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Chemically modified nucleic acid biopolymers
used in biosensing
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Biopolymers are highly designable and are often used in biosensing processes. As a biopolymer, a

nucleic acid not only has excellent programmability and biocompatibility, but also has a certain

molecular recognition function that can directly realize biological recognition in biosensors. However,

the structural variety of natural nucleotides hinders the designability of nucleic acid biopolymers. The

introduction of chemical modifications in nucleic acids can enrich the designability of nucleic acid

biopolymers, thereby expanding their applications in biosensing. To date, there have been many reviews

paying attention to biopolymers used in biosensing, but few reviews have focused on chemically

modified nucleic acid biopolymers. Here, we review different kinds of assemblies based on chemically

modified nucleic acid biopolymers. We summarize their advances in the field of biosensing.

Furthermore, we present challenges and prospects in this field, aiming to provide a promising step for a

versatile biosensor platform based on chemically modified nucleic acid biopolymers.

1. Introduction

Biosensing consists of a biorecognition process and a transduction
process.1–4 Due to their high designability, biopolymers are often
used to connect the biorecognition process with the transduction
process.5,6 It is worth noting that biopolymers can form

nanostructures through a highly controllable dynamic assembly
process, enabling the application of biosensing at the cellular or
in vivo level.7–10

A nucleic acid, as a biopolymer, has excellent programmability
and biocompatibility.11–16 In addition, nucleic acids with specific
sequences can show a molecular recognition function and can be
directly used in the biological recognition process.17,18

However, the structural variety of natural nucleotide hinders
the designability of nucleic acid biopolymers, thereby limiting
their applications in biosensing.12,19 The introduction of chemical
modifications can enrich the functional groups of nucleic acids
and enhance the intermolecular interactions between nucleic
acids.20–22 Thus, chemically modified nucleic acids enable the
design of nucleic acid biopolymers.23,24 Therefore, chemically
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modified nucleic acid biopolymers hold great promise in the
field of biosensing.25,26

To date, there have been many reviews on biopolymers used
in biosensing,27–31 but few reviews have paid attention to
chemically modified nucleic acid biopolymers. In this review,
we focus on chemically modified nucleic acid biopolymers and
their applications in biosensing. Specifically, we introduce the
assembly methods of chemically modified nucleic acid biopolymers
and the applications in biomolecule detection, controlled drug
release, and gene therapy. Finally, the challenges and prospects
in this field are also comprehensively discussed, aiming to
provide a promising step for a versatile biosensor platform based
on chemically modified nucleic acid biopolymers.

2. Assembly of chemically modified
nucleic acid biopolymers

Nanoassemblies are often used in biosensing due to their
similar size to biomolecules.32,33 Studies have shown that the
design of nanostructures in two and three dimensions can greatly
increase the sensitivity of biomolecule-targeted biosensors.34,35

Besides complementary base pairing interactions, chemical
modifications can introduce new molecular interactions in
nucleic acids.36 The new molecular forces enable the design
of various geometric structures and bionic structures, creating
opportunities for biosensing applications.21,37 In the following
section, we mainly introduce assemblies based on chemically
modified nucleic acid biopolymers with three assembly methods:
complementary base pairing-mediated crosslinking method, hydro-
philic–hydrophobic interaction-mediated crosslinking method, and
metal ion-associated crosslinking method.

2.1 Complementary base pairing-mediated crosslinking
method

It has been found that complementary base pairing is one of
the major driving forces in DNA self-assembly processes.38–40

Previous research studies have shown that nucleic acids can be
assembled into DNA nanostructures with controllable size and
shape via complementary base pairing.41–45 The same goes for

chemically modified nucleic acids, which could develop several
nanostructures via base pairing interactions: nanosheets,
hydrogels, tetrahedra, nanotubes, and nanoflowers.

