Issue 2, 2025

Thermoelectric performance of Bi-based novel Janus monolayer structures

Abstract

This work systematically investigates the stability and electronic and thermoelectric characteristics of newly discovered 2D Janus monolayers BiYZ (Y ≠ Z = Te, Se and S) according to the first-principles theory. Janus BiYZ monolayers are stable based on the AIMD simulations, positive phonon spectra plots and the evaluation of elastic strain tensor. These monolayers show a high carrier mobility (∼103 cm2 V−1 s−1) and an indirect bandgap nature. The Janus monolayers BiTeSe, BiTeS and BiSeS show an ultralow lattice thermal conductivity of 0.04 W m−1 K−1, 0.20 W m−1 K−1 and 0.02 W m−1 K−1, respectively, at room temperature. Low lattice thermal conductivity is obtained due to a small phonon group velocity, high Grüneisen parameter, small phonon relaxation time and significantly reduced phonon transport. The maximum ZT values at 500 K reach up to 0.97, 0.60 and 1.78 for BiTeSe, BiSeS, and BiTeS monolayers, respectively. Our results suggest Janus BiYZ monolayers to be promising thermoelectric candidates due to their superior thermal and electrical transport characteristics and subsequent strong thermoelectric performance.

Graphical abstract: Thermoelectric performance of Bi-based novel Janus monolayer structures

Supplementary files

Article information

Article type
Paper
Submitted
12 Sep 2024
Accepted
12 Dec 2024
First published
24 Dec 2024
This article is Open Access
Creative Commons BY-NC license

Mater. Adv., 2025,6, 849-859

Thermoelectric performance of Bi-based novel Janus monolayer structures

K. Sujata, N. Verma, R. G. Solanki and A. Kumar, Mater. Adv., 2025, 6, 849 DOI: 10.1039/D4MA00924J

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements