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High throughput sequencing of in vitro selections
of mRNA-displayed peptides: data analysis
and applications

Celia Blanco, *ab Samuel Verbanic, bc Burckhard Seelig de and
Irene A. Chen abc

In vitro selection using mRNA display is currently a widely used method to isolate functional peptides

with desired properties. The analysis of high throughput sequencing (HTS) data from in vitro evolution

experiments has proven to be a powerful technique but only recently has it been applied to mRNA

display selections. In this Perspective, we introduce aspects of mRNA display and HTS that may be of

interest to physical chemists. We highlight the potential of HTS to analyze in vitro selections of peptides

and review recent advances in the application of HTS analysis to mRNA display experiments. We discuss

some possible issues involved with HTS analysis and summarize some strategies to alleviate them. Finally,

the potential for future impact of advancing HTS analysis on mRNA display experiments is discussed.

1. Introduction

The development of peptides and proteins with desired activities
is one of the great challenges of biotechnology. While rational
design is an active field of research and can be applied in certain
cases,1–4 very often, the sequence–structure–function relation-
ships are not understood with sufficient depth to employ rational
design. In these cases, ‘irrational’ evolutionary strategies can be
used, in which candidate sequences are selected or screened
from a large number of variants on the basis of activity. Such
methods have been highly successful, as recognized by the 2018
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Nobel Prize in Chemistry. In vitro selection is of particular interest
to physical biochemistry due to the ability to carefully control the
selection environment, which enables probing of a variety of
phenomena, including molecular interactions, folding behavior,
and evolutionary pathways. During in vitro selection, functional
molecules with desired properties are isolated from very large
pools of random (or semi-random) sequences. This is achieved
through iterative cycles of selection, amplification, and muta-
genesis, until the final pool is sufficiently enriched with variants
exhibiting the desired properties (Fig. 1). While it is often applied
to nucleic acids, in vitro selection, when combined with peptide
display technologies, can identify functional peptides of interest.
In particular, mRNA display is widely used for this purpose, and it
will be the focus of this Perspective.

High throughput sequencing (HTS) data analysis for in vitro
evolution experiments has become increasingly common in the
last decade for DNA and RNA molecules. However, this approach
has not been as widely applied to mRNA display selections. The
focus of this Perspective is to examine possible applications of
mRNA display and HTS in contexts relevant for the field of
physical chemistry, such as the improvement of binding kinetics
measurement and the understanding of molecular fitness land-
scapes. We discuss the capability of HTS analysis applied to
in vitro selections of peptides and review recent progress made in
the field. Based on our experience, we discuss some possible
issues that might arise during the sequencing process or the data
pre-processing steps. Finally, we offer our perspective on possible
future applications of HTS and mRNA display experiments,

Fig. 1 General scheme for the isolation of active sequences from in vitro evolution experiments, HTS and the analysis of the sequencing data. A large
library of mutant variants is subjected to a selection process in which survival depends on the ability to carry out a specific biochemical function (e.g.,
binding). Selected variants are isolated and amplified while unselected variants are discarded. The cycle of selection and amplification is repeated several
times (rounds) until variants with high activity dominate the library. The final library (and possibly intermediate pools) is then sequenced, such as by using
high throughput sequencing (HTS) technologies. Finally, HTS data is analyzed using bioinformatic tools appropriate for the project’s goal. For a more
detailed explanation of the selection process see Fig. 2.
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and discuss the potential effect that future improvements in
sequencing technology might have on the field.

2. In vitro selection of displayed
peptides

While directed evolution itself can be carried out at an organismal
level, molecular selection techniques, which allow access to very
large, diverse libraries, rely on linking phenotype and genotype. In
other words, the physical isolation of a protein exhibiting a parti-
cular phenotype must also recover its sequence information, which
can be amplified, mutated, and expressed. Thus display technologies
are essential to the in vitro selection of peptides and protein ligands.5

In this Perspective we focus on display techniques that accommo-
date pools of very high diversity, particularly mRNA display, and
their combination with high-throughput sequencing (HTS) methods.
In this section we introduce different display technologies and how
mRNA display compares with them.

2.1. Phage display of peptides

Broadly speaking, protein display approaches can be classified
into two groups: those that require the peptide libraries to be
cloned and expressed using cells (cellular) and those in which
expression and display are achieved without the need for cells
(acellular). One of the most widely used techniques for functional
peptide selection is phage display, a cellular technique in which the
library proteins are displayed by fusion to an outer coat protein
of a bacteriophage. The diversity of phage display libraries is
fundamentally limited by the efficiency by which bacteria can be
transformed, and is therefore up to B109 variants.5 Typically, in
this system, a short random sequence (encoding peptides
roughly 6 to 45 amino acids long5,6) is fused to a phage coat
protein (e.g., the minor coat protein pIII, or, for short peptides,
the major coat protein pVIII of the filamentous phage M13).
A library of phages is created with each phage particle displaying
the sequence encoded on its individual genome. The recombinant
phages are produced and amplified using E. coli, purified, and
subjected to selective pressure, such as binding to a molecule
attached to a solid support. By cycling through the amplification
and selection steps, phages displaying peptides with a desired
phenotype can be enriched. The phage itself links the genotype
(carried in its genome) with the phenotype (expressed as a fusion
to its proteinaceous coat), and selected peptides can be sequenced
after sufficient enrichment. Phage display is suitable for selection
of peptides that can be used in antibody development, study of
protein–protein interactions, and mediation of protein–ligand
interactions.5,7 A limitation, however, is protein length, because
peptides that are too long often interfere with phage assembly
and/or infectivity, leading to an undesirable source of selection
bias.8 This can be somewhat mitigated by reducing the display
valency, but other cellular approaches may be preferred when
longer sequences are needed. Phage display has been extensively
reviewed elsewhere.9,10

The phage genotype–phenotype linkage is exploited in
another cellular method, called Phage-Assisted Continuous

Evolution (PACE).11 In PACE, a library of plasmids encoding
an evolvable gene is transformed into E. coli. The host cells also
contain plasmids that express phage proteins, but expression
of an essential gene, pIII, is suppressed. Instead, pIII is only
expressed if the selection plasmid has the desired activity,
enabling production of a functional phage. Phage encoding
enzymes with higher activity produce more pIII, in turn producing
more viable phage that can infect more cells, propagating their
genotype. The major advantage of this system is faster evolution
allowing many generations of selection in tandem; as its name
suggests, PACE is continuous and does not require manual
intervention to cycle through a selection scheme. PACE has
drawbacks, though, primarily in the difficulty of the experimental
design and implementation, genetic engineering, and use of
custom-built apparatus that may be difficult for a non-expert to
implement.