DNA origami can be used as a carrier to load various components
to expand its application.46 Very recently, Zhao et al. established a
delivery platform based on DNA origami nanotechnology, which
can transport payloads effectively for tumor treatment.47 They
used a long M13mp 18 genomic DNA single strand as a scaffold,
mixed with multiple predesigned staple strands and capture
strands. These strands were annealed to fold into rectangular
DNA origami nanosheets. The size of nanosheets is about 90 nm�
60 nm � 2 nm. The complementary strands on the cytotoxic
protein ribonuclease (RNase) A molecules were hybridized with
capture strands to generate protein–DNA conjugates (Fig. 1). The
nanosheets then transported RNase into the cells to exert the
cytotoxicity function. To target cancer cells, the authors used
aptamers as a guide. Aptamers are oligonucleotides with high
affinity and selectivity for targets, which are obtained from
in vitro screening.48 The aptamers targeting mucin 1 (MUC1)
on a human breast adenocarcinoma cell line were integrated
into the nanosheets, which significantly improved the effect of
cancer treatment. Similarly, Chen et al. mixed an M13mp
18 single-strand DNA (ssDNA), tiles, and probes together to
self-assemble into rectangular nanosheets.49 Subsequently, they
used the nanosheets as a template, and precise assembly of
proteases and corresponding coenzymes can be achieved. DNA
origami nanostructures can precisely control the horizontal
distance between enzymes so as to regulate the catalytic activity
of the enzyme cascade. Zhou et al. used a similar method to
prepare triangular nanosheets with a complete cavity, and the
side length of the cavity was about 50 nm.50 These studies show

Fig. 1 Schematic diagram of two-dimensional nanosheet assembly.
Reproduced with permission from ref. 47. Copyright 2019, American Chemical
Society.
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that the framework design guided by DNA hybridization enables
the fabrication of nanosheets of different shapes.

In addition to 2D origami nanosheets, it has been widely
reported that a well-defined DNA hydrogel can be constructed
through rational design and precise synthesis of DNA strands.51–53

As a case in point, rapid in situ formation of polypeptide-DNA
hydrogels was reported by Li et al.54 First, DNA-grafted poly-
peptides were prepared by an azide–alkyne click chemistry reac-
tion. Five to six ssDNA motifs were conjugated to the backbone of
each peptide, ensuring sufficient crosslinking sites. Additionally,
double-stranded DNA served as a DNA linker containing two
‘‘sticky ends’’ that have the same sequence complementary to
the DNA motifs. As a consequence of mixing DNA-grafted
polypeptides and DNA linkers in a buffer solution, the fluidic
solution changed to a transparent supramolecular crosslinking
network within a few seconds (Fig. 2a). Tests showed that the
mechanical strength of the chemically modified hydrogel was
significantly enhanced. In another study, Li et al. also synthe-
sized multifunctional supramolecular hydrogels by DNA-grafted
polypeptides.55 The difference is that they used an ‘‘X’’-shaped
DNA as a crosslinker instead of the linear DNA linker. The ‘‘X’’
shaped DNA strands are divided into two parts; one part is used
as crosslinking sites, and the other part could be used for
further functional modification. Subsequently, the two cross-
linking sites are linked to the DNA-grafted polypeptide through
precise base pairing to form a hydrogel structure (Fig. 2b). By this
method, the resultant hydrogel can integrate various functional
molecules to achieve applications in the biomedical field.

Three-dimensional DNA tetrahedral nanostructures have
been widely studied because of their excellent mechanical
stiffness and structural stability.56,57 Pei et al. did an elegant

work on the design of DNA tetrahedral nanostructures. They
designed four ssDNAs with complementary sequences.58 Among
them, three single chains are modified with the thiol group, and
the other side chain contains a DNA probe. Four chains are
mixed in an equivalent stoichiometric ratio, and the DNA
tetrahedron is generated by annealing (heating, then rapid cooling)
(Fig. 3a). This assembly process was fast (within two minutes) and
the yield was high. This assembly method provides a new idea for
constructing DNA tetrahedral probes with ordered orientation,
controlled spacing and high stability. Besides, Li et al. assembled
a DNA tetrahedron, which was constructed by three carboxyl group
modified DNA strands (55 nucleotides) and a DNA strand
containing an aptamer sequence (87 nucleotides).59 Four
ssDNAs were quickly assembled into a tetrahedron with an edge
length of 5.8 nm and each edge was an 18 base pair double helix
(Fig. 3b). Polyacrylamide gel electrophoresis (PAGE) results
showed that the DNA strands effectively self-assembled in the
designed direction (Fig. 3c). The tetrahedral structure keeps the
distance distribution of each chain the same, thereby reducing
the spatial effect and improving the stability and recognition
ability of biomolecules.

