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We study the linear stability of an isotropic active fluid in three different geometries: a film of active fluid on a rigid substrate,

a cylindrical thread of fluid, and a spherical fluid droplet. The active fluid is modeled by the hydrodynamic theory of an active

nematic liquid crystal in the isotropic phase. In each geometry, we calculate the growth rate of sinusoidal modes of deformation

of the interface. There are two distinct branches of growth rates; at long wavelength, one corresponds to the deformation of

the interface, and one corresponds to the evolution of the liquid crystalline degrees of freedom. The passive cases of the film

and the spherical droplet are always stable. For these geometries, a sufficiently large activity leads to instability. Activity also

leads to propagating damped or growing modes. The passive cylindrical thread is unstable for perturbations with wavelength

longer than the circumference. A sufficiently large activity can make any wavelength unstable, and again leads to propagating

damped or growing modes. Our calculations are carried out for the case of zero Frank elasticity. While Frank elasticity is

a stabilizing mechanism as it penalizes distortions of the order parameter tensor, we show that it has a small effect on the

instabilities considered here.

1 Introduction

Active fluids are energized locally by motorized microscopic

active particles such as kinesin-driven microtubules1 and

myosin-actin complexes2. Therefore, their dynamics occur

out of thermal equilibrium3,4. Hydrodynamic instabilities of

both polar and nematic active fluids have been studied using

hydrodynamic theories and simulations for bulk5–7 as well as

for confined fluids8–14. In this paper, we consider the instabil-

ities of active nematic fluids in the isotropic phase confined by

an interface. The damping of a capillary wave on a flat inter-

face between two passive viscous fluids is well-understood15.

Likewise, theoretical studies of interfacial instabilities like the

Rayleigh-Plateau capillary instability and Rayleigh-Taylor in-

terface instability have been carried out for passive fluids16

including complex fluids such as polymer solutions17,18 and

liquid crystals19,20. Less work has been done on interfacial

instabilities in active fluids. It is natural to expect that the in-

stabilities that occur in bulk active fluids can destabilize an

otherwise stable interface, or make an already unstable inter-

face more unstable. Work to date includes a study by Yang

and Wang21 of the Rayleigh-Plateau capillary instability of a

thread of active polar fluid in the ordered state surrounded by a

passive Newtonian fluid, a study by Whitfield and Hawkins22

of the instability of an spherical droplet of active polar fluid

in the ordered state, and an analysis by Gao and Li23 of a

self-driven droplet of an active nematic fluid. Also, Patteson

et al.24 studied the propagation of active-passive interfaces in

bacterial swarms. Recently, Maitra et al.25 explored the dy-

namics of an active membrane in an active polar medium, Mi-

a School of Engineering, Brown University, Providence, RI 02912, USA.
b Department of Physics, Brown University, Providence, RI 02912, USA.

Fig. 1 (Color online.) A film of an isotropic active nematic liquid

fluid of depth d in its quiescent state. The double headed arrows are

the active nematic molecules. The bottom surface of the film is in

contact with a solid substrate. The top surface is free. The film is

subject to a small-amplitude perturbation of wavenumber k.

etke et al. studied the instabilities of an active membrane in

a passive fluid26, and V. Soni et al. studied the surface dy-

namics of an active colloidal chiral fluid27. Other recent work

has examined the dynamics of the interface between an active

nematic phase and an isotropic phase28,29. Here, we focus on

linear stability analyses of active nematic fluids in the isotropic

phase in with flat, cylindrical, or spherical interfaces. Our fo-

cus on the isotropic phase is motivated by recent experiments

on active matter that show large regions in which the nematic

order is small30. Our work is distinct from the other theoret-

ical work just mentioned on interfacial instabilities in active

fluids because we consider the active nematic to initially be in

the isotropic state instead of the ordered state.

We model the isotropic phase of an active nematic fluid by

adding activity to de Gennes’ hydrodynamic model31–34 for

the isotropic phase of a passive nematic. This model is appro-

priate for ‘shakers’ rather than ‘movers’ suspended in a liquid.

The model shows that in the linear regime the isotropic active
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nematic fluid behaves like a viscoelastic fluid, with the viscos-

ity and viscoelasticity growing large as the isotropic-nematic

transition is approached35. However, our results for the sta-

bility of interfaces are qualitatively different from the passive

viscoelastic fluid case due to the orientational degrees of free-

dom. We work in the limit of low Reynolds number, where

viscous effects dominate inertial effects. For a passive fluid,

deformations of a surface or spherical surface always relax,

whereas a cylindrical thread is unstable to peristaltic deforma-

tions of sufficiently long wavelength. When the fluid is active,

deformations of the surfaces in all three cases can be unsta-

ble. The instability of a bulk active isotropic fluid drives the

instability of the flat and spherical surface, and enhances the

Rayleigh-Plateau capillary instability of a cylinder.

Our key results are as follows. In the all geometries we

consider, the dynamics of the interface of the fluid and the ne-

matic order parameter leads to coupled modes. We calculate

the growth rates of the modes in the approximation of van-

ishing Frank elasticity. It is well known that activity can lead

to an instability of the zero-flow state; we show that instabil-

ity occurs even in the presence of an interface. For sufficiently

large activity, some of the modes have an oscillatory character.

We study the role of Frank elasticity in the case of an active

film, and find that it leads to an infinite sequence of modes that

become unstable in succession as the activity is raised. Frank

elasticity is stabilizing; since the gap between the successive

critical activities increases with the Frank constant, the critical

activity for the first mode to become unstable may be calcu-

lated assuming the Frank constant vanishes. We make this

simplifying assumption for the cylinder and sphere of active

fluid. Likewise, surface tension makes it harder for activity

to destabilize an active film or an active fluid confined by a

spherical interface, as compared to the unconfined case, be-

cause deforming a flat or spherical interface increases its area.

