extending the data analysis to the diffuse scattering.
The first is methodological and it is related to the fact that the simple Bragg
equation does not hold any more and that the much more complex Debye
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equation must be used."” The latter has not a direct solution but requires the
construction of a structural model that must be iteratively refined with
a comparison between experimental and predicted scattering profile. The second
difficulty is intrinsically related to the high dilution of metal NPs that are relevant
in catalysis. The system investigated in this study is a 5 wt% Pd supported on
carbon catalyst, which means that for each Pd atom we have about 168 C atoms.
As a consequence, notwithstanding the much higher Z value of Pd with respect to
C (46 vs. 6), the electrons belonging to Pd are only 4% of the total number of
electrons in the sample. Therefore, the non-Bragg scattering profile from a 5 wt%
Pd/C catalyst will be dominated by the diffuse scattering from the amorphously
carbon support. I do not see any reliable way to separate, in a standard XRD
experiment, the diffuse scattering from the shell of the NPs from the much more
intense scattering from the substrate and advanced experiments must be fore-
seen. A first way to overcome this difficulty is to perform an anomalous XRD
experiment, which allows the technique to become element selective.>™ The
method consists of collecting three independent XRD patterns using three
different A across the Pd K-edge: in this way only the atomic form factor f’ of Pd
will change appreciably in the three data collections and there may be a chance to
discriminate the Pd from the C contribution. A second way can be to collect,
with a very short A, a diffraction pattern up to very high Q values (Q = 4 sin(6)/
A ~ 30 A7) and to analyze the data in the total scattering approach, that treats
Bragg and diffuse scattering on an equal basis, allowing us to see beyond the
crystal structure and reveal nanoscale features.®® As the atomic scattering factor
of carbons goes rapidly to zero for Q >5 A™*, the use of the scattering profile of
a Pd/C catalyst in the 5-30 A~" region will contain the contribution of Pd atoms
mainly. Summarizing it is clear that an accurate analysis of the diffuse scattering
from the metal NPs is a very difficult task, however, if properly done it will
significantly improve the structural level of knowledge in the field of NP
characterization.

1 E. Borfecchia, D. Gianolio, G. Agostini, S. Bordiga and C. Lamberti, Metal Organic
Frameworks as Heterogeneous Catalysts, Royal Society of Chemistry, Cambridge, UK, 2013,
ch. 5, pp. 143-208.

2 C. Garino, E. Borfecchia, R. Gobetto, J. A. van Bokhoven and C. Lamberti, Coord. Chem.
Rev., 2014, 277, 130-186.

3 J. L. Hodeau, V. Favre-Nicolin, S. Bos, H. Renevier, E. Lorenzo and J. F. Berar, Chem. Rev.,
2001, 101, 1843-1867.

4 C. Lamberti, E. Borfecchia, J. A. van Bokhoven and M. Fernandez-Garcia, in X-Ray
Absorption and X-Ray Emission Spectroscopy: Theory and Applications, ed. J. A. van Bok-
hoven and C. Lamberti, John Wiley and Sons, Chichester, UK, 2016, pp. 303-350.

5 E. S. Bozin, P. Juhas and S. J. L. Billinge, in Characterization of Semiconductor Hetero-
structures and Nanostructures, ed. C. Lamberti and G. Agostini, Elsevier, Amsterdam, 2013,
vol. 2, pp. 229-257.

Katerina Soulantica remarked: Considering that surface and sub-surface PdC
is an important factor in Pd catalyzed hydrogenation, a core-shell configuration
in which Pd is located on the shell and a carbide forming metal (for example Fe) in
the core could be interesting. The core could act as a PdC carbide regulator
(C "drain” or a C reservoir). Could such a core-shell configuration be helpful by
adding a supplementary probe for operando studies?
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Carlo Lamberti responded: As we have demonstrated, Pd is able to form both
surface, sub-surface and bulk carbides (DOI: 10.1039/c7fd00211d)." Thus, the
introduction of another type of atom can be made to suppress the formation of
carbide either in the core or in the shell of the NPs. This could explain why, in
several types of reactions, alloyed catalysts, such as PdAg,”> PdZn,’ or PdPb*
demonstrate higher selectivity. Obviously, the idea suggested by you to have an
external carbon source may be interesting but will increase the degree of
complexity of the system. A more complex structure of the catalyst (Pd shell and
Fe core) will definitely be an additional challenge for the operando studies. In
such a case, X-ray absorption spectroscopy should be used at both the Pd K- and
Fe K-edges. In most of the synchrotron radiation facilities, due to the huge
difference in energy between the two edges (24.35 and 7.11 keV for Pd and Fe,
respectively) the two edges cannot be measured with the same experimental set-
up but must be done at two separate times. To the best of my knowledge the Rock
beamline® of the SOLEIL synchrotron is the only facility where the two edges
could be measured almost simultaneously because the beamline is equipped with
two sets of independent optics and two triplets of independent ionization
chambers. Both optics are based on oscillating channel-cut monochromators that
are foreseen to follow fast kinetics in quick-EXAFS mode with a time resolution in
the sub-second range. Obviously, before starting the experiments on the Fe/Pd
core/shell NPs, the monometallic iron carbide system must be investigated on
both experimental and theoretical grounds. On the X-ray scattering ground, I'm
expecting that small Fe/Pd NPs (with an additional fraction of carbide phase), are
too disordered to provide analyzable Bragg peaks and only a proper analysis of
the diffuse scattering could unravel the structure of such complex FeC,/PdH,C,
core/shell NPs.