Apart from these structures, chemically modified nucleic
acids can be assembled into tubular structures by complementary
base pairing. According to the previous ssDNA tile assembly
method,60 Kocabey et al. designed 24 functional oligonucleotides;
after over 17 hours of annealing, the oligonucleotides were finally
assembled into small tubular nanostructures with excellent
stability (Fig. 4).61

In addition to the aforementioned DNA nanoassemblies,
Zhang et al. synthesized submicron-scale DNA nanoflowers.62 A
closed circular DNA containing the complementary sequences of
aptamer Sgc8 was used as a template, and Sgc8 tandem repeat
DNA sequences were generated by base pairing. The final long
DNA sequence can spontaneously form nanoflower structures
through crystallization, nucleation and growth processes. Finally, the
authors introduced the DNA strands incorporating ferrocene (Fc)

Fig. 2 Hydrogel assembly with linear (a) and X-shaped (b) DNA linkers.
Figures reproduced with permission from: a, ref. 54. Copyright 2015,
Wiley-VCH; b, ref. 55. Copyright 2014, Wiley-VCH.

Fig. 3 DNA tetrahedra assembled by thiolated DNA strands (a) or carboxyl
group modified DNA strands (b). (c) Analysis of DNA tetrahedra by PAGE.
Figures reproduced with permission from: a, ref. 58. Copyright 2010,
Wiley-VCH; b and c, ref. 59. Copyright 2015, American Chemical Society.
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bases into the nanoflower (Fig. 5). The research indicated that
the size of nanoflowers can be effectively adjusted by the
introduction of Fc bases.

2.2 Hydrophilic–hydrophobic interaction-mediated
crosslinking method

Similar to the assembly of amphiphilic polymers, the hydro-
philic–hydrophobic interaction also plays a relevant role in the
assembly processes of nucleic acid biopolymers.63 By modifying
with hydrophobic groups, hydrophilic nucleic acids can turn
into amphiphilic biopolymers, forming different structures
through hydrophilic–hydrophobic interactions.64–67 Additionally,
assemblies of specific size and shape can be obtained by changing
the ratio of hydrophilic to hydrophobic chain length.65,68,69 In this
section, we will introduce chemically modified nucleic acid
assemblies formed via hydrophilic–hydrophobic interactions.

Linking hydrophobic units to hydrophilic units through
covalent interactions is the main way to construct amphiphilic
motifs.70–72 Liu et al. connected hydrophilic DNA strands to
hydrophobic diacyl lipids to form DNA–lipid molecules (Fig. 6a).73

They analysed the effect of DNA strand length on micelles. Atomic
force microscopy (AFM) and dynamic light scattering (DLS) results
showed that fine-tuning the length of the DNA sequence can
achieve the purpose of adjusting the size of the micelles (Fig. 6b
and c). In a similar study, Wu et al. linked diacyl lipids to nucleic
acid aptamers via polyethylene glycol to assemble a highly ordered
micelle-like structure.74 In this structure, the nucleic acid strand

not only serves as the basis of the nanostructure but also performs
a recognition function for a specific target. These aptamer-lipid
assemblies enhance the binding ability to the target in a complex
biological environment.

Inspired by the higher hydrophobicity, lower solubility, and
stronger aggregation tendency of fluorocarbon groups, Zou
et al. replaced the traditional diacyl chain with a fluorocarbon
chain to construct micelles (Fig. 7).75 Micelles formed by chain
amphiphilic polymers have higher stability, and the critical
micelle concentration values are significantly reduced. Thus,
creating new hydrophobic building units enables the formation
of amphiphilic biomolecules with different properties and
expands the versatility of nanomicelles.

Moreover, adding chemically modified nucleotides is another
way to introduce hydrophobic groups into hydrophilic nucleic
acid chains.76,77 Kimoto et al. used the unnatural base 7-(2-thienyl)-
imidazo[4,5-b]pyridine (Ds) as the hydrophobic moiety in the
aptamer selection process.78 In their research, the addition of Ds
bases not only improved the performance of aptamers, but also
successfully introduced hydrophobicity into the DNA strands.
Tan et al. integrated hydrophobic ferrocenes into hydrophilic
DNA strands using a similar method and constructed aptamer–
ferrocene assemblies (ApFAs) based on hydrophilic–hydrophobic
interactions.68 Ferrocene bases are prepared by the reaction of (S)-
3amino-1,2-propanediol and ferrocene carboxylic acid. Then using

Fig. 4 Assembly of DNA nanotubes. Reproduced with permission from
ref. 61. Copyright 2014, Molecular Diversity Preservation International.