For the cylindrical thread of radius R, harmonic perturbations

of wavenumber k < 1/R are always unstable, just as in the pas-

sive case. Perturbations with k > 1/R become unstable above

a critical activity increasing with k and the surface tension of

the interface.

The remainder of the paper is organized as follows. In sec-

tion 2, we introduce a hydrodynamic model for an active ne-

matic fluid in the isotropic state. In section 3, we use this

model to study the linear stability of a film bound by an inter-

face. Next , in section 4, we consider the stability of a thread

of active fluid bound by either an interface. Finally, in sec-

tion 5 analyze the stability of a spherical drop of active fluid.

We offer concluding remarks in Section 6. Section 7, the Ap-

pendix, contains additional details relevant to Section 3.

2 Model

The total free energy of an active isotropic nematic fluid with

an interface is F = Fn +Fi, where Fn is the free energy of

the nematic fluid, and Fi is the energy of the interface. De-

noting the nematic order parameter field by Qαβ , the nematic

free energy is

Fn =
∫

d3x

[

K

2
∂α Qβ γ∂α Qβ γ +

A

2
Qαβ Qαβ

+
B

3
Qαβ Qβ γQγα +

C

4
(Qαβ Qαβ )

2

]

, (1)

where we sum over repeated indices α,β , . . . which run over

the three spatial coordinates. We have assumed the one-Frank

constant approximation. We consider the isotropic phase, for

which A > 0. We assume Frank elasticity can be neglected

as long as we are not too near the nematic transition. For ex-

ample, if we consider the stability of modes of wavenumber k

for an infinite two-dimensional active isotropic system with no

boundaries31, the effect of including the Frank constant K is to

replace A with A+Kk2 in the growth rates. However, the crit-

ical activity is independent of K even if K is nonzero. These

results suggest it is safe to disregard Frank elasticity in a film

of thickness d when the correlation length ξ =
√

K/A ≪ d.

The interface energy is given by

Fi =

∫

γdS. (2)

where γ is the interfacial tension and dS is the element of area.

We use de Gennes’ hydrodynamic model32–34 of the

isotropic phase of a passive nematic fluid of uniform con-

centration, suitably modified31 to account for activity. In

terms of the fluid velocity field vα , the strain rate and the

vorticity tensors are given by Eαβ = (∂α vβ + ∂β vα)/2 and

Ωαβ = (∂α vβ − ∂β vα)/2, respectively, where α,β = x,y,z.

The rate of change Rαβ of the nematic order parameter Qαβ

relative to the local background fluid is defined as

Rαβ = ∂tQαβ + vvv ·∇∇∇Qαβ +ΩαγQγβ −QαγΩγβ . (3)

Then, the viscous stress σ v
αβ and equation of motion for the

nematic order parameter Qαβ are given by31

σ v
αβ = 2ηEαβ + 2µRαβ + a′Qαβ , (4)

Φαβ = 2µEαβ +νRαβ , (5)

where η and ν are the shear and rotational viscosities, re-

spectively, µ couples shear and nematic alignment, a′ is an

activity parameter, and Φαβ is the molecular field defined as

Φαβ ≡ −δF/δQαβ . From Eq. (5) we can see that for the

case of small shear rate and steady state, the principal axes of

the order parameter align with the principal axes of the strain,
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with the case µ < 0 corresponding to the way that prolate par-

ticles align in shear, and the case µ > 0 corresponding to the

way oblate particles align in shear.

In passive fluids, a′ = 0. In that case, the Onsager reciprocal

relations36 are obeyed and the positive entropy production rate

leads to the relation ην − 2µ2 > 0. The active term aQαβ

appearing in Eq. (4) accounts for the stress due to the force

dipoles associated with the active particles5,31 with a′ > 0 for

contractile particles and a′ < 0 for extensile particles. In our

entire analysis, we assume ην−2µ2 > 0. Since we only study

linear stability of the state with no order and no flow, we are

justified in disregarding terms of higher order than quadratic

in the order parameter. Thus, Φαβ ≈ −AQαβ (with A > 0 in

the isotropic phase) and Eq. (5) takes the form

−AQαβ = 2µEαβ +νRαβ . (6)

Likewise, we ignore the higher order terms in Rαβ ; thus,

Rαβ ≈ Q̇αβ . Our linearized equations are equivalent to the

apolar case of the linearized equations of active matter that

have appeared previously35,37–39; also we absorb a possible

active term proportional to Qαβ in Φαβ in Eq. (5).

Assuming that vα and Qαβ are proportional to exp(−iωt),
where the real part of −iω is the growth rate of the perturba-

tions, we find using Eq. (6) that

Qαβ =− 2µ

A− iων
Eαβ . (7)

Using Eq. (4), the viscous stress σ v
αβ is given by

σ v
αβ = 2ηeffEαβ , (8)

where

ηeff =
ηA

A− iων

[

1− a− iων

A

(

1− 2µ2

νη

)]

(9)

= η
1− a− iωτ ′lc

1− iωτlc

. (10)

Here, we have defined the dimensionless activity by a =
a′µ/ηA, and the relaxation times by τlc = ν/A and τ ′lc =
τlc[1−2µ2/(νη)]. The complex viscosity of Eq. (9) indicates

that the active fluid is viscoelastic, as emphasized by Hatwalne

et al.35. The linear viscoelasticity is described by Jeffrey’s

model40,41.

Since we are assuming that ην − 2µ2 > 0, the isotropic

phase of an infinite active nematic fluid is unstable against

shear flow and local ordering31 when a> 1. We will see in our

instability analyses for the various geometries that the critical

values of the dimensionless activity correspond to a negative

effective shear viscosity, i.e. a≥ 1. Note that in the oblate par-

ticle case of µ > 0, the critical value of the activity a′ is posi-

tive, meaning that significantly active contractile (puller) par-

ticles lead to instablity. For the prolate particle case of µ < 0,

the critical activity is negative, meaning that sufficiently active

extensile (pusher) particles lead to instability. Therefore, our

results for prolate particles can be applied to oblate particles

by changing the particles from extensile to contractile, or vice

versa.