1 A. L. Bugaev, O. A. Usoltsev, A. A. Guda, K. A. Lomachenko, I. A. Pankin, Yu. V. Rusalev,
H. Emerich, E. Groppo, R. Pellegrini, A. V. Soldatov, J. A. van Bokhoven and C. Lamberti,
J. Phys. Chem. C , 2018, 122, 12029-12037

2 W. Huang, W. Pyrz, R. F. Lobo, and J. G. Chen, Appl. Catal. A: Gen., 2007, 333, 254-263.

3 M. W. Tew, H. Emerich and J. A. van Bokhoven, J. Phys. Chem. C, 2011, 115, 8457-8465.

4 ]. Rajaram, A. P. S. Narula, H. P. S. Chawla and S. Dev, Tetrahedron, 1983, 39, 2315-2322.

5 V. Briois, C. La Fontaine, S. Belin, L. Barthe, T. Moreno, V. Pinty, A. Carcy, R. Girardot and
E. Fonda, J. Phys.: Conf. Ser., 2016, 712, 012149.

Michael Bowker asked: I guess you used a temperature of 100 °C for your
measurements since that is around the temperature used for hydrogenation.
However, this poses some difficulties with respect to hydride and carbide
formation/separation. If you went to higher temperatures could you
isolate more carbide in the Pd? A number of reports in the literature suggest
that x in PdCx is around 0.17, significantly higher than you have (~0.05) and
maybe higher temperatures would give a higher carbide presence in your
experiment.

Carlo Lamberti answered: Yes, you are right, the 5 wt% Pd/C catalyst is product
D1190 from the Chimet catalyst library (http://www.chimet.com/) used in this
study (DOI: 10.1039/c7fd00211d) and usually operates for hydrogenation reac-
tions of pharmaceutical interest in the 70-90 °C range. At 100 °C the catalyst is
stable for a very long time. In few cases it has been successively employed at
higher temperatures, where it undergoes a progressive sintering that is small, up
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to 150 °C but that becomes relevant and relatively fast at temperatures higher
than 200 °C, that this catalyst should never reach. For hydrogenation reactions
that require higher temperatures, e.g. the purification of terephthalic acid
(270-290 °C), granular carbon is used as the support: 0.5 wt% Pd/C, type D3065
catalyst, supplied by Chimet, which can work in an industrial reactor for more
than 2 years, if properly treated." As a consequence, the experiment has been
performed at 100 °C, which represents the temperature where our study has not
just an academic but also an industrial relevance. I agree with you that, for
academic purposes, it would have been interesting to extend the study to higher
temperatures and to reach higher carbon loadings of the palladium carbide
phase. We did not do so because we were afraid of sintering: even a small sin-
tering would have modified the XANES features (which are particle size-depen-
dent®) and biased, in an uncontrolled way, our XANES analysis. Besides these
practical aspects, there are some reasons that could be responsible for the
lowering of the carbon concentration y in the PdC, nanoparticles. The most
relevant one is the nanometric dimensions of the particles, which in the case of
the palladium hydride phase are known to lead to much lower H/Pd ratios (DOI:
¢7fd00211d).>* This phenomenon can be explained by the fact that in the
nanoparticles we have a considerable number of atoms forming an amorphous
shell* which could not host the same amount of C per each Pd atom as in the Pd
bulk (DOI: 10.1039/c7fd00211d). As a final comment, our XANES simulations may
overestimate or underestimate the effect of carbon on the spectral shape. This
means that we can fully rely on the relative changes (i.e. increase or decrease of
the C/Pd ratio) but the absolute values may change depending on the theoretical
approach for simulation, convolution, etc. In this regard, a calibration with the
XANES spectrum collected on a buck PdC,, system with a known y stoichiometry
would be of great help.

1 R. Pellegrini, G. Agostini, E. Groppo, A. Piovano, G. Leofanti and C. Lamberti, J. Catal.,
2011, 280, 150-160.

2 J. Timoshenko, D. Y. Lu, Y. W. Lin and A. I. Frenkel, J. Phys. Chem. Lett., 2017, 8, 5091-5098.

3 A. L. Bugaev, A. A. Guda, K. A. Lomachenko, A. Lazzarini, V. V. Srabionyan, J. G. Vitillo,
A. Piovano, E. Groppo, L. A. Bugaev, A. V. Soldatov, V. P. Dmitriev, R. Pellegrini, J. A. van
Bokhoven and C. Lamberti, J. Phys.: Conf. Ser., 2016, 712, 012032.

4 A. L. Bugaev, A. A. Guda, K. A. Lomachenko, V. V. Shapovalov, A. Lazzarini, ]J. G. Vitillo,
L. A. Bugaev, E. Groppo, R. Pellegrini, A. V. Soldatov, ]J. A. van Bokhoven and C. Lamberti,
J. Phys. Chem. C, 2017, 121, 18202-18213.