Fig. 5 Schematic diagram of nanoflower preparation. Reproduced with
permission from ref. 62. Copyright 2019, American Chemical Society.

Fig. 6 (a) Illustration of assembly of diaycl-DNA micelles. AFM (b) and DLS
(c) characterization of DNA micelles. Reproduced with permission from
ref. 73. Copyright 2010, Wiley-VCH.

Fig. 7 Illustration of diperfluorodecyl–DNA Micelles. Reproduced with
permission from ref. 75. Copyright 2018, American Chemical Society.
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standard phosphoramidite chemistry, the chemically modified
nucleic acids are synthesized on the DNA synthesizer by linking
ferrocenes to natural bases. By designing synthetic procedures, the
authors can synthesize oligonucleotides with specific bases at
specific positions. The purified and desalted products can be
assembled into micelles after being placed in the DPBS buffer
for a certain time. Among them, the hydrophilic nucleic acid
fragment is located on the surface of the assemblies in the form
of a corona, and the hydrophobic ferrocene fragment forms the
core (Fig. 8a). By regulating the number of hydrophobic ferrocene
nucleotides, micelles of different sizes can be synthesized. Trans-
mission electron microscopy (TEM) and DLS results showed that
as the number of ferrocene nucleotide groups increased, the size
of ApFAs increased gradually (Fig. 8b).

2.3 Metal ion-associated crosslinking method

Metal ions have aroused wide interest in biosensing since they
play critical roles in biological organisms.79–82 Recently, nucleic
acids have also been developed to form nanostructures with the
assistance of metal ions.83,84

Lyu et al. designed a method for DNA micelle crosslinking
in situ with the assistance of metal ions.85 The monomer that
makes up the micelle is formed by the covalent attachment of a
single stranded DNA and a hydrophobic diacyl lipid. Specifically,
the monomer consists of three parts, the most important of which
is the part that acts as a template chain (Fig. 9a). The template
chain with specific sequences can adsorb different metal ions. The
authors selected Cu2+, Ag+, and Au3+ to prepare different DNA
micelles. Subsequently, the metal ions were reduced to zero-valent
metals, which can be crosslinked into hollow or solid metal nuclei,
thereby promoting the crosslinking of DNA micelles (Fig. 9b). In
addition to the single-stranded micelles based on diacyl lipids, two
cholesterol-modified double-stranded DNAs (dsDNAs) can also act
as template domains. The authors have verified this. Compared
with the single cholesterol-modified chain, the strong hydro-
phobic force produced by the two cholesterol-modified dsDNA

can stabilize the micelle structure. Using CuSO4 as a copper source
and L-ascorbic acid as a reducing agent, it was found that cholesterol-
modified dsDNA promoted micelle crosslinking, which can be
demonstrated by fluorescence intensity and TEM characterization.

Inspired by the unique structures of the DNA G-quadruplexes,86

Lu et al. proposed that in the presence of K+ ions, the crosslinking
effect of G-quadruplexes was used to promote the formation of
hydrogels.87 Acrydite-modified oligonucleotides are polymerized
with acrylamide monomers to form copolymer chains under the
catalysis of initiators. After adding K+ ions, G-rich nucleic acid
sequences self-assemble into G-quadruplex structures, so that
polyacrylamide chains are cross-linked to form a DNA hydrogel
(Fig. 10). To verify the role of K+ in gel formation, the authors
added crown ether that can capture K+ ions, then the crosslinked
G-quadruplex broke down, and the DNA hydrogel became a
solution. Based on the fact that K+ can stabilize the structure of
G-quadruplex, Jin et al. designed a DNA sequence rich in G bases
and developed a technique to stabilize the DNA micelle
structure.88 With the addition of K+, adjacent guanine bases
in the micellar canopy formed G-quadruplexes via Hoogsteen
hydrogen bonding, and the hydrophobic lipid tails are confined
within the micellar nucleus, thereby stabilizing the structure of

Fig. 8 (a) Schematic of ApFAs assembled by aptamers and different
numbers of Fe nucleotides. (b) TEM and DLS characterization of the size of
ApFAs. Reproduced with permission from ref. 68. Copyright 2019, Elsevier.

Fig. 9 (a) Monomer structure consisting of three domains. (b) Metal ion-
assisted crosslinking process of DNA micelles. Reproduced with permission
from ref. 85. Copyright 2019, Elsevier.