It is apparent from the above equation that the effective vis-

cosity of the fluid ηeff depends on the growth rate −iω ; in

other words, the fluid behaves like a viscoelastic fluid due to

the presence of the nematic molecules. At the special value

of dimensionless activity a = 2µ2/νη = 1−τ ′lc/τlc, the effec-

tive viscosity ηeff is independent of ω , and the fluid behaves

like a Newtonian fluid with shear viscosity ηeff = η −2µ2/ν .

We will see below that at this special value of the activity the

growth rate is that of a passive fluid.

Since we ignore the inertia of the fluid, the force balance

equation is given by

∂β σαβ = 0, (11)

with σαβ = −pδαβ + σ v
αβ . The pressure p is the pres-

sure arising from the incompressibility condition ∇∇∇ · v = 0.

We have disregarded the Ericksen stress σ e
αβ = Fδαβ −

∂F/∂ (∂β Qµν)∂α Qµν
32,42 since it is at least quadratic order

in Qαβ . Then, using the incompressibility condition ∇∇∇ ·v = 0,

the linearized Eq. (11) can be simplified to

ηeff∇
2v−∇∇∇p = 0. (12)

The incompressibility condition is imposed by representing v

as the curl of a stream function ψψψ i.e. v = ∇∇∇×ψψψ . For simplic-

ity, we choose the form of ψψψ such that ∇∇∇ ·ψψψ = 0. Taking the

curl of Eq. (12) yields

∇4ψψψ = 0, (13)

where ∇4 is the square of the Laplacian operator in three di-

mensions. We solve the above equation with the boundary

conditions appropriate to the geometry at hand and calculate

the forces on the interface due to the fluid.

To describe the force per unit area acting on at the surface,

we need to parametrize the surface as X(u1,u2), with coordi-

nates u1 and u2. Due to the free energy associated with the

surface [see Eq. (2)], the force per unit area acting on the sur-

face is given by43

fm = 2γHn, (14)

where n is the outward normal. Note that our convention is

that H is negative for a sphere or a cylinder. Since we disre-

gard the inertia of the surface, the force balance equation at

the surface reads

(σ+
nn −σ−

nn)+ 2γH = 0 (15)

(σ+
nα −σ−

nα)+ ∂ jX
α = 0, (16)
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where σ±
nn = nα σ±

αβ nβ and σnα = nβ σβ α , with the plus and

minus denoting the stress exerted on the interface from the n

and −n sides, respectively.

We close this section with estimates of the magnitudes of

the liquid crystal relaxation time τlc and the characteristic time

scales for a film with interfacial tension or bending stiffness.

A crude dimensional analysis estimate for τlc = ν/A is to sup-

pose ν ≈ η , and to take A = kBT/ℓ3, where kBT is thermal

energy and ℓ is the length of the active particles. Using the

viscosity of water, η ≈ 10−3 N-s/m2, and ℓ ≈ 10 µm leads to

τlc ≈ 300s. If the rods are 1 µm in length, then τlc ≈ 0.3s.

However, since we are considering an active system, it is rea-

sonable to suppose that A is not determined by thermal energy,

and that A, and the liquid crystal relaxation rate may be much

bigger. For a film of thickness d ≈ 1mm and for the air-water

surface tension γ ≈ 70× 10−3 N/m, the characteristic surface-

tension driven relaxation time is τs = ηd/γ ≈ 0.1ms. Thus,

we expect the film relaxation time to be much shorter than the

liquid crystal relaxation time, and we will focus on this limit.

However, due to our uncertainty about the value of A, and also

to show some of the range of possible phenomena, we also

consider the case of τlc ≈ τs.

3 Instability of an active fluid film

3.1 Case of zero Frank constant

In this section, we study the instability of a flat interface of

an active nematic fluid in its isotropic phase. The fluid is a

film of thickness d atop a solid substrate, with air above the

film (Fig. 1). As described in the introduction, we consider

the case of zero Frank elastic constant. In the next subsection

we include the Frank elastic constant and show that it has a

small effect on the analysis described in this subsection.

We consider an air-fluid interface with constant uniform

surface tension γ , and no bending stiffness. A film of pas-

sive fluid is always stable to sinusoidal perturbation, since the

perturbation increases the surface area. Thus, the instability

we study in this section arises from the activity of the fluid.

The surface, which lies in the zx plane in its unperturbed

state, is subject to a transverse perturbation which is the real

part of h = ε(t)exp(ikx), as shown in Fig. 1. We assume that

ε ∝ exp(−iωt).
The stream function is given by ψψψ = ψ ẑ, with ψ a bihar-

monic function. For small deflections kh ≪ 1, the kinematic

condition takes the form

vy(y = 0) = ∂th, (17)

where vy = −∂xψ . This condition, along with the conditions

of zero tangential stress at the interface,

σxy(y = 0) = 0, (18)

and vanishing flow at y =−d, leads to

ψ =
ωε

k
eikx

{[

coshky+
sinhky

F

]

−
[

kycoshky

F̃
+ kysinhky

]}

, (19)

where

F =
sinh2kd− 2kd

cosh2kd+ 2k2d2 + 1
, (20)

F̃ =
sinh2kd− 2kd

cosh2kd+ 1
. (21)

For small deflections the mean curvature is H ≈ ∂ 2
x h/2, and

the force balance equation on the interface becomes

−σyy|y=0 + γ∂ 2
x h = 0. (22)

The stress component σyy can be found by calculating the

pressure from the x-component of the force balance equa-

tion (11). Once σyy is calculated, we use normal stress bal-

ance (22) at y = 0 to obtain the characteristic equation

−iω =− γk

2ηeff(ω)
F(kd). (23)

In the passive Newtonian case with a= 0 and with no coupling

between the fluid and the liquid crystalline degrees of free-

dom, i.e. µ = 0, the growth rate has two branches that cross,

one corresponding to the negative growth rate of a Newtonian

film44, with characteristic time scale τs = ηd/γ ,

−iω ∼ − γk

2η
, kd ≫ 1 (24)

−iω ∼ − γd3k4

3η
, kd ≪ 1 (25)

and one corresponding to the liquid crystalline relaxation rate,

−iω = −1/τlc = −A/ν . When µ is nonzero and a = 0, the

growth rate curves repel each other instead of crossing, as in

Fig. 2, upper left panel.