Roy Johnston enquired: In your paper, the phase diagrams for the PdH, system
(2.6 nm particles) show clear separation of the o and B phases, but you state that
in a previous study of smaller (1 nm) particles (ref. 9) there is no o- phase
separation. Have you studied any intermediate sizes? If so, have you identified
a critical particle size where «-f phase separation is first seen?

Carlo Lamberti responded: I agree with you that it would be very interesting to
extend our study to at least two Pd/C systems with an average particle size
distribution around 1 and 4 nm to complement the present one (where D = 2.6 +
0.4 nm) (DOI: 10.1039/c7fd00211d), however such studies would be really
meaningful only if the particle size distribution of the two new Pd/C systems
would be sufficiently small to minimize the size overlap among the three distri-
butions. So far, we have not performed such studies however, according to the
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present results (DOI: 10.1039/c7fd00211d), we expect that the distinguishable
separation between the o and B phases should exist in particles that have a region
with a crystalline fcc structure. In addition, it should be noted that initially the
term “phase” was used only for macroscopic systems with a huge number of
particles. Interestingly, similar phase separation has been recently observed even
for an individual palladium nanoparticle."

1 S. Syrenova, C. Wadell, F. A. A. Nugroho, T. A. Gschneidtner, Y. A. D. Fernandez, G. Nalin,
D. Switlik, F. Westerlund, T. ]J. Antosiewicz, V. P. Zhdanov, K. Moth-Poulsen and
C. Langhammer, Nat. Mater., 2015, 14, 1236-1244.

Katerina Soulantica asked: Could the use of D, be of interest for your studies?

Carlo Lamberti replied: In all vibrational studies (IR, Raman, INS) the
isotopic substitution (e.g. '°0, with %0 , or '>CO with *CO) is indeed
a powerful experimental tool to validate the assignment of the observed
vibrational bands. Unfortunately, in the specific case of INS applied to diluted
samples, such as the Pt/C catalyst investigated by Carosso et al. (DOI: 10.1039/
c7fd00214a), the isotopic substitution of H, with D, is not applicable because
the total bound scattering cross section” of >D is 27.6 barn, to be compared with
82.0 barn of 'H. This means that all vibrational modes related to H, would lose
a factor 10 in intensity in the experiment performed with D, and will probably
be lost in the noise level.

1 V. F. Sears, Neutron News, 1992, 3, 29.

Federico Spolaore opened general discussion of the paper by Annette
Trunschke: In your study you used nitrate salts, adsorbed them and thermally
decomposed them to form metal nanoparticles. The average size of the support
you used was within the range of ca. 250 and 500 nm. Would you expect that the
size of the support itself could affect the size of particles during their formation
and, eventually, when these nanoparticles are further treated at high
temperatures?

Annette Trunschke responded: The size of the supported metal nanoparticles
on average was smaller than 2 nm in all catalysts. In the used catalysts some
bigger particles were also observed, but not larger than 20 nm. Therefore, we
think that the size of the support particle has no impact on the size of the metal
particles.

Graham Hutchings enquired: You introduced a theoretical approach to the
design of catalysts in your presentation concerning the conversion of synthesis
gas to ethanol and that no single metals are predicted on the basis of their
assumptions to make ethanol and hence alloys could be the approach needed. In
your case you have a Rh-Fe alloy. Is this an alloy that would have been consistent
with the theoretical approach?

Annette Trunschke answered: The particular Rh-Fe alloy was not included in

the cited work,! but the authors discuss that a limited dataset was used and that
a broader approach would result in further hits.
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1 A. Medford, A. Lausche, F. Abild-Pedersen, B. Temel, N. Schjodt, J. Nerskov and F. Studt,
Top. Catal., 2014, 57, 135-142.

Graham Hutchings commented: In scheme 1 you appear to have a composite
catalyst with the FeRh alloy and FeMnO,. As FeMnO, can be a precursor to
a Fischer Tropsch catalyst and this will lead to hydrocarbons being produced.
Perhaps you need to decrease the amount of Fe and Mn in the catalysts and it
might improve selectivity.

Annette Trunschke responded: The catalyst composition was optimized in
terms of ethanol productivity (maximum approximately 30% yield). In our
ongoing research we are trying to synthesize the Mn-Fe sub-oxide in the absence
of Rh to analyze the reactivity of this catalyst component separately.

David Marchant asked: Do you have an explanation for why co-impregnation
yields a more active catalyst than a sequential impregnation approach, in this
particular case?

Annette Trunschke answered: The sequentially prepared catalysts were not
analyzed in such detail, but co-impregnation resulted in a more homogeneous
distribution of all elements on the surface of the support.

Andrea Russell enquired: I found your use of a laboratory based source for the
XANES measurements presented in Fig. 2 very interesting. For the benefit of the
audience and readers of this discussion, would you please comment on why you
chose to use this source and how long it took to collect the spectra?

Annette Trunschke replied: Beam damage is an issue that complicates the
analysis of supported nanoparticles, in particular manganese species. In the
laboratory-based X-ray absorption experiment we minimized the exposure of the
catalyst to X-rays, however, longer accumulation times of approximately 8 h have
to be taken into account.