2.2. Acellular display of peptides

A primary drawback of cellular approaches, whether phage
display or otherwise, is library size, which is limited by the
number of cells that can be infected or transformed by unique
genotypes. In selection experiments, the probability of discovering
sequences of high activity is proportional to the size of the initial
library, all else being equal. In other words, the larger the initial
library, the more likely one is to find the rare, high activity
sequences, and thus larger libraries are fundamentally desirable.
For standard proteins composed of 20 amino acids in which N
positions are allowed to be variable, the size of sequence space is
20N (E101.3N), which becomes experimentally intractable in the
lab for N 4 12 if one desires full coverage of the sequence space.
Whether full coverage of sequence space is important depends on
the scientific or engineering problem at hand. Full coverage of
sequence space is of special interest for understanding fundamental
questions about potential evolutionary pathways. However, if the
purpose of the study is the engineering goal of identifying functional
molecules, the completeness of coverage of sequence space is not
intrinsically important. Instead, the frequency of sequences with the
desired phenotype within the space of sequences explored, and its
ratio to the library size, is the critical parameter, and is heavily
dependent on library design. With sufficiently efficient selective
amplification of active sequences, it should suffice to have a library
large enough to have one (or a few) of the sequences exhibiting
the desired phenotype. Large library sizes can be achieved by
acellular methods, which are limited by physical constraints on
concentrated biomolecular solutions (e.g., protein aggregation)
rather than much smaller biological constraints such as the rate
of transformation or infection.

Two widely used acellular approaches for protein selection
and evolution are ribosome display and mRNA display (Table 1).
Library diversity using these methods usually is 1012–1014 variants,
surpassing the cellular methods by orders of magnitude.5,12–14 In
addition to the increased library size due to lack of need for
transformation, acellular approaches show reduced biases by
avoiding cellular expression (e.g., the toxicity of protein
sequences is not relevant in acellular approaches). Like cellular
methods, acellular methods are amenable to combination with
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diversity-generating techniques that mimic natural evolution:
error-prone PCR is used to introduce random mutations, gene
shuffling (recombination) is used to generate permutations of
mutations, and non-natural amino acids can be introduced.

In order to create the physical link between genotype and
phenotype, both ribosome display and mRNA display take
advantage of the fact that an mRNA and its encoded protein,
while not covalently bound, are in intimate proximity during
translation. Thus, manipulation of events surrounding termi-
nation of in vitro translation can capture an mRNA together
with its newly expressed protein molecule. In ribosome
display,15–17 the mRNA and the translated peptide or protein
product are held together non-covalently by the ribosome. To
accomplish this, the stop codon of the gene is deleted, and
therefore the ribosome does not dissociate at the end of mRNA
translation. This ternary complex of mRNA, ribosome and peptide
is further stabilized mainly through high Mg2+-concentrations and
incubation at low temperature. While this complex can be
stable for days, any subsequent selection conditions are limited
to those that preserve the integrity of the mRNA–ribosome–
peptide complex. When more physiological and/or stringent

conditions are of interest, mRNA display is an important
alternative (Table 1).

3. mRNA display

mRNA display is a selection and evolution technique for functional
peptides and proteins that is performed entirely in vitro.18,19 Like
ribosome display, mRNA display can interrogate very large libraries
of peptide variants, being orders of magnitude larger than libraries
of other display technologies.20 However, instead of using a
ribosome to connect the mRNA and its peptide in a non-
covalent ternary complex, the mRNA itself is covalently attached
to the peptide. In an idealized sense, mRNA display is a
minimalistic version of display techniques as the genotype
(mRNA) and the phenotype (polypeptide) are connected by
covalent linkage through a small molecule. Specifically, the
30-terminus of the mRNA is modified by the small molecule
antibiotic puromycin, which is a structural mimic of a charged
tRNA and bears a free amine analogous to that of an aminoacyl-
tRNA (Fig. 2). At the end of in vitro translation of the mRNA into

Table 1 Typical features of selection methods. The values features listed below represent estimates for the most common protocols for each selection
method. Some deviations from those estimates are possible

Cell-based selectionsa

In vitro selections

Ribosome display mRNA display

Library diversity 106–109 B1013 B1013

Genotype–phenotype connection Non-covalent Non-covalent Covalent
Type of protein Cell-compatible only Any Any
Temperature range �5 1Cb B4 1C 0–100 1C
Buffer conditions Must be compatible with

cell or phage integrity
High Mg2+, low T; must be
compatible with ternary complex

Generally tolerant as long as compatible
with chemical integrity of protein and RNA

a Selection parameters and conditions are limited to ensure compatibility with cell survival. b Optimum temperature depends on the type of cell
used. Phages may tolerate wider temperature ranges.

Fig. 2 Selection and evolution of proteins by mRNA display. The procedure begins with a library of DNA (1) that encodes the library of protein variants.
The DNA is transcribed into RNA, modified with puromycin and translated to mRNA-displayed proteins. In the selection step (2), the protein variants with
the desired properties are separated from the undesired proteins. The selected variants are reverse transcribed to cDNA (can also be done before the
selection step), and multiplied by PCR amplification (3). This round of selection and amplification is repeated until the resulting library is dominated by
proteins with the desired properties. For protein evolution, the amplification step can be modified to introduce additional diversity (e.g., mutations).
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the corresponding protein, the puromycin is ‘mistaken’ by the
ribosome as a charged tRNA and then covalently linked to the
nascent peptide chain. After this reaction, the ribosome can be
dissociated and the mRNA-displayed protein can be isolated
and used as desired. This stable covalent link in effect renders
every RNA sequence encoding its polypeptide directly selectable
by the polypeptide’s phenotype, and also amplifiable after
selection by reverse transcription and PCR.

Progress of the selection is commonly monitored by measuring
the recovery of mRNA-displayed proteins during the selection step,
which is expected to increase over rounds if active variants are
being selected. This measurement estimates the bulk activity
(binding or catalysis) of the library of enriched variants. When
the desired variants have been sufficiently enriched, the proteins
are identified by DNA sequencing and subsequently analyzed
individually as appropriate for the particular activity. In a
complementary approach, the progress of the enrichment can
also be monitored through DNA sequencing of the library after
each round of selection. The comparison of populations of
variants over the course of selection can reveal the enrichment
of dominant proteins.