The active case is like the case of a passive viscoelastic

fluid44, for which the effective shear viscosity depends on ω ,

and we must solve Eq. (23) for ω as a function of k, which

yields

−iωτ ′lc =
a− 1

2
− kdFτlc

4τs
±

√

(

a− 1

2
− kdFτlc

4τs

)2

− kdFτ ′lc
2τs

,

(26)

where F is given by Eq. (20). As the activity increases, the

splitting between the two growth rate curves decreases, un-

til the value of a = 2µ2/ην is reached. At this special value

of activity, ηeff is independent of ω , and the branches of the
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Fig. 2 (Color online.) Real (blue) and imaginary (red dashed) parts of the dimensionless growth rate −iωτ ′lc of an active film of thickness d as

a function of dimensionless wavevector kd, in the limit τlc/τs ≫ 1, for various dimensionless activities: a = 0, corresponding to an interface of

a passive liquid crystal in the isotropic phase (upper left panel); a = 0.2 (upper right panel), corresponding to the value of activity for which the

fluid behaves as a passive Newtonian fluid and the liquid crystal degrees of freedom relax independently; a = 1 (lower left panel) corresponding

to the critical value of activity at which the system is marginally stable; and a= 1.8, corresponding to an activity at which the system is unstable

(lower right panel). The case of τ ′lc/τlc = 0.8 is shown.

growth rates cross as they do in the case of a = 0 and µ = 0

(Fig. 2, upper right panel). One of the branches corresponds to

the decay rate of a viscous film, and the other (k-independent)

branch corresponds to the decay of the liquid crystal order pa-

rameter without flow. As the activity increases further, the real

branches collapse into one branch for a range of wavevector,

and the imaginary parts of the growth rate become nonzero

in this same range (Fig. 2, lower left panel). The critical ac-

tivity a = 1 corresponds to the point at which the effective

shear viscosity vanishes. When a > 1, one of the branches of

the real part of the growth rate becomes positive, and the sys-

tem is unstable for sufficiently long wavelengths (Fig. 2, lower

right panel). The critical activity ac(k) at which the mode k is

marginally stable is found by demanding that Re(−iω) = 0:

ac(k) = 1+
1

2
kdF(kd)τlc/τs. (27)

Since τlc/τs = (νγ)/(ηAd), interfacial tension tends to sup-

press the instability for nonzero k. But even if τs ≪ τlc, the

longest wavelengths are always unstable for a ≥ 1. When

τs ≪ τlc, the two branches of the uncoupled passive case cross

when kd ∼ (τs/τlc)
1/4, which is why we plot the growth rates

vs. kd(τlc/τs)
1/4 in Fig. 2. The shapes of the real and imagi-

nary parts of the growth rate curves for τlc ≈ τs and for τlc ≪ τs

are qualitatively similar to the case of τs ≪ τlc, with the main

difference being that the band of unstable modes reaches fur-

ther into the regime of short wavelength as τs increases relative

to τlc (See Figs. 10 and 11 in the appendix).

Note that the growth rate −iω always has an imaginary part

when a is sufficiently near ac(k); when a mode is unstable

with a sufficiently small growth rate, it also propagates. Prop-

agating modes are found when a− ≤ a ≤ a+, where

a± = 1+
1

2
kdF(kd)τlc/τs ±

√

1

2
kdF(kd)τ ′lc/τs. (28)

Also, there are no propagating modes without the interface,

1–14 | 5

Page 5 of 14 Soft Matter



Fig. 3 (Color online.) Stability diagram showing when an interface

of an active film is unstable as a function of dimensionless activity

a and dimensionless wavenumber kd for the case of τs ≪ τlc. The

horizontal axis of the plot is scaled by (τlc/τs)
1/4 since the longest

wavelengths are unstable in this limit. The system is stable in the

yellow-shaded region, and unstable in the unshaded region. Both

the growing modes and the decaying modes propagate in the region

between the two dashed lines.

Fig. 4 (Color online.) A cylindrical thread of isotropic active ne-

matic liquid subject to an axisymmetric ripple of wavenumber k and

small amplitude. The double headed arrows are the active nematic

molecules.

since a+− a− ∝
√

τ ′lc/τs ∝
√

γ .

Figure 3 shows when the interface is stable as a function of

scaled dimensionless wavenumber and dimensionless activity

for the case of τlc/τs ≫ 1. The system is always stable for a <
1; as a is increased beyond a = 1, an increasingly large band

of very long wavelength modes are unstable. Growing and

decaying modes with a sufficiently small growth rate [between

the dashed lines in Fig. 3, which are given by Eq. (28)] are

also propagating. As τlc/τs decreases, the band of unstable

modes is limited to shorter and shorter wavelengths. To sum

up, the time scale τlc controls the rate of growth or decay of the

modes, and the time scale τs determines which modes become

unstable. Since a± depends on τs, the velocity of propagation

Re(ω)/k is determined by d/τs.

3.2 Case of nonzero Frank constant

In this section only we allow the Frank constant to be nonzero.