Carlo Lamberti commented: I confirm that useful XAS experiments can be
performed on laboratory instrumentation. As an example, in the Smart Materials
Research center of the Southern Federal University (Russia) where I'm the
scientific director, we have a laboratory XAS spectrometer.' It can be used to
collect in situ XANES spectra that do not have the energy resolution of those
collected at the synchrotron sources, but that are still informative on oxidation
and coordination state of the selected element. We have even been able to run an
operando electrochemical reaction following the charge and the discharge of
a Mn-containing Li-battery.

1 http://nano.sfedu.ru/structure/facilities/rigaku-r-xas/.
Michele Carosso asked: My question refers to the FT-IR spectra of CO adsorbed
on the un-promoted Rh/SiO, catalyst and on the promoted ones (both Rh-Mn/

SiO, and Rh-Mn-Fe/SiO,). You showed that the absorption bands due to CO
adsorbed on the metal phase are much more intense for the un-promoted
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catalyst, concluding that, in this case, the metal surface area available for CO
adsorption is larger. While the conclusion sounds likely, it is also known that CO
is not an innocent probe towards metal surfaces, and in particular towards Rh
surfaces. As a matter of fact, CO may lead to the fragmentation of the Rh nano-
particles via the formation of Rh-carbonyls and to a consequent overestimation of
the metal surface area. I'm wondering if you considered this point during the
analysis of your FT-IR spectra?

Annette Trunschke answered: Fragmentation of the Rh nanoparticles did
essentially not occur on the present catalysts in the experiments performed at 313
K. Only very small contributions of Rh+(CO), species to the spectrum of CO
adsorbed on Rh/SiO, were observed at 2095 cm™' and 2015 cm ™. Geminal
dicarbonyl species were not formed on the promoted catalysts. These species were
also not present under reaction conditions.

Michael Bowker enquired: You refer to higher alcohol synthesis as a basis for
this work, and this is a case where there is a need for the bifunctional nature of
the catalyst. It needs to be able to both dissociate CO and to adsorb it molecularly,
since ethanol contains both a dissociated and associated CO molecule. You
showed IR where the bridge site disappeared, but maybe we do need the bridge
site as a dissociation centre? So is it a good idea to look to remove the bridge site?

Annette Trunschke responded: We observed that the very active and selective
catalysts do not adsorb CO in a bridged configuration on Rh. Therefore we
postulated that the active sites might be located on the promoter sub-oxides or on
the interface between Rh and the promoter-suboxides. Perhaps hydrogen-assisted
C-0 dissociation is involved in the mechanism. Further experiments are neces-
sary to verify this postulation experimentally.

Francesca Baletto asked: We are wondering whether your technological tech-
nique can detect the chemical composition at the interface cluster/oxide. Indeed,
we have predicted a considerable improvement of the adsorption property of
MgO-supported PtNi clusters' when a few Ni atoms are in contact with the
substrate. We would like to see any experimental evidence supporting this
finding.

1 Asara et al., ACS Catal., 2016, 6, 4388-4393.

Annette Trunschke answered: This can be studied by electron microscopy,
albeit the task is challenging due to the charging of MgO.

Bruce Gates said: Can you comment on the reproducibility of these complex
catalysts you have investigated in terms of the characterization and performance
data?

Annette Trunschke replied: Characterization and testing exhibited high

reproducibility. The catalysts were also tested over long times on stream (> 800 h)
and under varying reaction conditions.
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Joseph Macginley enquired: What is the importance of the Fe : Mn ratio in
these catalysts?

Annette Trunschke responded: Our main interest was directed at the influence
of the individual promoter elements, Mn and Fe, on the nanostructure of the Rh
particles. Therefore, we investigated only optimized catalyst compositions using
spectroscopy and microscopy.

Nicola Irvine asked: Do you use any alkali components in your Rh-Fe/Mn
catalyst, as alkali dopants have been known to enhance oxygenate formation? If
so, how does that affect the selectivity to ethanol or any other oxygenated product?
If not, how do you think an alkali component may influence your activity and
selectivity in the CO hydrogenation?

Annette Trunschke answered: We did not investigate alkali addition, because
this would have made our systems even more complex. A positive effect of alkali
on oxygenate formation over Rh catalysts has been reported and some authors
argued that the presence of alkali induces a weakening of the strength of CO
adsorption, which would be in agreement with our observation that strongly
adsorbed CO molecules poison the catalyst.

Andrea Russell opened general discussion of the paper by Michele Carosso:
The INS data you have shown for the 5 wt% Pt/C catalyst is really lovely and you’ve
clearly benefited from the advances in the spectrometer as you’ve described in
your paper. This system has been examined using INS previously, but for more
highly loaded catalysts (see the references to papers by Parker, Mitchell, and
Ramirez-Cuetsa in the manuscript). Other than being the more typical industrial
catalyst, is there any advantage to looking at the lower loaded material? Do you
expect the more highly loaded material to show evidence of cooperative effects
between adjacent particles and if so, do you see evidence of this when you
compare your results to those published previously?