As with other selection techniques, the general biophysical
nature of the selectable entity should be kept in mind. In this
case, the mRNA–protein fusion is mostly RNA by mass. With an
RNA monomer being roughly three times the mass of an amino
acid and each codon being three nucleotides long, the mRNA–
protein fusion is approximately 1/10 protein by mass. A fortunate
consequence of this is that the fusion benefits from the high
solubility of the negatively charged RNA. Thus, while random
protein sequences are prone to aggregations,21 random mRNA–
protein fusions are less so. Solubility can be further improved by
a selection preceding the intended selection (a ‘pre-selection’), in
which the soluble fraction itself is selected. On the other hand,
the covalent linkage of the mRNA to the peptide means that it is
possible for an mRNA–protein fusion to survive a selection due to
activity of the mRNA, not the peptide. For example, a selection
may inadvertently result in ribozyme or aptamer sequences. This
outcome can be guarded against by strategies such as ‘protection’
of the mRNA in a duplex with complementary DNA. It is also
possible that the presence of the RNA affects the peptide’s
activity, e.g., by effects on folding, such that a fusion exhibiting
a particular activity may not exhibit the same activity when
expressed as an isolated peptide. In addition, the selection step
often requires experimental measures that should be kept in
mind during data interpretation, such as the need to attach an
affinity tag to the substrate to render selected molecules isolable.
As with any in vitro selection experiment, the resulting ‘hits’ must
be validated by additional assays. Nevertheless, due to the
minimalist display design, the stability of the covalent link, and
the freedom to operate under a wide range of conditions in this
in vitro format, mRNA display is a powerful method for peptide or
protein display systems.

mRNA-displayed peptide and protein libraries have regularly
been selected to isolate protein binders and, in some cases,
even enzymes.22,23 For example, mRNA display has been utilized
to study protein–protein interactions, or interactions between

proteins and small molecules or other targets.24–26 mRNA display
has also been used to display cyclic peptide libraries, enabling the
discovery of bioactive macrocycles as potential drug candidates.27–29

More detailed reviews of the mRNA display technology and its
applications can be found elsewhere.24,28,30–33 Furthermore, mRNA
display has proven to be particularly suitable for the investigation of
fundamental questions. For example, mRNA display selection can
be used to discover entirely de novo proteins from libraries of
randomized polypeptides, with implications for the potential origin
of the earliest functional proteins.34,35 Another example is using
mRNA display to mimic natural Darwinian protein evolution in the
lab to examine protein fitness landscapes.36–39 The high versatility of
mRNA display methods adds value to its potential benefits for the
in vitro selection of peptides and proteins.

4. High throughput sequencing of
mRNA display selections

Sanger sequencing has been widely used to analyze the out-
come of mRNA display selections. While the low throughput of
Sanger sequencing is usually sufficient to identify the winning
proteins from a highly enriched library at the end of a selection,
additional information on alternative variants with lower abun-
dance is limited. Also, the abundance of a sequence often does
not accurately predict its activity, and even enrichment can be a
noisy correlate to binding affinity.38,40 Monitoring the progress
of enrichment throughout a selection by Sanger sequencing is
also very challenging or even impossible because the active
protein variants are in the vast minority during all but the last
rounds of selection. In contrast, high throughput DNA sequencing
can overcome these challenges. A sequencing depth of millions of
reads potentially allows for the identification of many more active
proteins with a wider range of activities, as opposed to only the
most abundant variants.

High-throughput sequencing (HTS) refers to a number of
technologies capable of producing a large amount of sequence
data (Table 2). HTS methods are highly scalable, with some
allowing a large number of different variants (thousands to
millions or even billions) to be sequenced in parallel. HTS
methods are also referred to as next-generation sequencing
(NGS) or second-generation sequencing (2GS) in the literature.
However, the terms NGS intuitively refers to the most recent
sequencing technology, and hence, it has been progressively
abandoned in literature since the advent of more recent long-
read sequencing methods. In the last 20 years, the data output
capacity has outpaced Moore’s law and the associated costs
have dropped almost at the same rate. While the sequencing of
one entire human genome in the Human Genome Project took
13 years and cost nearly three billion dollars,41 nowadays many
whole human genomes can be sequenced within a single day for
approximately a thousand dollars each. HTS technologies have
tremendously impacted several fields of biological research and
have opened the door to new approaches in medicine, such as
in personalized medicine.42–44
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The sequencing market is nowadays dominated by the
Illumina platform. However, several other companies offer
sequencing platforms that use different technologies (Table 2),
which present different advantages and disadvantages. Illumina’s
high popularity is mainly due to the sheer throughput and low
cost, such that for genomic sequencing applications high cover-
age can be readily obtained. However, a major limitation is the
length of individual sequence reads. For longer reads (more than
a few hundred base pairs), other sequencing technologies are
preferable or necessary (Table 3). Sequencing platforms capable
of long reads usually have a higher error rate associated with
them, but often strategies can be devised to circumvent this
problem (e.g., multiple effective reads of the same base), and
technologies are constantly under development in this highly
competitive area. Detailed comparisons among different sequencing
methods can be found elsewhere.45–48

In mRNA display selections, HTS enables the tracking of
evolutionary paths of selected sequences throughout the selection
and evolution process, as well as measurement of the distribution
of activity of proteins over sequence space. A clear impact of HTS is
that the high depth of sequencing can reveal a greater number of
active sequences, especially those without closely related neigh-
bors. Although such sequences might be rare, they could exhibit
high activity and thus be of interest. Also, a practical benefit of
deep sequencing is the potential for reducing the number of cycles
required to identify active clones. Without HTS, a selection is
usually pursued until the active variants represent a majority of the
library, so that a small number of clones subjected to Sanger
sequencing would identify the ‘winning’ sequences. With HTS,
however, the selection can be stopped relatively early and clones
selected on the basis of the rate of their enrichment, even if they
are present at somewhat low relative abundance (e.g., o1%).40

Table 2 Technical specifications of sequencing products. Abbreviations Mb, Gb and Tb correspond to megabases, gigabases and terabases, respectively
(for comparison, the human genome has 3 � 109 bp or 3 Gb). Abbreviations h corresponds to hours, bp to base pair, kb to kilobase, M and B to millions
and billions

Company Platform Run time Maximum output Maximum read length Reads per run

Illumina Inc. MiSeq 4–55 h 15 Gb 2 � 300 bp 25 M per lane
NextSeq 12–30 h 120 Gb 2 � 150 bp 400 M per lane
HiSeq 3000 o1–3.5 days 750 Gb 2 � 150 bp 2.5 B per lane
HiSeq 4000 o1–3.5 days 1.5 Tb 2 � 150 bp 5 B per lane
HiSeq X Series o3 days 1.8 Tb 2 � 150 bp 6 B per flow cell
NovaSeq 6000 B13–38 h N/A 2 � 250 bp 10 B per lane