If we again assume that the stream function and order param-

eter tensor are proportional to exp[i(kx −ωt)], then the lin-

earized governing equations are

0 = ξ 2∂ 2
y Qxx − q2Qxx −

2iµk

A
∂yψ (29)

0 = ξ 2∂ 2
y Qxy − q2Qxy −

µ

A
(∂ 2

y + k2)ψ (30)

0 = η(∂ 2
y − k2)2ψ +

(a′− 2iωµ)[(∂ 2
y + k2)Qxy + 2ik∂yQxx], (31)

where ξ 2 = K/A, and q2 = 1 − iωτlc + ξ 2k2. The length

scale ξ is the correlation length. We use the simplest bound-

ary conditions for Qαβ : zero torque at the free interface,

n ·∇Qαβ (y = h) = 0, and at the solid wall, ∂yQαβ (y =−d).

As in the preceding section, we consider a perturbation of

the interface with wavenumber k, but in the long-wavelength

limit, kd ≪ 1. The kinematic boundary condition vy(y =
0) = ∂th suggests vy ∼ εω . Incompressibility suggests vx ∼
εω/(kd); these scalings for the velocity field together imply

ψ ∼ εω/k. Balancing dominant terms in the long wavelength

limit in Eqs. (29) and (30) suggest Qxx ∼ εωµ/(Ad) and

Qxy ∼ εωµ/(Akd2), respectively. Thus, we expand the stream

function and the order parameter tensor powers of wavenum-

ber:

Qxx =
εωµ

Ad
ei(kx−ωt)

[

Q
(0)
xx (y)+ kdQ

(1)
xx (y)+ · · ·

]

(32)

Qxy =
εωµ

Akd2
ei(kx−ωt)

[

Q
(0)
xy (y)+ kdQ

(1)
xy (y)+ · · ·

]

(33)

ψ =
εω

k
ei(kx−ωt)

[

ψ(0)(y)+ kdψ(1)(y)+ · · ·
]

. (34)

Using these expansions in Eqs. (29–31) , and allowing that ω
might not vanish when k → 0 yields

ξ 2∂ 2
y Q

(0)
xx − (1− iωτlc)Q

(0)
xx − 2id∂yψ(0) = 0 (35)

ξ 2∂ 2
y Q

(0)
xy − (1− iωτlc)Q

(0)
xy − d2∂ 2

y ψ(0) = 0 (36)

d2∂ 4
y ψ(0)+

[

a− iω(τlc− τ ′lc)
]

∂ 2
y Q

(0)
xy = 0. (37)

Assuming solutions of the form exp(ry) leads to an eight-order

characteristic equation for r, with roots r = ±
√

1− iωτlc/ξ ,

r =±
√

1− a− iωτ ′lc/ξ , and the fourfold degenerate root r =
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0. The general solution has the form







Q
(0)
xx

Q
(0)
xy

ψ(0)






= C1





0

0

1



+C2





−2id
1−iωτlc

0

y





+ C3







−4idy
1−iωτlc
−2d2

1−iωτlc

y2






+C4











−12idξ 2

(1−iωτlc)
2 − 6idy2

1−iωτlc

−6d2y
1−iωτlc

y3











+ C5





e−y/ξ
√

1−iωτlc

0

0



+C6





ey/ξ
√

1−iωτlc

0

0





+ C7





α
1

β



e−y/ξ
√

1−a−iωτ ′lc

+ C8





−α
1

β



ey/ξ
√

1−a−iωτ ′lc , (38)

where

α =
−2iξ

√

1− a− iωτ ′lc
d(1− a− iωτ ′lc)

(39)

β = −ξ 2[a− iω(τlc − τ ′lc)]
d(1− a− iωτ ′lc)

, (40)

and the constants Cn are determined by the boundary condi-

tions. The boundary conditions on the stream function are the

same as in the preceding sections; to leading order in kd the

no-slip, kinematic, and zero tangential stress conditions are

∂yψ(0)
∣

∣

∣

y=−d
= 0 (41)

−ikψ(0)(y =−d) = 0 (42)

ψ(0)(0) = 1 (43)

∂yψ(0)+
[

a− iω(τlc− τ ′lc)Q
(0)/d2

]∣

∣

∣

y=0
= 0. (44)

We also demand that the normal derivatives of the order pa-

rameter vanish at either boundary, ∂yQαβ = 0 at y = 0 and

y =−d. Note that the coefficients Cn are independent of k.

The growth rate is determined by the balance of normal

stress at the interface, which to leading order takes the form

p− γk2h = 0; evaluating the pressure p and using the solu-

tions above leads to

−iω(1− iωτ ′lc− a)C4(ω) =
γk4

6η
(1− iωτlc). (45)

We can immediately read off two of the branches for the

growth rate in the limit of vanishing k. These roots are

−iω(k = 0) = 0 and −iω(k = 0) = (−1+a)/τ ′lc; for any value

of ξ/d, these roots correspond exactly to the k → 0 limit of the

branches of the ξ = 0 case shown in Eq. (26).

We also see that a nonzero value of ξ leads to other branches

that are not present when the Frank constant is set to zero.

These new branches are the roots of C4(ω) = 0. The coeffi-

cient C4 has a complicated expression, but direct calculation

shows that it can be written as a ratio C4 = N /D , where the

denominator D remains finite for finite ω , and the numerator

N has the form

N = (1− iωτlc)(1− a− iωτ ′lc)
3/2

[

1+ ed/ξ
√

1−a−iωτ ′lc
]

(46)

The factor of (1− iωτlc) cancels with the same factor on the

right-hand side of Eq. (45), and we again get the root −iω(k =
0) = (−1+ a)/τ ′lc. The exponential factor leads to an infinite

series of roots with

−iω(k = 0) =
−1+ a−π2(1+ 2n)2ξ 2/d2

τ ′lc
, (47)

where n is an integer. The corresponding modes become un-

stable at a critical activity

acrit,n = 1+π2(1+ 2n)2ξ 2/d2. (48)

The effect of the Frank elasticity is stabilizing, which is not

surprising since Frank elasticity resists the gradients in the or-

der parameter tensor which are necessary for activity to drive

the instability. The infinite sequence of modes correspond to

spontaneous shear flows, as studied e.g. in a circular geome-

try by Woodhouse and Goldstein10. Note that for these modes,

the C7 and C8 terms of the general solution (38) correspond to

fitting an odd number of half-wavelengths of cosine between

y = 0 and y = −d, which can be seen by inserting the growth

rate (47) into (38). Since these modes go unstable at an ac-

tivity greater that the critical activity at k = 0 and ξ = 0, we

conclude that our ξ = 0 calculation correctly determines the

first mode to go unstable.