Fig. 10 K+-assisted crosslinking process of DNA hydrogels. Reproduced
with permission from ref. 87. Copyright 2013, American Chemical Society.
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micelles. These results showed that K+ can promote the assembly
of the gel and achieve reversible switching.

Unlike the works described above, the work by Joo et al. was
based on the basic interaction between natural nucleobases and
metal ions (M2+s) without any predesigned DNA sequence.89 In
other words, even if the nucleic acid sequence of SNAs doesn’t meet
the requirements of complementary base pairing, it can induce the
assembly of single-type spherical nucleic acids (SNAs). Taking Cu2+

as an example, a spherical nucleic acid solution with gold nano-
particles as the core was reacted with different concentrations of
Cu2+ for 12 h. As the concentration of Cu2+ increases, SNAs form
larger aggregates. Furthermore, as the crosslinking reaction occurs,
changes in the color of the solution can be observed with the naked
eye, indicating the formation of assemblies. This research has
shown that M2+s can coordinate with multiple bases of SNAs
through coordinative interactions, thereby crosslinking into large
aggregates (Fig. 11). Once M2+s are chelated by a stronger ligand, the
assembled SNAs can be dissociated immediately. These studies
showed that metal ions can mediate the formation of assemblies
and can be reversibly reduced by removing metal ions.

3. Application in biosensing

Recently, much work has integrated biological functions into
biosensing to achieve biomedical functions with high sensitivity and
specificity.90–92 This requires that the materials used in biosensing
can interact with and respond to target signals uniquely. Nucleic
acid biopolymers show recognition ability to target molecules with
good selectivity.93 The addition of chemical modifications can
impart new chemical properties and biological functions to nucleic
acid biopolymers.94,95 Therefore, the chemically modified nucleic
acid biopolymers hold great potential to realize multifunctional
biosensing. In this section, we will introduce the applications of
chemically modified nucleic acid biopolymers in three parts: bio-
molecule detection, controlled drug release, and gene therapy.

3.1 Detection of biomolecules

The detection of biomolecules can provide us with a lot of
information, which will help us make more accurate judgments

on various life processes.96–98 Nucleic acids with specific
sequences have the potential to recognize targets.99 However,
the biological environment is so complicated that it limits the
use of nucleic acid biopolymers in target recognition.100 Chemically
modified nucleic acid biopolymers enable the specific and sensitive
detection of targets. Here, we highlight the application of chemically
modified nucleic acid biopolymers in biomolecule detection.

As exosomes are one of the biomolecules for early diagnosis
of cancer, it is of great significance to detect exosomes with high
sensitivity.101–103 Wang et al. fixed a nanotetrahedron (NTH) on
the gold electrode and designed an aptamer-based biosensor
(aptasensor) for detecting hepatocyte exosomes (Fig. 12a).104

When the sensor is incubated with the exosome suspension, the
aptamer on the NTH binds to the exosomes specifically. The
binding of the aptamer and exosome reduces the electrode
surface area, which causes changes in electrical signals. Accordingly,
changes in the electrical signal reflect the concentration of exo-
somes. Compared with the single-chain aptamer functionalized
aptasensor, the detection sensitivity of the NTH-assisted aptasensor
is increased by about 100 times (Fig. 12b).

In another study, Wu et al. constructed switchable aptamer
micelle flares (SAMFs) for the detection of ATP molecules.105

The SAMF hydrophobic diacyl lipid tail is linked to a hydrophilic
switchable aptamer head (Fig. 13a). When there are no targets,
the aptamer probe retains the loop-stem structure, causing the
fluorescence of the fluorophore to be quenched by an adjacent
quencher. After binding to the target, the conformation of the
aptamer changes and the fluorescence signal is restored. Based
on this principle, a series of different concentrations of ATP are
used to measure the response of SAMFs. It is observed that as
the ATP concentration increases, the fluorescence signal intensity
increases firstly and then reaches saturation (Fig. 13b). The lack
of the target ATP prevents the stem-loop structure from opening,
resulting in a lower fluorescence signal intensity. When the ATP
molecules are added at 75 seconds, the fluorescence signal shows
a straight upward trend and the response speed is fast (Fig. 13c).
This study demonstrated that SAMFs can respond to ATP expression
sensitively and detect ATP molecules through changes in fluorescent
signals.

