Depolymerization of PET by common alkanolamines yields tunable monomers to expand the design space of 3D-printable, intrinsically self-healing polyamide-ionenes†
Abstract
Polyethylene terephthalate (PET), a ubiquitous thermoplastic used in textiles and packaging, is one of the primary contributors to plastic pollution. While PET is also one of the most recycled plastics, it has value as a rich source of chemical building blocks. When PET is depolymerized by amino alcohols (“alkanolamines”) such as monoethanolamine (MEA), terephthalamide-diol molecules are produced. In the presence of thionyl chloride (SOCl2), these diols are amenable to transformation to the corresponding dichloride monomers, which can then be polymerized via condensation methods (i.e., Menshutkin reaction) with bisimidazole compounds followed by ion-exchange to yield polyamide (PA)-ionenes with tailored structures. The PA-ionenes produced from these methods are intrinsically self-healing and possess thermal and mechanical properties which make them amenable to 3D printing. This study reports on synthetic methods and structure–property relationships in PA-ionenes that arise from the choice of molecular building blocks.
- This article is part of the themed collection: RSC Applied Polymers Advisory Board