4 Rayleigh-Plateau capillary instability

A fluid thread breaks into drops because perturbations of suf-

ficiently long wavelength lower the area of the surface, and

thus the energy. This instability is known as the Rayleigh-

Plateau capillary instability45,46. In this section, we study how

the presence of active nematic molecules in the liquid affects

the Rayleigh-Plateau capillary instability. For simplicity, we

disregard the outer fluid. While this approximation was natu-

ral in our study of the stability of a flat interface between air

and an active fluid, it seems less natural for a thread of active

fluid, since the thread must be supported by some surrounding

fluid if it is not a jet. However, unlike the passive case of a
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Fig. 5 (Color online.) Real (blue solid line) and imaginary (red

dashed line) parts of the dimensionless growth rate −iωτs vs. dimen-

sionless wavenumber kR for τlc/τs ≫ 1. On this scale, the line cor-

responding the the branch Re(−iω < sub > − < /sub >) ≈ −1/τlc

is along the horizontal axis.

stationary cylindrical interface16, accounting for the viscosity

contrast leads to a complicated characteristic equation for the

growth rate of the interface of an active thread. To avoid this

complication and illustrate the essential physics, we assume

the outer fluid is of sufficiently small viscosity that we may

disregard it.

We consider a cylindrical fluid thread of initial radius

R, subject to an axisymmetric harmonic perturbation of

wavenumber k along the x direction (see Fig. 4). The cylin-

drical coordinates are (ρ ,θ ,x). Initially the fluid is at rest,

with a uniform pressure p = γ/R. The radius of the perturbed

thread is given by the real part of h(x, t) = R+ ε(t)exp(ikx),
with εk ≪ 1. For an axisymmetric flow, we follow Happel and

Brenner47 and define the stream function via ψψψ = −(ψ/ρ)θ̂θθ .

The stream function ψ is related to velocity by vρ =(1/ρ)∂xψ

and vx = −(1/ρ)∂ρψ . If we choose ψψψ = Ψ(ρ)exp(ikx)θ̂θθ ,

then Eq. (13) in cylindrical coordinates reduces to

D2Ψ = 0, (49)

where16 D ≡ ∂ 2
ρ − (1/ρ)∂ρ − k2. The linearized kinematic

condition at the interface, ∇∇∇×ψψψ = ∂thρ̂ρρ , leads to

k

R
Ψ(ρ = R) =−ωε. (50)

The kinematic boundary condition and the condition of zero

tangential stress, σxρ |ρ=R = 0, along with the condition of reg-

ularity at ρ = 0, leads to the solution

ψ = εωeikx

[

ρ2I0(kρ)

I1(kR)
− kRI0(kR)+ I1(kR)

kI2
1 (kR)

ρI1(kρ)

]

. (51)

where I0 and I1 are the Bessel functions of first kind. The

growth rate is determined by the normal force balance equa-

tion,

−σρρ |ρ=R + 2γH = 0. (52)

The pressure may be found from the x-component of the

Stokes equation, Eq. (12); with this pressure and the veloc-

ity field we may calculate σρρ = −p+ 2ηeff∂ρ vρ and use the

mean curvature expanded48 to linear order in ε ,

H =−1

2

[

1

R
+ ε

(

k2 − 1

R2

)

eikx

]

, (53)

in Eq. (52) to find

−iω =
γ

2ηeff(ω)R
G, (54)

where

G =
1− k2R2

k2R2I2
0(kR)/I2

1 (kR)− (1+ k2R2)
. (55)

When ηeff(ω) = η , the growth rate of Eq. (54) is precisely

that of a thread of a passive Newtonian viscous fluid thread49.

Since the characteristic equation (54) for the cylinder is of a

similar form as the characteristic equation (23) for the pla-

nar surface, the growth rate is given by Eq. (26) with F re-

placed by −G/k and d replaced by R. (Note that in this section

τs = ηR/γ .) Figure 5 shows the growth rate vs. dimension-

less wavevector kR for the case of τlc ≫ τs. In this case, the

growth rate is almost exactly the same as the classical result

for a passive Newtonian fluid. The only dependence on ac-

tivity or liquid crystalline parameters arises in the region near

kR = 1 where the real part of the growth rate vanishes. This

fact can be seen by expanding the growth rate for small τs/τlc;

away from the region where G ≪ 1, we have

−iω− ∼ 1

τlc
(56)

−iω+ ∼ τlc

τ ′lc

γG

2ηR
. (57)

The effects of activity become apparent when the liquid

crystal relaxation time is comparable to the film relaxation

time, τlc ∼ τs. The growth rate for several different dimen-

sionless activities is shown in Fig. 6. In this case, the be-

havior of the growth rate with respect to activity is similar

to behavior of the growth rate for a flat interface (compare

with Fig. 2). The passive cylindrical thread is always unstable

for modes with kR < 1. Likewise, in the active case, modes

with kR < 1 are always unstable. Once a > 1, modes with a

wavenumber greater than 1/R can also be unstable; in partic-

ular, Re(−iω) = 0 when

ac(k) = 1− Gτlc

2τs
. (58)

8 | 1–14

Page 8 of 14Soft Matter



Fig. 6 (Color online.) Real and imaginary parts of the growth rate as functions of dimensionless wavevector kR for a cylindrical thread of

active isotropic nematic fluid for τs = τlc, τ ′lc/τlc = 0.8, and dimensionless activity a = 0 (upper left), a = 0.2 (upper right), a = 1 (lower left),

and a = 1.8 (upper right).