The detection of mRNA is of great significance for early
tumor screening.106 Existing methods for detecting mRNA in
cells have many limitations; for example, the probe is susceptible
to interference by complex cellular environments, or the stability
of the probe is poor.103 He et al. constructed a DNA tetrahedron

Fig. 11 Schematic illustration of the M2+-assisted reversible assembly of
SNAs.

Fig. 12 (a) Illustration of the NTH-assisted aptasensor. (b) Comparison of
signals between single-chain aptamer-assisted and NTH-assisted sensors.
Reproduced with permission from ref. 104. Copyright 2017, American
Chemical Society.
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nanotweezer (DTNT) to solve the above problems.107 To be specific,
the DTNT completed the mRNA detection with high sensitivity and
high accuracy via the principle of fluorescence resonance energy
transfer. They customized four DNA strands, two of which modified
the Cy3 or Cy5 fluorophore respectively. In the absence of targets,
the two fluorophores in the DTNT are far away, and the FRET is
in the ‘‘off’’ state. When the target mRNA exists in the cell, the two
fluorophores are located close to each other, which induces the
generation of FRET and the signal changes from ‘‘off’’ to ‘‘on’’.

3.2 Controlled drug release

In recent years, the applications of smart drug delivery systems
in the field of biosensing have been widely studied.108–111

Chemically modified nucleic acid biopolymers can also be used
to construct smart drug delivery systems.112–114

A DNA origami structure is often used as a drug carrier
system due to its excellent biocompatibility and spatially
addressable functions.41,115 Jiang et al. inserted anticancer drug
doxorubicin (DOX) into DNA origami nanostructures through
non-covalent bonding to reach a high level of drug loading
efficiency.116 The DNA origami structure was effectively internalized
into cells and remained in the tumor area for a long time. When the
drug-loaded origami is exposed to low environmental pH or DNase,
DNA nanostructures are slowly degraded to achieve controlled drug
release (Fig. 14). Therefore, using DNA origami to carry drugs greatly
improves the internalization ability of DOX, which will help the drug
to exert its effect and kill tumor cells. In addition, the amphiphilic
block copolymer can form a hydrophilic corona and a lipophilic
core, and the core can be effectively loaded with hydrophobic
anticancer drugs. Based on this, Alemdaroglu et al. assembled
DNA-polypropylene oxide (PPO) into a spherical micelle structure.117

Dox is a hydrophobic drug, and due to the hydrophobic interaction

of Dox and PPO, drugs accumulate inside the micelles to form a
drug delivery system.

Mitochondria play an important regulatory role in tumor
growth. Jiang et al. developed a mitochondria-specific DNAtrain
(MitoDNAtrs) drug delivery system using DNA as the basic unit
(Fig. 15).118 The indocyanine dye Cy5.5 is used to provide the
driving force, while the linear DNA strand is used as a carrier
for transporting a good deal of antitumor drugs. Guided by
Cy5.5, drugs are targeted to the mitochondrial region. The
release of the drugs can be detected because Cy5.5 has a
visualizable fluorescent signal. Applying MitoDNAtrs to breast
cancer cells, and comparing the intracellular fluorescence
signals at different times, it is clear that the intracellular
fluorescence signals gradually increase. The results mean that
drugs are gradually released from MitoDNAtrs, and the imaging
method can be used to visualize the drug release process in
time. Additionally, Li et al. also designed a controlled drug
release system.119 They coupled a nucleolin-targeting aptamer
(NucA) with paclitaxel (PTX) through a linker to form a nucleolin
aptamer–paclitaxel conjugate (NucA-PTX). NucA directs PTX to
ovarian tumor cells for action with little effect on normal cells.
Once NucA-PTX enters the tumor cells through endocytosis, the
lysosomal protease in the cell will cleave the linker in NucA-PTX,
thereby achieving the controlled release of PTX.

Fig. 13 (a) Structure of SAMFs and their working principle. (b) Relationship
between the ATP concentration and fluorescent signal. (c) Effect of adding
target molecules on fluorescence intensity. Reproduced with permission
from ref. 105. Copyright 2013, American Chemical Society.

Fig. 14 DNA origami-based controlled drug release system. Reproduced
with permission from ref. 116. Copyright 2012, American Chemical Society.