Pacific Biosciences Inc PacBio RS II 0.5–4 h 1 Gb B10–15 kb 50–80 k
Life Technologies Corp. Ion GeneStudio S5 4.5–19 h 15 Gb 200–600 bp 2–130 M

Ion GeneStudio S5 Plus 3–20 h 30 Gb 200–600 bp 2–130 M
Ion GeneStudio S5 Prime 3–10 h 50 Gb 200–600 bp 2–130 M

Sequencing by Oligo
Ligation Detection

SOLiD 5500 W 10 days 120 Gb 2 � 50 bp 1.2 B
SOLiD 5500xl W 10 days 240 Gb 2 � 50 bp 2.4 B

Roche Inc. 454 GS FLX+ 10–23 h 450–700 Mb Up to 1 kb 1 M
454 GS Jr 10 h 35 Mb 400 bp 100 k

Oxford Nanopore Flongle 1 min–16 h 2 Gb 42 Mb 126 channels
MinION 1 min–48 h 50 Gb 42 Mb 512 channels
GridION Mk1 1 min–48 h 250 Gb 42 Mb 512 � 5 channels
PromethION 24 1 min–72 h 5.2 Tb 42 Mb 24 � 3000 channels
PromethION 48 1 min–72 h 10.5 Tb 42 Mb 48 � 3000 channels

Table 3 Comparing sequencing technologies. Basic advantages and disadvantages of different sequencing platforms and the sequencing technology or
chemistry they use. NA means not applicable

Advantages Disadvantages Library amplification Sequencing technology

Illumina Inc. Large user base platform Short reads Bridge-PCR on
flow cell surface

Reversible terminator
sequencing by synthesisLow cost per base

High coverage (high output)
Pacific Biosciences Inc Very long reads (41 kb) High basal error rate NA Single-molecule, real-time

DNA sequencing by synthesisShort run time Low output
Low reagents cost

Life Technologies Corp. High coverage Lower output PCR on FlowChip surface Polymerase synthesis
Longer reads

Sequencing by Oligo
Ligation Detection

Low cost per base Short reads Emulsion PCR Sequencing by ligation
Low reagents cost Long run time
Inherent error correction
(two-base encoding)

Roche Inc. Longer reads Higher cost per base Emulsion PCR on
microbeads

Pyrosequencing
Short run times High reagents cost
High coverage High error rates in

homopolymer repeats
Oxford Nanopore Very long reads High error rate NA Nanopore exonuclease sequencing

Customization Difficult to design
multiple parallel pores
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In summary, large sequencing depth while tracking selections can
enable both improved identification of active clones as well as a
better understanding of the evolutionary process. We discuss in
Section 5 below some important applications in which NGS is
transforming our understanding of fundamental problems.

Given the unprecedented increase in data, an interesting
question is whether NGS can allow one to entirely circumvent
the evolutionary process during discovery of functional peptides
from a diverse library. With unlimited sequencing capability,
one could imagine sequencing the starting library, subjecting
the library to a single screening reaction, and then sequencing
the selected pool. In principle, a comparison of the composition
of the pool before and after the screen should yield estimates of
the relative activities of all of the different sequences in the
library. Whether this is attainable in practice depends on the
library size. In directed evolution experiments, initial libraries
are generated to, ideally, cover as much sequence and structural
diversity as possible while targeting the activity of interest; the
larger the library, the greater the chance of discovering rare, active
sequences. Libraries generated using mRNA display methods can
typically contain up to B1014 different variants. While Sanger
sequencing could yield perhaps a few hundred sequences,
massively parallel HTS methods can read up to 1010 (as of
2019, Illumina’s NovaSeq 6000 System can yield a maximum
of 20 billion reads per run49). However, despite the high number
of different variants that can be sequenced nowadays, the
number of variants that can be explored experimentally in the
initial library is still higher. Therefore, if the initial library has
fewer than B1 billion variants, it is conceivable to use HTS
effectively as a screen. But if mRNA display is used for exploring
extremely diverse libraries, at least a few rounds of selection
are currently necessary to reduce the complexity of an mRNA
display library to a tractable size.

5. Molecular fitness landscapes

In molecular evolution, the fitness of a sequence is a quantitative
measure of its evolutionary favorability, and can be defined in
multiple ways in vitro, depending on experimental context. The
function of fitness in the multidimensional space of all possible
sequences is known as the fitness landscape. In simplified
terms, the fitness landscape can be described as a series of peaks
(corresponding to families of related sequences with elevated
fitness) emerging above the background (corresponding to regions
in the sequence space of low or zero fitness). Evolution over the
fitness landscape can be conceptualized as a random walk with a
bias toward climbing hills.37,50 Knowledge of the fitness landscape
is critical for understanding molecular evolution, as evolutionary
outcomes could be predicted, in principle, given complete knowl-
edge of the fitness landscape in a particular environment.
However, prior to HTS, empirical data on fitness landscapes
was quite limited.

To understand the importance of HTS for examining fitness
landscapes, let us consider how the shape of these landscapes
influences natural selection. Under conditions in which selection

pressures are strong, as is common during in vitro selection,
sequences evolve by local uphill climbs over the landscape. Over
a perfectly smooth peak, one could imagine easily reaching the
global optimum through a continuously uphill climb. However, if
the landscape contains many local optima with valleys separating
them from the global optimum, populations of sequences may
become trapped on the local optima.37,51 Thus, the ability of
natural selection to discover an optimal sequence is heavily
influenced by the ruggedness of the fitness landscape.

One measure of ruggedness is epistasis, which describes
how different sites along the sequence interact to determine the
fitness contribution of each mutation. In other words, in a
landscape with epistasis, the genetic background of a mutation
influences how beneficial or detrimental that mutation is. Sign
epistasis describes the situation in which the effect on fitness of
a single mutation is either positive or negative depending on
the presence or absence of another mutation. Reciprocal sign
epistasis corresponds to a particular case of sign epistasis in
which mutations that are independently advantageous became
jointly unfavorable (or vice versa). Such epistasis is particularly
important for the landscape, as it leads to local optima.52

Epistasis is therefore an important feature determining the viability
of individual evolutionary pathways of protein sequences.37

Calculations to measure epistasis in experimental fitness land-
scapes have been reviewed elsewhere.53

To map fitness landscapes, individual sequences would be
sampled and their fitness determined (such as by sequencing).
Let us consider how the depth of sampling influences our
ability to probe ruggedness and epistasis. In the most simple,
smoothest landscape (i.e., that with a single peak), the absence
of local maxima implies that under a regime of strong selection
and weak mutation, evolution starting from any point in sequence
space will end in the global optimum. Generally, sparse random
sampling on these topographies will still give an adequate
representation of the landscape, because the fitness of unsampled
points in sequence space can be interpolated using an assumption
of additivity among mutations (Fig. 3A). In contrast, a highly
rugged landscape would occur if the fitness of related sequences
were totally uncorrelated (Fig. 3C). Evolution on this type of
landscape will almost certainly not end in the global optimum,
and populations will be ‘stuck’ in peaks corresponding to local
maxima. In these topographies, sparse random sampling can-
not give a proper representation of the landscape. Although
these two cases (completely correlated and completely random
fitness landscapes) are interesting as theoretical limits, most
empirical landscapes exhibit an intermediate degree of rugged-
ness (as well as a certain degree of correlation), lying somewhere
in between these two limiting cases (Fig. 3B). The ruggedness of
the landscape ultimately determines whether subsampling of
sequence space can result in a trustworthy representation of the
topography. Severe undersampling of a rugged landscape would
miss many epistatic correlations. For realistically rugged land-
scapes, high sampling levels, enabled by HTS, are essential for
understanding the fitness landscapes.