Propagating modes are found when a− < a < a+, where

a± = 1− Gτlc

2τs
±
√

−2Gτ ′lc
τs

. (59)

Note that propagation only occurs when kR > 1, i.e. G(k)< 0.

Figure 7 is the stablity diagram for the case of τlc = τs.

5 Instability of a spherical active droplet

A cylinder of active fluid is unstable, and breaks up into spher-

ical droplets. A spherical droplet of a Newtonian fluid is al-

ways stable against surface tension since the spherical shape

minimizes the surface energy. However, a spherical droplet of

active fluid might go unstable due to activity. Here we carry

out a linear stability analysis for a droplet of active nematic

fluid in the isotropic phase (see Fig. 8). We assume that the

spherical droplet of radius R is subject to spherical harmonic

perturbations such that the surface of the perturbed drop can

be represented by X(θ ,φ) = (R+ε(t)Ym
l (θ ,φ))r̂rr with ε ≪ R.

We choose the following form of the stream function ψψψ to en-

force the condition ∇∇∇ ·ψψψ = 0:

ψψψ =−v(r)
1

sinθ

dY m
l (θ ,φ)

dφ
θ̂θθ + v(r)

dY m
l (θ ,φ)

dθ
φ̂φφ , (60)

where Y m
l (θ ,φ) is a spherical harmonic. Inserting this stream

function in the Stokes equations, we find that the function v(r)
obeys

D2v(r) = 0, (61)

where

D ≡ 1

r2

[

d

dr

(

r2 d

dr

)

− l(l + 1)

]

. (62)

The boundary conditions on the interface are the linearized

kinematic condition, ∇∇∇ × ψψψ = ∂tX, and the linearized zero

shear stress condition:

−l(l+ 1)
v(r = R)

R
=−iωε, (63)

σφr(r = R) = 0, (64)

σθr(r = R) = 0. (65)
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Fig. 7 (Color online.) Stability diagram showing when a cylindri-

cal thread of active fluid is unstable as a function of dimensionless

activity a and dimensionless wavenumber kR for the case of τs = τlc

and τ ′lc/τlc = 0.8. The system is stable in the yellow-shaded region,

and unstable in the unshaded region. Both the growing modes and

the decaying modes propagate in the region between the two dashed

lines.

The solution of Eq. (61) with the above boundary conditions

is given by

v(r) = iωε
rlR−l−1

[

l(l + 2)R2 −
(

l2 − 1
)

r2
]

l(l + 1)(2l+ 1)
(66)

With this solution, we get the following expression for σrr

after integrating the r-component of Eq. (13) with respect to r:

σrr(r,θ ,φ) =−2iωηeffεG [l]Y m
l (θ ,φ)+C, (67)

where

G [l] =
(l − 1)rl−2R−l−1

[(

−l3 + 4l+ 3
)

r2 + l2(l + 2)R2
]

l(2l + 1)
.

(68)

In the unperturbed state, the surface tension leads to a constant

pressure C via the Young-Laplace law. Since we suppose that

there is no fluid outside the drop, the force balance equation

at the surface of the drop (in the limit ε ≪ R) is given by (see

Eq. (16))

σrr(R,θ ,φ)− 2γH = 0. (69)

The mean curvature H is given to first order in ε by48,

H =−
[

1

R
+ ε

(l − 1)(l+ 2)

2R2
Y m

l (θ ,φ)

]

. (70)

We see from Eqs. (67) and (70) that, for the l = 1 mode,

there are no changes in σrr or the Laplace pressure 2γH due

to the perturbation, because to leading order, the l = 1 mode

is equivalent to the displacement of the droplet along the z

direction (see Fig. 8). Therefore, we consider modes with

Fig. 8 (Color online.) A spherical droplet of isotropic active nematic

liquid fluid (blue) subject to spherical harmonic ripples l = 2. The

unperturbed spherical droplet is represented by the dashed line. The

double headed arrows are the active nematic molecules.

2 3 4 5 6 7 8 9 10
0

2

4

6

8

10

Unstable

Fig. 9 (Color online.) Dimensionless critical activity ac(l) vs l for

the spherical droplet at τlc/τs = 2.

l > 1. From Eq. (67), (69) and (70), we find that C = −2γ/R

and

−iω =− γ

2η(ω)R

l(l + 2)(2l+ 1)

2l2 + 4l+ 3
. (71)

When η is independent of ω , this result is precisely the relax-

ation rate for perturbations of a sphere with surface tension in

the limit that viscosity dominates inertia50,51.

Equation (71) is quadratic in ω , and the real parts of its two

roots represent growth rates of the perturbation. The critical

dimensionless activity ac(l) for the lth harmonic perturbation

calculated is given by

ac(l) = 1+
τlc

2τs

l(l + 2)(2l+ 1)

2l2 + 4l+ 3
. (72)
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Since the smallest value of l is 2, the critical value of the di-

mensionless activity above which droplet becomes unstable is

given by

ac(l = 2)≃ 1+
τlc

τs
= 1+

ν

η

γ

AR
. (73)

Therefore, the critical dimensionless activity for a spherical

droplet ac(l = 2) is larger than its value for the unconfined

fluid. Also, ac(l = 2) decreases with R: smaller active droplets

are more stable. Fig. 9 shows that ac(l) increases almost lin-

early with l.

