Emerging frontiers in chiral metal–organic framework membranes: diverse synthesis techniques and applications
Abstract
Chirality is a basic and universal property in nature, refering to the asymmetry of molecules, where they do not coincide with their mirror images. Chiral materials, in multiple forms, usually exhibit unique physical phenomena such as chiral luminescence and distinctive chemical properties. Metal–organic framework (MOF) membranes have high porosity and abundant active sites; thus, they are an excellent candidate for functionalization. With the involvement of chiral units, chiral MOF membranes demonstrate great potential in applications such as chiral sensing, separation and luminescence. In this review, we first introduce the up-to-date preparation methods for chiral MOF membranes, including direct and indirect methods, and then discuss their applications in enantiomer recognition, chiral separation, and circularly polarized luminescence. Finally, we summarize the challenges in developing chiral MOF membranes and provide a perspective on future developments.
- This article is part of the themed collections: Recent Review Articles and Synthesis, physical properties and applications of advanced nanocrystalline materials