The issue of adequately sampling fitness landscapes resem-
bles the core idea behind the Nyquist–Shannon sampling
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theorem for digital signal processing.54 In this field, sampling
refers to the process of converting a continuous signal into a
string of discrete values. The theorem states that, for a given
continuous function, there is a critical, minimum rate of
sampling for which perfect reconstruction of the function is
guaranteed, this rate being at least twice the maximum fre-
quency response of the signal. That is, fN = fS/2, where fN is the
critical frequency (also called Nyquist frequency) and fS is the
sampling frequency. Similarly, for a given sample rate, there
is a maximum bandlimit or frequency that ensures perfect
reconstruction. For example, in the case of a sine wave, sampling
at less than twice the maximum frequency will lead to a lower
frequency sine wave. This phenomenon is known as aliasing
(Fig. 3D). Sampling at more than twice the maximum frequency
ensures perfect reconstruction of the wave function. In the case of
fitness landscapes, whether the number of sampled sequences is
large enough to reconstruct the topography of the fitness land-
scape depends on the topographical features of the landscape,
which is determined by the epistatic interactions. In this context,
rugged landscapes are at a higher risk of suffering ‘aliasing’.

In addition to mapping epistatic landscapes, which is dis-
cussed further in Section 6, the combined use of mRNA display
libraries and HTS methods can provide a direct view into the
evolutionary history of peptides over the course of selection.37

Like Sanger sequencing, HTS can identify the different families of
sequences selected for high activity at the end of the selection,
but with higher depth. Additionally, it can provide valuable
information on sequence composition at different points of the
selection, i.e., ’snapshots’ during evolution. At each snapshot,
deep sequencing can reveal the number of families of similar
sequences, the size of each family present, as well as information
about the common motifs of a family or the different motifs across
families. Merging the sequencing data across rounds of selection

thus can provide a window into the details of the evolutionary
process. For example, one can estimate how the number of families
and their sizes changed over the selection, at which point of the
selection the different families emerged (or were left behind) and
how the different families compete with and related to each other.
Importantly, one may potentially trace the evolutionary trajectory of
the most active families across different rounds of selection.

6. Recent applications combining
mRNA display and HTS

The analysis of high throughput sequencing (HTS) data from
in vitro evolution experiments has only recently been applied to
mRNA display selections. So far, studies combining both techniques
have primarily focused on understanding the effect of epistatic
interactions in a peptide fitness landscape, improving the char-
acterization of peptide ligands and mapping a protein–protein
interactome. These promising studies highlight the potential
benefits of using HTS to understand and predict evolutionary
pathways, and to accelerate the quantification of peptides’
binding affinities.

6.1. Epistasis

Many empirical examples of epistasis are known in local sequence
space for proteins, in which a combination of mutations has an
effect deviating from the sum of the effects of the individual
mutations, but systematic characterization of epistatic interactions
through larger sequence spaces was challenging, and indeed a
herculean task, before HTS. In 2014, Olson and colleagues
quantified the effects of all pairwise epistatic interactions in
the IgG-binding domain of protein G (GB1, 56 amino acids in
total) using a combination of mRNA display and HTS.39 The

Fig. 3 Representation of fitness landscapes with different levels of ruggedness. Simplified 2D visualization of (A) a smooth landscape (Mount Fuji type),
(B) an intermediate ruggedness landscape, and (C) a highly rugged landscape. Red dots correspond to random sparse sampling on sequence space. In
(D), the gray line corresponds to a sine wave of frequency f, red dots correspond to sparse sampling below the critical sampling frequency (fS o 2f), and
red dashed line corresponds to the aliased wave reconstructed from undersampling.

Perspective PCCP

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 1

7 
G

en
ve

r 
20

20
. D

ow
nl

oa
de

d 
on

 2
02

6-
02

-0
6 

13
:2

7:
04

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n 

3.
0 

U
np

or
te

d 
L

ic
en

ce
.

View Article Online

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/c9cp05912a


6500 | Phys. Chem. Chem. Phys., 2020, 22, 6492--6506 This journal is©the Owner Societies 2020

relative binding ability of all single and nearly all double amino
acid mutants of IgG-FC was estimated by measuring the frequency
of each variant before and after affinity enrichment. Negative
epistasis (in which fitness of the double mutant is decreased
compared to the linearly added effects of the single mutants)
was found to be dominant and to occur between combinations of
destabilizing mutations, i.e., combining two deleterious mutations
gave a double mutant that was even worse than expected. The
predominance of negative epistasis had been previously observed
in protein enzymes and RNA molecules, suggesting that negative
epistasis may be a common feature of biological parts.55–58 In
comparison, positive epistasis (in which fitness of the double
mutant is increased compared to the linearly added effects of
the single mutants) was found to be rare. These quantitative
comparisons, requiring measurement of hundreds (or more) of
mutants, are essentially enabled by HTS, as collecting the requisite
data would be extremely tedious by other means.

Another important finding was that many mutations that
were generally deleterious were found to be beneficial in at
least one alternative mutational background. This is relevant
because, although rare, positive epistasis can substantially
expand the functional portion of sequence space, and thus,
the accessible evolutionary pathways. Again, the depth of data
from HTS was required to discover these rare situations, which
may have an outsized impact. An illustrative example of the
importance of these rare pathways came in 2016, when the same
group used mRNA display and HTS to experimentally characterize
the fitness landscape of four amino acid sites in protein GB1,
corresponding to 204 = 160 000 variants,36 including several
mutations with interactions known to be positively epistatic.39

Reciprocal sign epistasis (i.e. mutations that are separately advanta-
geous became jointly unfavorable) blocked many direct evolutionary
paths through genotype space,59 leading to an appearance of
difficult optimization over the local landscape. However, these ‘dead
end paths’ could be circumvented by following longer indirect paths
through consecutive gains and losses of mutations. In other words,
they are overcome through reversible mutations that avoid the need
to lose fitness at any particular step. This mechanism allows protein
optimization by natural selection (i.e., uphill climbs) despite epis-
tasis. The indirect paths reduce the constraint on adaptive protein
evolution, supporting the idea that the previously ignored regions of
the functional sequence space may be crucial for the evolution
of proteins. This highlights the qualitative importance of HTS,
which allows much deeper exploration of sequence space and
discovery of rare but important features, for understanding
evolutionary trajectories.