Michele Carosso replied: We selected a low loaded Pt sample of relevance for
real industrial applications. From a data analysis point of view, a lower Pt loading
implies weaker features for chemisorbed hydrogen species, which can represent
a problem in terms of signal-to-noise ratio. However, this was not a problem in
our case. Indeed, our spectra have a signal-to-noise ratio comparable (or even
better) to those reported decades ago by Parker,'” Mitchell’ and Ramirez-
Cuesta,” and all of them collected on samples containing no less than 40 wt% Pt,
clearly as a consequence of the improvements in the INS instruments in terms of
both neutron fluxes on the sample and detector efficiency. From a chemical
perspective, the metal loading would influence the dispersion and the average
particle size of the metal NPs, and therefore also the type of hydrides present on
the particles. Moreover, for a more loaded Pt/C catalyst under reaction conditions
sintering phenomena may occur, especially considering that carbon has a weak
interaction with the metal NPs.

1 P. Albers, E. Auer, K. Ruth and S. F. Parker, J. Catal., 2000, 196, 174-179.
2 P. W. Albers, M. Lopez, G. Sextl, G. Jeske and S. F. Parker, J. Catal., 2004, 223, 44-53.
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3 S. F. Parker, C. D. Frost, M. Telling, P. Albers, M. Lopez and K. Seitz, Catal. Today, 2006,
114, 418-421.

4 P. C. H. Mitchell, A. J. Ramirez-Cuesta, S. F. Parker and J. Tomkinson, J. Mol. Struct., 2003,
651-653, 781-785.

5 A.]. Ramirez-Cuesta, P. C. H. Mitchell, S. F. Parker, J. Tomkinson and D. Thompsett, Stud.
Surf. Sci. Catal., 2001, 138, 55-60.

Andrea Russell asked: In your discussion of Fig. 2 in your paper you conclude
that "these data suggest that at least some of the platinum nanoparticles in the Pt/
C sample sit at the platelets’ edges, preferentially at the regular edges of the sp®
graphitic domains ...". What are the implications of this observation for those
who are attempting to use graphene flakes as a support material for Pt or other
metal nanoparticles?

Michele Carosso responded: The location of Pt (or other metals) NPs on the
support may have a great influence on their reactivity. For example, the edges of
the graphitic domains in activated carbons may contain more reactive sites with
respect to the extended faces. These reactive sites may be involved in the catalysis,
in strong cooperation with the metal NPs. As an example, unsaturated carbon
radical species are known to be present at the edges of the graphitic domains. In
the presence of hydrogen, the Pt NPs located at the edges of the carbon platelets
may promote the transfer of atomic hydrogen from the Pt surface to the carbon
edges (spillover effect).”® This is the reason why metal-doped carbonaceous
materials are widely studied as promising systems for hydrogen storage.”” The
same concept has to be applied for metal NPs supported on graphene flakes.

1 R. Bhowmick, S. Rajasekaran, D. Friebel, C. Beasley, L. Jiao, H. Ogasawara, H. Dali,
B. Clemens and A. Nilsson, J. Am. Chem. Soc., 2011, 133, 5580-5586.
2 C. L. Contescu, C. M. Brown, Y. Liu, V. V. Bath and N. C. Gallego, J. Phys. Chem. C, 2009,
113, 5886-5890.
3 P. C. H. Mitchell, A. J. Ramirez-Cuesta, S. F. Parker, J. Tomkinson and D. Thompsett,
J. Phys. Chem. B, 2003, 107, 6838-6845.
4 A.J. Ramirez-Cuesta, P. C. H. Mitchell, S. F. Parker, J. Tomkinson and D. Thompsett, Stud.
Surf. Sci. Catal., 2001, 138, 55-60.
5 C. Tsao, Y. Liu, M. Li, Y. Zhang, J. B. Leao, H. Chang, M. Yu and S. Chen, J. Phys. Chem.
Lett., 2010, 1, 1569-1573.
6 C. Tsao, Y. Liu, H. Chuang, H. Tseng, T. Chen, C. Chen, M. Yu, Q. Li, A. Lueking and
S. Chen, J. Phys. Chem. Lett., 2011, 2, 2322-2325.
7 R. Zacharia, S. Rather, S. W. Hwang and K. S. Nahm, Chem. Phys. Lett., 2007, 434, 286-291.
8 G. M. Psofogiannakis and G. E. Froudakis, J. Phys. Chem. C, 2009, 113, 14908-14915.
9 D. S. Pyle, E. M. Gray and C. J. Webb, Int. J. Hydrogen Energy, 2016, 41, 19098-19113.
10 P. Benard and R. Chahine, Scr. Mater., 2007, 56, 803—-808.
11 A. C. Chien and S. S. C. Chuang, Int. J. Hydrogen Energy, 2011, 36, 6022-6030.
12 D. Giasafaki, G. Charalambopoulou, C. Tampaxis, D. M. Gattia, A. Montone, G. Barucca
and T. Steriotis, J. Alloys Compd., 2015, 645, S485-S489.
13 S. M. Lee and Y. H. Lee, Appl. Phys. Lett., 2000, 76, 2877-2879.
14 Y. Li and R. T. Yang, J. Phys. Chem. C, 2007, 111, 11086-11094.
15 S. Park and S. Lee, Int. J. Hydrogen Energy, 2010, 35, 13048-13054.
16 A. L. M. Reddy and S. Ramaprabhu, Int. J. Hydrogen Energy, 2008, 33, 1028-1034.
17 L. Wang and R. T. Yang, J. Phys. Chem. C, 2008, 112, 12486-12494.