6 Discussion and Conclusion

In this paper we have studied the effect of activity on the sta-

bility of flat, cylindrical, and spherical interfaces. In all cases,

the bulk instability of the active fluid, which is characterized

by a vanishing effective shear viscosity, leads to spontaneous

shear flows that can destabilize an interface that would be sta-

ble in absence of activity. In the linearized problems we have

considered, we never find activity to be stabilizing. Further-

more, all three geometries showed oscillatory behavior at suit-

ably large activity, corresponding to propagating damped or

growing modes. The presence of propagating modes (damped

or growing) at zero Reynolds number is qualitatively differ-

ent from the passive fluid case, where no propagation is seen

at zero Reynolds number. The propagating modes in our lin-

ear stability analysis may be the seed for propagating modes

at large amplitude, as seen in numerical calculations of active

membranes26. We made several approximations in this paper

to make our calculation tractable. Except in Sec. 3.2, we ne-

glected Frank elasticity, which meant that the base state that

we expanded about is uniform, Qαβ = 0, and we were able

to eliminate Qαβ by simply solving an algebraic equation and

lumping all the liquid-crystalline and active effects into the ef-

fective frequency-dependent viscosity ηeff(ω). Note that our

approximation is almost the same as the approximation used

by Thampi et al.52 to make an analytical argument that activ-

ity generates an effective free energy that enhances ordering in

active systems. They neglect pressure gradients and the elastic

stresses that generate backflow to argue, in our notation, that

2ηEαβ ≈ a′Qαβ . Our Eq. (7) is similar, implicitly depending

on the activity through the growth rate −iω , except that we

only neglect Frank elasticity and we do not neglect the pres-

sure gradients. It would be interesting to generalize our cal-

culations to fully explore the role of Frank elasticity, since it

has been shown that Frank elasticity (or equivalently rotational

diffusion in the work of Woodhouse and Goldstein) leads to

spontaneous flow even for undeformed confining surfaces10,

and, as we showed in Sec. 3.2 in the long-wavelength limit,

an infinite number of modes that are not present when Frank

elasticity is disregarded. A second major simplification is our

neglect of the outer fluid. Because we neglected the viscosity

of the outer fluid, we only had to solve a quadratic equation to

find the branches of the growth rate. Including the outer fluid,

as has been done for the ordered nematic case28,29, is more

realistic, and it will lead to a more complicated characteris-

tic equation, and more branches. Also, if we use the thermal

energy scale to estimates the material parameters (question-

able in a active system), we are led to τlc ≫ τs, which makes

the interesting activity-driven phenomena such as instability

and oscillation occur at long wavelength in the case of the flat

film, but only in a narrow regime near kR ≈ 1 in the case of

the cylindrical thread. When the viscosity of the outer fluid is

accounted for, the growth rate of the passive cylindrical thread

vanishes16 at k= 0, which will also lead to interesting activity-

driven behavior at long wavelength in the cylinder. All of the

calculations we did for interfaces could be modified to apply

to the case of an active fluid bounded by a membrane, which

could be more relevant for biological phenomena. Finally,

since shaken granular systems are an important example of

active matter, and because vibrations lead to stability of oth-

erwise unstable interfaces53, it would be interesting to extend

the ideas developed here to interfaces in shaken granular sys-

tems.

7 Appendix

In this appendix we display more plots of the growth rate and

the stability diagram for the case of the film of thickness d

(Section 3). Fig. 10 shows the real and imaginary parts of

the growth rate for τlc = τs, whereas Fig. 11 shows the same

quantities for the case of τs/τlc ≫ 1. In all case, the shape of

the curves is qualitatively similar, but the scale of wavevec-

tors where the instability and oscillations changes, with the

instability and oscillations occurring when kd ∼ (τs/τlc)
1/4

when τs/τlc ≪ 1, when kd ∼ 1 when τs/τlc ∼ 1, and when

kd ∼ τs/τlc when τs/τlc ≫ 1. Figure 12 shows the stability

diagram for τs = τlc (upper panel) and τs ≫ τlc (lower panel).
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Fig. 10 (Color online.) Real (blue) and imaginary (red dashed) parts of the dimensionless growth rate −iωτ ′lc of an active film of thickness d

as a function of dimensionless wavevector kd, in case τlc/τs = 1, for various dimensionless activities: a = 0, corresponding to an interface of a

passive liquid crystal in the isotropic phase (upper left panel); a = 0.2 (upper right panel), corresponding to the value of activity for which the

fluid behaves as a passive Newtonian fluid and the liquid crystal degrees of freedom relax independently; a = 1 (lower left panel) corresponding

to the critical value of activity at which the system is marginally stable; and a= 1.8, corresponding to an activity at which the system is unstable

(lower right panel). The case of τ ′lc/τlc = 0.8 is shown.

Fig. 11 (Color online.) Real (blue) and imaginary (red dashed) parts of the dimensionless growth rate −iωτ ′lc of an active film of thickness d as

a function of dimensionless wavevector kd, in the limit τlc/τs ≪ 1, for various dimensionless activities: a = 0, corresponding to an interface of

a passive liquid crystal in the isotropic phase (upper left panel); a = 0.2 (upper right panel), corresponding to the value of activity for which the

fluid behaves as a passive Newtonian fluid and the liquid crystal degrees of freedom relax independently; a = 1 (lower left panel) corresponding

to the critical value of activity at which the system is marginally stable; and a= 1.8, corresponding to an activity at which the system is unstable

(lower right panel). The case of τ ′lc/τlc = 0.8 is shown.
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Fig. 12 (Color online.) Stability diagrams showing when an inter-

face of an active film is unstable as a function of dimensionless ac-

tivity a and dimensionless wavenumber kd. The top panel shows the

case of τs = τlc. The system is stable in the yellow-shaded region,

and unstable in the unshaded region. Both the growing modes and

the decaying modes propagate in the region between the two dashed

lines. The bottom panel shows the case of τs ≫ τlc, with kd scaled by

τlc/τs since the instability occurs over a wide band of wavenumbers.
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