6.2. Accelerated discovery and characterization of peptide ligands

A major application of in vitro selection techniques is the
generation of high affinity polypeptide ligands against individual
targets of interest. Usually, several rounds of selection are
performed until most clones are functional (enriched).60 Recently,
a new approach combining mRNA display with continuous-flow
magnetic separation analyzed by HTS has markedly accelerated the
process, to the point of achieving the selection of human IgG
binders with nanomolar affinities in only a single round.61 This

highlights the practical benefit of HTS in saving experimental time
and resources.

One consequence of using HTS to analyze in vitro selection is
that one may obtain quite a long list of candidate sequences.
Additional experiments are required to quantify relative binding
affinities for each candidate sequence. Even for a relatively
small number of sequences, this characterization step is often
labor-intensive and represents an experimental bottleneck in
analysis of selected sequences. Given results from HTS, the
problem is seriously compounded by the number of candidates.
To solve this problem, the Roberts group recently used a
combination of mRNA display and HTS to calculate the
on- and off-rates for many thousands of mRNA-displayed ligands
simultaneously, without synthesizing or purifying individual
sequences.38 To do so, they devised a method based on the fact
that the on- and off-rates of a sequence (kon and koff) determine its
fractional presence at different time points during the selection
step. That is, sequences with high on-rates are present in higher
fractions at early time points because they bind quickly to the
target; however, at later time points, as the fraction of ligands
with slower on-rates bound to the target increases, the fraction of
the ‘fast’ ligands bound to the target decreases. Following this
idea, they mixed a library of mRNA–peptide fusions with an
immobilized target and removed an aliquot at different time
points for washing, PCR, and deep sequencing. The resulting
HTS data yielded the identity of all the ligands bound to the
target at each time point and their frequencies, which could be
used to calculate the on-rates of each ligand. Off-rates could be
measured in an analogous fashion, and binding affinities
(Kd = koff/kon) were therefore obtained for thousands of ligands
in parallel. This example illustrates the creative use of HTS for
not only tracking sequences during evolution, but also for
massively parallelizing a binding assay.

6.3. Interactome

An interesting application of HTS in mRNA display capitalized
on the fact that its depth enables analytical coverage of the
proteome, allowing production of high-throughput protein–
protein interactome datasets.25 In 2012, Fujimori et al. described
the first complete interactome for proteins that interacted with
mouse interferon regulatory factor 7 (Irf7), by using mRNA display
technology combined with HTS.62 The accuracy of the analysis was
validated by comparing the results with real-time PCR assays for
randomly selected interacting regions. The high degree of overlap
between the positives found from the HTS analysis and those from
the real-time PCR assays confirmed the high reliability and coverage
of the method. An advantage of this method over others (e.g., yeast
two-hybrid system) is the ability of mRNA display to access a larger
sequence space of potential proteins.

7. Possible issues and suggested
practices

The high depth of HTS analysis requires additional attention to
detail and can reveal biases in the selection, the library design
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or the library synthesis that would otherwise be undetectable or
considered minor. In addition, choices during the sequencing
and data analysis can strongly influence the error rate and the
number of full-length sequences recovered at the end of the
bioinformatic pre-processing. Some aspects of the sequencing
and preliminary bioinformatic treatment that may be considered to
produce acceptable processed data and facilitate posterior analysis
are discussed here, based on our experience with Illumina data.

7.1. Library design

The presence of conserved regions in the library can be important
for experimental reasons, such as preserving a structural scaffold.
Conserved regions are also useful for alignment during bioinfor-
matic analyses. However, these regions can be problematic for
HTS.63 Low-diversity amplicon libraries have documented quality
score issues.64 For example, in the Illumina sequencing-by-
synthesis platform, the location of PCR colonies generated by
individual template molecules is determined by finding fluores-
cent spots on an image during the early cycles of synthesis. If there
is a high density of spots of the same color, as would occur when a
large fraction of templates have an identical constant region,
discrete spots cannot be reliably identified, leading to low quality.
Thus, some level of nucleotide diversity at each position is
important for the generation of high-quality data. Two possible
causes of low diversity are library design and the convergence of
the selection process. First, even highly randomized libraries
usually contain conserved regions on the 50 and 30 ends for PCR
primer complementarity, inducing low diversity at the beginning
of the sequencing run. Second, after a successful selection process,
later rounds are typically dominated by a few families, resulting in
low nucleotide diversity.

There are a few means to overcome these issues. One method
to combat the problem of overlapping fluorescent spots is to
reduce the density of spots by diluting the sample, thus sacrificing
sequence depth for higher quality. Other methods include increas-
ing nucleotide diversity.65,66 For example, one may add (‘spike in’)
a sample of high diversity such as the FX174 genome. This
genome is from a small, well-characterized bacteriophage that
has a relatively uniform base composition (and was one of the
first whole genomes to be sequenced). Sequencing reads derived
from this genome can be readily removed during bioinformatic
processing. Spiking in FX174 DNA increases the sample diversity
at the beginning of the read, improving intensity distribution
issues during initial reading of the template. Depending on
the specifics, it might be necessary to spike in between 5% and
50% FX174 DNA to achieve a sufficiently diverse sample.67 As
with the method of sample dilution, the main disadvantage of
spiking a high amount of FX174 is the loss of sequencing depth
for the desired sample. Ideally, the amount of FX174 used
should achieve a good balance between improvement in sequencing
quality and loss of reads.

An alternative method to increase nucleotide diversity with-
out sacrificing sequencing depth is the use of degenerate
insertions after the adapter constant region. To increase the
diversity of the pool, a series of random nucleotides can be
added to the adaptor region, after the primer binding site.68

If the added series of random nucleotides is of varying length
(e.g. 2, 4, and 6 nt), this addition can improve sequence diversity
by essentially frame-shifting the sequences with respect to one
another. This increases the diversity in not only the initial primer
but also beyond it, due to the frame shift, and is likely superior
to spike-in or dilution methods. However, while the spike-in and
dilution methods can be applied to samples that have already
been prepared (i.e., after an issue has been identified), the
addition of a small randomized region would require design of
additional PCRs and fresh sample preparation. Since these meth-
ods are not mutually exclusive, a combination of methods could be
considered for particularly problematic cases.