Philip R. Davies enquired: Do you have any idea of the proportion of sp*/sp®
carbon in your sample? When you introduce the platinum metal using impreg-
nation, are you introducing any new oxygen functionality? Can you rule out the
possibility that it is such new oxygen functional groups that are responsible for
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the loss of the edge hydrogen atoms you have observed? Do you see any other
functional groups in your INS spectra?

Michele Carosso replied: The carbon used as the catalyst support in this work
was previously characterized in terms of morphological, structural and surface
properties, employing a wide range of techniques." In particular, Raman spec-
troscopy has the potential to reveal the proportion of sp> and sp® carbon fractions.
Fig. 4a shows the Raman spectrum of the activated carbon, collected with the
laser line at 514 nm as the exciting source: two intense bands at 1605 cm ™" and
1350 cm ™' (labelled as G and D, respectively) dominate the spectrum, and both of
them are attributed to sp> domains. The G band refers to bond stretching of pairs
of sp® carbon atoms>™, while the D band is due to a lattice breathing mode,
forbidden in ideal graphitic crystals but activated by structural disorder.>”” The
very weak feature around 1150 cm ™" (labelled as I band) originates from amor-
phous carbon. The absence of sp® carbon is confirmed by the UV Raman spectrum
(Fig. 4b, laser line at 244 nm) that, exciting both the 7 and the o states, is able to
probe both the sp” and the sp® carbon species. The spectrum shows only sp”
species. Concerning the second question, I agree with you that the changes in the
INS spectra might be, at least in part, due to the introduction of oxygen functional
groups at the edges of the graphitic domains. To clarify this point a strategy could
be to measure, by using INS, the same carbon subjected to the same chemical
treatment adopted during Pt impregnation, but without the Pt precursor. Finally,
regarding the observation of other functional groups by INS, unluckily (or luckily,
it depends on what you want to measure), hydrogen-containing species dominate
the whole INS spectrum.® Hence, only functional groups containing hydrogen can
be easily detected. According to DFT calculation, a sharp band at 585 cm ™" in the
INS spectra (Fig. 2 in the paper) could be attributed to COOH groups.’

1 A. Lazzarini, A. Piovano, R. Pellegrini, G. Leofanti, G. Agostini, S. Rudic, M. R. Chierotti,
R. Gobetto, A. Battiato, G. Spoto, A. Zecchina, C. Lamberti and E. Groppo, Catal. Sci.
Technol., 2016, 6, 4910-4922.

2 K. D. Henning and H. von Kienle, Ullmann’s Encyclopedia of Industrial Chemistry, 2010.

3 R. Schlogl, Handbook of heterogeneous catalysis, 2008, 1, 357.
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Fig.4 Raman spectra of the carbon support, collected with the laser line at 514 nm (part a)
and at 244 nm (part b) as exciting sources. Previously unpublished figure, reporting data
published in ref. 1.
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4 H. Marsh and F. Rodriguez-Reinoso, Activated carbon, Elsevier Science, Oxford, UK, 2006,
p. 13.

5 C. Castiglioni, M. Tommasini and G. Zerbi, Philos. Trans. R. Soc. A, 2004, 362, 2425.

6 M. Tommasini, C. Castiglioni. G. Zerbi, A. Barbon and M. Brustolon, Chem. Phys. Lett.,
2011, 516, 220.

7 A. C. Ferrari, Solid State Commun., 2007, 143, 47.

8 V. F. Sears, Methods Exp. Phys., 1986, 23, 521-550.

9 A. Piovano, A. Lazzarini, R. Pellegrini, G. Leofanti, G. Agostini, S. Rudic, A. L. Bugaev,
C. Lamberti and E. Groppo, Adv. Condens. Matter Phys., 2015, 2015, 803267.

Michael Bowker said: My question relates to the graphite support and edge
sites; you say you treat it at high temperature in air, then cool in air. You might
expect a reaction at the C edge sites to adsorb something from the air e.g. water or
oxygen/CO,, do you have clear evidence that the edge sites are completely clean?

Michele Carosso answered: I said that the carbon support was steam-treated at
high temperature, this relates to the procedure to obtain an activated carbon from
the raw material (wood in this case). Concerning the catalyst pre-treatment prior
to the INS measurement, it was conducted at 120 °C in dynamic vacuum, in order
to eliminate the physisorbed water. The 120 °C treatment was prolonged until
aresidual pressure of 10 ™% mbar was reached. Then the sample was inserted in an
Al sample holder by means of an Ar-filled glovebox (Al is an ideal sample holder
for INS, owing to its negligible s¢oa (1.50 barn)." Considering the pre-treatment
and the adopted precautions in order to avoid air contamination, we believe
that our sample was clean. This is confirmed by the INS spectra that do not show
any water on the sample.

1 V. F. Sears, Methods Exp. Phys., 1986, 23, 521-550.

Jonathan Quinson asked: Are you using the same approach for the investiga-
tion of other metals (e.g. Pd), other carbon supports and maybe even other
supports? Since the technique is very dependent to the properties of hydrogen,
but given the improvement of the technique you mentioned, do you see it being
more widely used in the short or long term future, possibly for molecules other
than H,?