Fig. 15 Schematic of the MitoDNAtrs delivery system. Reproduced with
permission from ref. 118. Copyright 2019, American Chemical Society.
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Interestingly, a high payload delivery system means a power-
ful lethality to tumor cells.120 As a typical example, Deng et al.
proposed a general strategy to construct Aptamer–PolyproDrug
Conjugates (ApPDCs); this method involved the assembly of
aptamers targeting cancer cells, prodrugs and a biocompatible
brush skeleton.121 Compared to traditional drug loading sys-
tems, ApPDCs have a high drug-to-aptamer ratio (DApR Z 40).
After the ApPDCs enter the cell, the reducing environment
within the cell can trigger the efficient release of the prodrugs.
By using prodrugs with different mechanisms, multi-drug
synergy treatment can be achieved, and problems such as
multi-drug resistance may be resolved.

Different from the above work, based on molecular engineering
technology, the ratio of drugs can be adjusted accurately and
multiple drugs can be precisely delivered to tumor cells. In this
regard, Zhou et al. coupled circular bivalent aptamers with
different drugs to prepare circular bivalent aptamer–drug
conjugates (cb-ApDCs) with different drug dosing ratios.122

Drug release of cb-ApDCs can be monitored by confocal laser
scanning microscopy; the ester bonds in cb-ApDCs can be
cleaved by the esterase present in the late endosomes and
lysosomes to realize the controlled release of drugs (Fig. 16b).

3.3 Gene therapy

Chemically modified nucleic acid biopolymers can be com-
bined with gene therapy technology to achieve highly efficient
tumor treatment.123

Gene therapy has the ability to combat many gene-related
diseases and it is a promising cancer treatment strategy.124

Li et al. designed a stimulus-responsive hydrogel for gene
therapy, which was cross-linked by a building unit, a blocking
and targeting unit and a linking unit (Fig. 17).125 Different
functional elements were integrated into the three building units,
such as therapeutic genes that can induce apoptosis, DNA ribo-
zymes that can inhibit cell migration, and aptamers that can target
cancer cells. Glutathione in cells can effectively cleave the disulfide
bonds in the building blocks to achieve dissociation of nano-
hydrogels and release of multiple therapeutic genes. Moreover,
Chen et al. synthesized molecular beacon micelle flares (MBMFs),
which were assembled by diacyl lipids with circular DNA probes.126

The premise of using MBMFs for gene therapy is to hybridize with
mRNA first, and there are two main therapeutic mechanisms:
one is to prevent translation from target mRNAs by providing
translational blocking, and the other is to form a DNA/RNA

Fig. 16 (a) Preparation of cb-ApDCs. (b) Intracellular CPT release was
monitored from intracellular cb-ApDCs. Reproduced with permission from
ref. 122. Copyright 2019, Wiley-VCH.

Fig. 17 Schematic of the hydrogel formation and gene therapy. Reproduced
with permission from ref. 125. Copyright 2015, American Chemical
Society.
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hybrid with the target mRNA, which is subsequently degraded
by the RNase H enzyme. Using these two mechanisms can
inhibit the growth of cancer cells and realize gene therapy.
Liu et al. used gene therapy to enhance antitumor effects.127

Specifically, the authors constructed triangular DNA origami to
load Dox, and then hybridized with the tumor therapeutic gene
p53 to form a nano-kite assembly (Fig. 18). The assembly can
effectively deliver p53 and DOX to tumor areas simultaneously,
significantly enhancing the anti-tumor effect.

4. Conclusion and outlook

The addition of chemical modifications can impart rich structures
and functions to nucleic acid biopolymers, attracting widespread
attention from researchers. In this review, we introduced different
cross-linking forms of chemically modified nucleic acid biopolymer
nanostructures. Furthermore, we also summarized the applications
of chemically modified nucleic acid biopolymers in biomolecule
detection, controlled drug release, and gene therapy. These
studies show the importance of chemically modified nucleic
acid biopolymers in biosensing.

Although great achievements have been made, the application
of chemically modified nucleic acid biopolymers in biosensing is
still emerging and needs further improvement. For example, the
efficiency of chemical modifications of nucleic acids needs to be
further improved. Secondly, there is still an urgent requirement
to develop nucleic acid biopolymers modified with different
functional groups to achieve multifunctional biosensing.
Finally, there are few chemically modified nucleic acid bio-
polymers available for clinical biosensing, so developing
practical and safe chemically modified nucleic acid biopolymers
is another key point. With the interdisciplinary development,
chemically modified nucleic acid biopolymers have the potential
to achieve greater promotions and breakthroughs in biosensing.
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