An interesting advantage of HTS is the identification of
minor anomalies in the constant regions that may have been
otherwise overlooked during selection. These unanticipated
insertions, deletions and substitutions might be either functional
(i.e., selected) or non-functional (e.g., primer synthesis errors or
sequencing errors). Knowledge of expected error rates and profiles
during both synthesis and sequencing can be helpful, and the
overall error rate from each run should be compared to standard
error rates obtained using that technology. In general, we find that
it is most useful to have a method for independent reads of the
same template (e.g., in Illumina sequencing, paired-end reads with
as much overlap as possible; or in PacBio sequencing, consensus
sequencing) in order to reduce the error rate. In any case,
anomalies point toward a need for further consideration.

7.2. Library synthesis

Library synthesis is a critical step in mRNA display selections.
In principle, an optimal library can be chemically synthesized
using a trimer-block system to control codon type and frequency,
and to prevent the introduction of premature stop codons. While
trimer-block synthesis is the ideal method of library generation,
slight impurities can undermine selections and downstream
analyses and therefore should be kept in mind. For example,
synthesis can be contaminated by monomer, dimer, or tetramer
blocks, which introduce frame shifts that can result in undesired
codons and truncated sequences. While these sequences might
be lost during selection, preliminary data from our mRNA dis-
play studies suggests they persist and may be amplified in at
least some conditions. Therefore, depending on the application,
it may be critical that libraries are purified (e.g., size-selection by
HPLC), that quality control data is obtained from the supplier,
and that researchers independently confirm library purity by HPLC,
capillary electrophoresis, high-resolution gel electrophoresis, or
preliminary sequencing.

7.3. Sequencing

In single-end reading, the template is read in one direction
(from one end to the other), while in paired-end reading, the
template is read from both directions, resulting in forward and
reverse reads of the same template sequence. Single-end reads
are more economical, but pair-end reading offers increased
quality with low error rates and also helps identify insertion
and deletion errors in sequencing, which cannot be distin-
guished from true insertions and deletions in the DNA during
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single-end reading. Double coverage by paired-end reading
allows creation of a consensus sequence having low error rate
(e.g., given 1% error per base in one direction, paired-end error
rates can be 0.01% if all sequences containing disagreements
are discarded),69,70 reducing the chance that errors introduced
from sequencing are carried over into downstream bioinfor-
matic analyses.

7.4. Bioinformatic pre-processing of data

Pre-processing of sequencing data is imperative for successful
downstream data transformations and analyses (see ref. 71–73
for some examples and discussion). Pre-processing steps typically
entail an initial quality assessment, removal of low-quality reads,
quality trimming, adapter trimming, read joining/merging for
paired-end reads, and primer trimming/sequence extraction
(Fig. 4).

Quality assessment and filtering. The initial quality assess-
ment gives a look into read length and quality distributions to
check conformity to expectations. This step can be implemented

using tools like FastQC74 or FASTX Toolkit,75 among others.
Ideally, reads will have near-uniform length, matching the
expected length based on amplicon size and sequencing method,
and high average quality scores. In a standard, high-quality
sequencing run, 495% of reads will have an average read quality
score 4Q30.76 Unusually low quality scores can be a criterion for
removing low quality reads, if desired. Under ideal conditions,
Q30 is equivalent to the probability of an incorrect base call being
1 in 1000 times, which corresponds to a base call accuracy (i.e.,
the probability of a correct base call) of 99.9%. While Q30 is
considered a benchmark for quality in HTS, quality scores are
only based on instrument metrics, thus, they are usually higher
than the true quality. Spiking in a standard sequence such as
FX174 DNA and evaluating its error profile may give a more
accurate estimation of sequencing error.77 For a comprehensive
review on error correction and available tools, see ref. 78.

During quality assessment, it is important to consider the
library’s properties and sequencing method, and how they will
influence quality scores. For example, low-diversity libraries and
read lengths 4150 bp will typically have lower average quality
scores than high-diversity libraries sequenced with short read
lengths. In addition, it is expected in Illumina sequencing that
quality decays later into the read. Therefore, reads can be quality-
trimmed to remove low-quality bases with tools such as
Trimmomatic79 or BBDuk,80 using parameters informed by the
quality assessment (e.g. distribution of low-quality bases and their
scores). This step ensures that only high quality bases are retained,
which enables optimal read joining (for paired-end sequences) and
reduces error-based noise in downstream analyses.

Adapter trimming. In cases where the amplicon being sequenced
is shorter than the read length, adapter sequences will be found on
the 30 end of the read, so an adapter trimming step might need to be
implemented, using tools similar to Cutadapt.81

Merging paired-end reads. Next, in paired-end sequencing,
the full amplicon is reconstructed by joining (or merging)
forward and reverse reads using tools such as PANDAseq,82

PEAR,83 or fastq-join.84 Depending on the desired application,
the joining process should be optimized to allow the maximum
overlap between forward and reverse reads, while minimizing
mismatch allowance. Maximum overlap will ensure that the
regenerated amplicon is of the highest possible quality (in
general, for each base pair in the overlap, the higher quality
base is retained) and minimize the chance of introducing a
frameshift. Mismatch allowances should be determined based
on overlap length and quality of bases in the overlapping
regions. The probability of reading a frame shift or ‘mutation’
from sequencing error will increase with the number of mis-
matches allowed (i.e. more mismatches allow more frameshifts
and mutations). Conversely, the number of reads that are joinable
will decrease as the number of mismatches allowed decreases
(i.e. more stringent tolerances allow fewer joined reads).
When optimizing the mismatch allowance, the need for greater
sequencing throughput must be weighed against the need for
lower error rates in the context of the particular application.

Primer trimming. The final pre-processing step is sequence
extraction, i.e., the isolation of the sequences of interest. This is

Fig. 4 General flow chart for bioinformatic pre-processing of high
throughput sequencing data for mRNA display. Pre-processing steps include
an initial quality assessment of the fastq sequences (i.e., sequencing data with
associated quality metrics), quality filtering to discard sequences of low
quality, adapter trimming in the case of amplicons shorter than the read
length, joining of pair-end reads, and primer trimming. Some examples of
tools that can be used at each step are given. Note that the use of each step
depends on the data and desired downstream analysis.
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achieved by removing conserved sequences (e.g., from library
design) at the 50 and 30 regions, like priming sites, that could
interfere with downstream analyses like clustering. Tools like
CutAdapt81 and PANDASeq82 can perform this function with
user-supplied sequences. Selecting extraction sites should be
done with care, particularly on the 50 end where the extraction
site may set the reading frame during in silico translation. The
30 end is also important, as it will determine where translation
will be terminated if a stop codon was not included in the
sequenced amplicon. It may be advantageous to remove the
entire PCR primer region, since this region is not expected to be
subject to mutation. However, if extracting from regions that
were designed to be constant in the initial library but were
subject to possible mutation, it is critical to optimize the
extraction sequence and mismatch allowances; failure to do
so can result in problems such as a large fraction of frame
shifts or untranslatable sequences.