Michele Carosso responded: Concerning the first question, we have recently
employed INS spectroscopy to investigate two different activated carbons and the
related Pd-based catalysts." Both carbons are of wood-origin, but activated in
a different way: Cyw (the same carbon employed as the support in the preparation
of the here studied 5 wt% Pt/C catalyst) is activated in steam, while Ccpemi iS
activated in H3PO,. The INS spectra of the two carbons are shown in Fig. 5a. The
spectrum of Ccpemi is almost double the intensity with respect to that of Cyw, but
the shape of the spectra is very similar. This means that the nature of the
hydrogen species located at the edges of the sp® graphitic domains and their
relative abundance are the same for the two differently treated carbons, but
hydrogen species are more abundant in Ccpemi. This was attributed to the lower
sizes of sp> graphitic domains in Ccpem; With respect to Cy, induced by the acid
treatment.' Both carbons were employed as supports for Pd-based catalysts (Pd/
Cw and Pd/Ccpemi)- Fig. 5b compares the INS spectrum of Cyw with that of the
corresponding catalyst Pd/Cy. Also in this case, as for the Pt/C catalyst
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Fig.5 Part (a) INS spectra of C,, (red spectrum) and Ccpemi (Orange spectrum). Part (b) INS
spectra of C,, (red) and of the corresponding Pd/C,, catalyst (blue). Previously unpublished
figure, reporting data published in ref. 1.

investigated in this work, the peaks associated to the C-H in-plane and out-of-
plane bending modes are slightly less intense in the spectrum of the catalyst,
indicating that at least a fraction of the C-H terminations are involved in the Pd
deposition." In particular, the band at 880 cm ™", indicative of regular borders, is
the most affected one, indicating that the Pd NPs are mainly located at the regular
edges of the sp” graphitic domains.>? A similar trend was observed also for the
Pd/Ccremi catalyst. Finally, considering that most of the supports are almost
transparent to neutrons, INS can be used to characterize many metal-supported
catalysts. For example, we have investigated also a 5 wt% Pt/Al,O; catalyst, that
will be the subject of a successive paper. Regarding the second question, in
principle INS can be employed to study every adsorbed molecule as all nuclei
contribute, with no selection rules, to the overall INS spectrum. However, we have
to remember that the main parameter determining the intensity of the INS
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spectrum is the scattering cross section of the nuclei present in the chosen probe
molecule: that is for "H one order of magnitude greater with respect to all other
nuclei (the scattering cross section of 'H is 82.0 barn).* This implies that the
technique is still very suitable for molecules having a large fraction of hydrogen
atoms, such as CH,, NH;, C,H,, etc. Conversely, if the selected molecule does not
contain hydrogen atoms (CO, NO, CO,, etc.) and if the investigated sample
contains a non-negligible amount of hydrogen atoms, then the INS spectrum will
be dominated by hydrogen features, that most likely will obscure the vibrational
features of the probe molecule.

1 A. Lazzarini, A. Piovano, R. Pellegrini, G. Leofanti, G. Agostini, S. Rudic, M. R. Chierotti,
R. Gobetto, A. Battiato, G. Spoto, A. Zecchina, C. Lamberti and E. Groppo, Catal. Sci.
Technol., 2016, 6, 4910-4922.

2 P. W. Albers, J. Pietsch, J. Krauter and S. F. Parker, Phys. Chem. Chem. Phys., 2003, 5, 1941.

3 A. Piovano, A. Lazzarini, R. Pellegrini, G. Leofanti, G. Agostini, S. Rudic, A. L. Bugaev,
C. Lamberti and E. Groppo, Adv. Condens. Matter Phys., 2015, 2015, 803267.

4 V. F. Sears, Methods Exp. Phys., 1986, 23, 521-550.

David Willock commented: The images of the graphitic edge sites you show are
always zig-zag in nature. There is also the possibility of armchair termination of
a graphitic sheet' as shown in Fig. 6. We have previously considered armchair
terminations as more easily functionalised for the improved adhesion of metal
particles.”

1 A. P. Seitsonen, A. M. Saitta, T. Wassmann, M. Lazzeri, F. Mauri, Phys. Rev. B, 2010, 82,
115425.

2 P. R. Davies, R. Burgess, C. Buono, R. ]J. Davies, T. Legge, A. Lai, R. Lewis, D. ]J. Morgan,
N. Robinson, D. J. Willock, J. Catal., 2015, 323, 10.

Michele Carosso responded: You are perfectly right. The TOC image shows
a zig-zag terminated graphitic sheet. This was done for simplicity, and perhaps
does not fully represent the real case, where also arm-chair terminated borders
are present. The INS spectra reported in our work (DOI 10.1039/c7fd00214a)
indicate that all the borders (regular and irregular, zig-zag and arm-chair) are
affected by Pt deposition. However, the C-H band most affected is that located at

zig-zag edge
H H H H
H
H
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H
H

Fig. 6 Armchair termination of a graphitic sheet.
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880 cm ™', which is attributed to regular zig-zag borders. This is why we conclude
that the Pt NPs are mainly located at the zig-zag edges.

Carlo Lamberti commented: The “solo”, “duo” and “trio” nomenclature has
been given in the specialized literature’™ to out-of-plane C-H bending modes of
specific structures located at the borders of the sp> domains, depending on the
number of adjacent aromatic C-H groups which vibrate out-of-plane in the fused
rings.

1 M. Zander, Polycycliche aromaten, Teubner, Stuttgart, 1995.

2 A. Centrone, L. Brambilla, T. Renouard, L. Gherghel, C. Mathis, K. Mullen and G. Zerbi,
Carbon, 2005, 43, 1593-1609.

3 A. Piovano, A. Lazzarini, R. Pellegrini, G. Leofanti, G. Agostini, S. Rudit, A. L. Bugaev,
C. Lamberti and E. Groppo, Adv. Condens. Matter Phys., 2015, 2015, 803267.

4 A. Lazzarini, R. Pellegrini, A. Piovano, S. Rudic, C. Castan-Guerrero, P. Torelli, M. R.
Chierotti, R. Gobetto, C. Lamberti and E. Groppo, Catal. Sci. Technol., 2017, 7, 4162-4172.

Katerina Soulantica asked: Would an exchange of H, by D, help to distinguish
between free, chemisorbed and physisorbed species?

Michele Carosso answered: Analogously to the optical spectroscopies (IR and
Raman), also in INS the energy of a vibrational motion depends on the mass of the
oscillator (the same vibrational mode involving "H will be located at a higher
energy than that involving ®H); this means that sending D, over an H,-loaded
sample can in principle help in discriminating weakly-bonded to strongly-bonded
hydrogen species. However, attention must be paid to the problem related to the
band intensities. The intensity of an INS band is directly proportional to the total
bound scattering cross sections (syora1) Of the nuclei involved in the vibration: seoa
of 'H is one order of magnitude greater than that of >H (82.0 barn and 7.64 barn,
respectively)." Hence, the vibrational mode of a species involving hydrogen that
has been replaced by deuterium, will appear in the INS spectrum, at a different
frequency, but with a much lower intensity, which makes its detection ques-
tionable. Replacing in a selective way some hydrogen species with deuterium
could be useful in order to weaken their INS features and hence to highlight some
other hydrogen species that we want to focus on.

1 V. F. Sears, Methods Exp. Phys., 1986, 23, 521-550.

Stanley Lai enquired: Can you speculate or hypothesise on the effect of the
different H-species on the activity of the catalysts? For example, do you expect all
species to play a role under catalytic conditions, where there will be competitive
adsorption from the reactant, product and, for solution-phase reactions, solvent
molecules? This competitive adsorption may be a particularly important
consideration for the weaker, physisorbed H-species. Similarly, would you expect
to see different regimes in reactivity, similarly to different regimes in H-species
(Fig. 3)?

Michele Carosso responded: Based on INS data only, we cannot provide any
speculation on the reactivity of the different hydrogenous species formed upon H,
adsorption on our 5 wt% Pt/C catalyst, at least for two reasons: (1) the INS
measurements are performed at 20 K, and at this temperature no reaction would
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occur; (2) a single spectrum takes several hours to be collected, preventing the
study of Pt-hydride dynamics. Hence, INS spectroscopy is a powerful tool for the
quantitative investigation of the Pt-hydride species, but it provides a “static”
picture of the studied system. However, we have experimental evidences on
that: (1) the relative abundance of the Pt hydrides changes with the hydrogen
coverage, ie. the Pt-hydrides have a dynamic behavior as a function of the
hydrogen pressure and (2) only a fraction of the Pt-hydrides are involved in
catalysis. These evidences are derived from IR experiments performed on
a similar 5 wt% Pt/Al,O; catalyst, and have not been published yet.

Revana Chanerika said: You have hydrogen chemisorbed over steps and
corners as the defect sites. What evidence do you have (or have you imaged
various areas using miscoscopy techniques) to safely conclude that there are no
kinks present where there could be chemisorption of hydrogen occurring as well?

Michele Carosso replied: According to TEM analysis, the 5 wt% Pt/C catalyst
studied in this work is characterized by Pt NPs with an average particle size of ca.
2 nm. So small NPs surely contain many defects on the surfaces, including steps
and corners, as well as kinks. The presence of such defects can be highlighted by
means of FT-IR spectroscopy of adsorbed CO, which is a method that has been
largely employed in the past to characterize both single crystal Pt surfaces and
supported Pt NPs.'™® The interaction of CO with the Pt surface is dominated by the
back-donation of electron density from the d-orbitals of the metal to the 27t” orbital
of CO. The extension of this phenomenon depends on the coordination of the
adsorption site, being greater for low-coordinated (i.e. more defective) adsorption
sites. Hence, the analysis of the v(CO) absorption bands provides a qualitative
indication of the adsorption sites present on Pt surfaces. Unfortunately, the
application of this method to carbon-supported catalysts is hampered by the highly
absorbing nature of the carbon support. However, we employed this approach to
investigate the surface properties of a 5 wt% Pt/Al,O; catalyst, that, according to
TEM and CO chemisorption experiments, is very similar to the 5 wt% Pt/C inves-
tigated in the present work. Fig. 7 shows the FT-IR spectrum of CO adsorbed at
room tempe