Library metrics should be collected at each step of the
pre-processing pipeline to assess progress toward the goal of
retaining the most reads at the highest quality as well as to
quickly identify any errors of coding. Common metrics include
average read quality scores, read length distributions, total read
counts, unique read counts, and percentage of reads retained.
By monitoring these metrics at each step, the pre-processing
pipeline can be fine-tuned to optimize the final output. It
should also be noted that pre-processing steps are not limited
to those listed here; other methods like length filtering, head
cropping, and contaminant filtering can be implemented as
needed to further increase the quality of the final library.

Ultimately, the final indicator of successful pre-processing is
the set of amino acid sequences produced by in silico translation
of the pre-processed reads. These should have near-uniform
length distributions at the expected length (or lengths), be
consistent with the expected amino acid composition, and retain
conserved or semi-conserved motifs and the overall structural
framework, if any.

8. Summary and outlook

HTS has become a powerful tool for analyzing molecular evolution,
and in vitro selection of mRNA-displayed peptides is a rising
example of this trend. As the number of sequencing reads
obtained by HTS technologies increases, pool compositions
can be viewed with increasingly high resolution. Greater sequencing
depth allows reduction of noise in estimation of some results (e.g.,
enrichment metrics), and, more importantly, it can capture qualita-
tively new information (e.g., delineating evolutionary pathways,
including rare but important pathways; identifying low abundance
but highly active sequences missed by low depth sequencing;40

enabling quantitative analysis of fitness landscapes). In addition,
if a traditional assay (e.g., measuring kinetic parameters) can be
designed to give an output that can be measured by HTS,38,85,86

the throughput of that assay can be increased by several orders of
magnitude over classic biochemical methods. Because of this
potential, conversion of traditional assays to HTS format is

indeed a hotbed of research that shows no sign of slowing, as
indicated by the rapid proliferation of methods relying on HTS.

As the affordability of HTS increases, future progress is
expected in the field of molecular evolution. Experiments
performed in the past, in which only a few variants were
sequenced and tested for activity might now be the starting point
to future studies. As long as samples for such experiments are
still available, a kind of molecular archeology can be performed
on the freezer samples. A notable subject of such study is the
Lenski lab’s famous long-term evolutionary experiment (LTEE)
on E. coli, which began in 1988 and has progressed through more
than 60 000 generations.87–89 Although the beginning of the LTEE
predated HTS, freezer samples examined from early generations
can reveal the emergence of new mutations, including new
metabolic activities.

As HTS technology improves, it is interesting to consider
whether greater sequencing depth is always desirable. While
more information is undoubtedly obtained, greater computational
time is also required to process the data, and in some samples,
there is likely to be little overall benefit to greater sequencing
depth. For example, the number of unique sequences (i.e., the pool
complexity) in very diverse samples, such as the initial pool,
probably exceeds the capacity of sequencing (i.e., 1014 different
sequences); the benefit of 109 reads compared to 108 reads or even
fewer is unclear. At the other extreme, for a highly converged pool
of low complexity, such as would be derived from samples late in
the selection, additional reads are also less useful; if the pool
contains 100 unique sequences, the benefit of having 109 vs. 108

sequences is also marginal. Thus greater sequencing depth will
become most useful for pools of intermediate diversity. Having said
this, there are certain scenarios in which very deep sequencing of
low and high complexity pools may be useful, such as if one
intends to characterize the bias among k-mers of the synthesized
pool90,91 or if the frequency distribution of sequences in a highly
converged pool is very uneven (i.e., some sequences of interest are
present at very low abundance). Another special scenario that may
require increasingly deep sequencing is the systematic exploration
of fitness landscapes, in which all mutations at certain sites are
investigated. If it is desirable to compare frequencies of each
mutant before and after selection, then the number of reads that
can be obtained from the initial pool becomes a critical parameter
(i.e., a 20-fold increase in sequencing depth will allow one
additional site to be explored by saturation mutagenesis).

At the same time, while HTS analysis offers important
quantitative and qualitative advantages for the analysis of in vitro
evolution experiments, care is required during each step of the
analysis to ensure that the analysis itself does not bias the results
(i.e., high quality data are preserved and artifacts are not
introduced). Seemingly minor choices during data processing,
such as number of errors tolerated in the adapter or primer
sequence, or length of the sequence extracted, can have unexpectedly
large effects on the quality and quantity of the resulting sequences;
thus attention should be paid to any processing step that gives an
unexpectedly low yield of passing sequences. Sequencing error is
a frequent issue when studying evolutionary trajectories, since it
is essential to distinguish between sequencing errors and true
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mutations. In our experience, experimental measures taken to
reduce sequencing error rates (e.g., paired-end sequencing with
stringent joining criteria, consensus sequencing, etc.) are usually
worth their effort and expense in order to reduce uncertainty in
data interpretation or the need for error correction strategies. It is
also good practice to validate results obtained from HTS by
classical biochemical assays whenever possible, to ensure the
reliability of the results and expose any biases that may have been
introduced by the HTS analysis itself. On a practical note, it can
be useful to take advantage of rapid ’micro’ or ’nano’ low-output
runs to generate a small preliminary data set to test the analysis
pipeline as well as the quality of the input sample. For example,
for the low complexity samples generated by in vitro evolution,
such preliminary runs can uncover important but correctable
sample issues.

As HTS instruments themselves decrease in cost and new
instruments replace old ones, another interesting avenue for
future research will be custom modification of the instruments
themselves to achieve new goals. HTS technology combines
miniaturization, massive parallelization, and highly sensitive
detection – these features are assets to a number of potential
applications. For example, an mRNA bound to the surface of a
chip could be translated, assayed, and sequenced all at once.92

Some sequencing technologies assay single molecules, and
could probe not only nucleobases and epigenetic modifications
but also other chemical varieties that could be of interest. In the
next stage of technology exploration, it will become increasingly
common not only to use HTS as a ‘black box’ that produces
sequencing data, but to adopt and alter the hardware directly in
the laboratory for new, ‘off-label’ applications.
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