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A dark-coloured effluent called “spent wash” is generated as an unwanted product in sugarcane-based
alcohol distilleries. Most distilleries discharge this effluent into soil or water without any treatment,
causing water and soil pollution. Herein, we report chromium-doped TiO, (Cr-TiO,) as a photocatalyst
for the degradation of spent wash colour under natural sunlight. Cr-doped TiO, nanoparticles were
prepared using an aqueous titanium peroxide-based sol-gel method with titanium isopropoxide as the
Ti precursor and chromium nitrate as the Cr precursor. To observe the effect of dopant on sol-gel
behaviour and physicochemical properties, the Cr concentration was varied in the range 0.5-5 wt%. The
crystallization temperature and time were optimized to obtain the required phase of Cr-TiO,. The
physicochemical characteristics of the Cr-doped TiO, catalyst were determined using X-ray diffraction,
FE-SEM, FETEM, TG, XPS, the Brunauer—Emmett—Teller (BET) method, FT-IR, Raman, PL, ICP-MS, and
UV visible spectroscopy. A shift in the absorption edge of TiO, by doping with chromium suggested an
increase in visible light absorption due to a decrease in the effective band gap. The application potential
of the Cr-TiO, catalyst was studied in the degradation of sugar-based alcohol distillery waste under
natural sunlight, and the results were compared with those of undoped TiO, and Degussa P25 TiO,.
Degradation of the spent wash solution was monitored using UV-visible, gel permeation
chromatography (GPC), and QTOF LC-MS. GPC and LC-MS showed significant changes in the molecular
weight of spent wash colour-forming compounds due to the degradation reaction. QTOF LC-MS
analysis suggested that acids, alcohols, glucosides, ketones, lipids, peptides, and metabolites were
oxidized to low-molecular-weight counterparts. From the results, 5% Cr-TiO, showed the highest
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1. Introduction production of fell'mented and distilled beverages worldwide is

based on materials that can be grown locally and are best
An adequate supply of fresh and clean water is a basic need of ~suited to prevailing climatic conditions. During the distilla-
all humans. Without clean water, neither humans nor the tion process, an average of 12-15 L of effluent is generated per
environment can survive. The demand for water has increased litre of ethanol produced. Molasses is fermented by yeast after
over the years, which has led to water scarcity in many regions.  suitable dilution. The unwanted bottom part of the distillation
Furthermore, agricultural land loses its fertility due to the is known as stillage, spent wash, or alcohol distillery waste. In
disposal of spent wash directly into rivers. Distilleries use addition to being coloured, this discharged distillery effluent
different raw materials, such as sugarcane juice, sugarcane contains high amounts of total dissolved solids, contributed to
molasses, sugar beet molasses, cereals, and other agricultural by an acidic pH and other pollutants. These solids are complex
products to produce alcohol and other beverages. The polymers containing heterocyclic nitrogenous aldehyde-amine

compounds, various heavy metals, phenolic compounds, and

plant-derived resins and fatty acids. The polluting strength of
“Centre for Materials for Electronic Technology, Government of India, Panchavati, Off  the effluent is very high owing to the presence of biodegrad-
Pashfzn Road, Pune 411008, India. E-mail: sonawaner@yahoo.com; sonawane@cmet.  ghje organic materials, such as sugars, lignin, hemicellulose,
gov.n dextrin, resin, and organic acid. In addition to its overall
composition, distillery waste possesses a strong foul smell at
t Electronic ~ supplementary information (ESI) available. See DOI: high temperatures. The dark brown colour of spent wash is
10.1039/c8ra10026h due to the presence of melanoidin, a natural condensation
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product of sugars and amino acids produced by the Maillard
reaction, a non-enzymatic browning reaction.® Melanoidins
are widely distributed in food> and drinks, and are discharged
in large amounts by various agricultural and allied industries.?
These melanoidins are highly resistant to microbial attack and
conventional biological processes, such as activated sludge
treatment, are not sufficient to treat colorants containing
wastewater released from distilleries and the fermentation
industries. Treatment methods, such as ozonation, floccula-
tion, chemical treatment, electrocoagulation, charcoal-based
filtration, and activated carbon adsorption have been exten-
sively studied for treating spent wash solution.*** However,
less attention has been paid to environmentally benign pho-
tocatalytic degradation routes, which can potentially provide
a better solution. Therefore we have investigated the photo-
catalytic route using a cheap, stable, and readily available
photocatalyst, TiO,, and modified TiO,-based photocatalysts
under UV and visible light.

Titanium dioxide (TiO,) is among the most widely used
photocatalysts in environmental treatment technologies.
Several applications of TiO, have been reported previously in
the degradation of toxic organic compounds, removal of
pollutants from contaminated water, air, and destruction of
cells in harmful bacteria.*®*® The potential of TiO, in these
applications is mainly limited by its wide band gap (3.2 eV),
meaning that only light below 387 nm in the solar spectrum
can be utilized. Consequently, TiO, photocatalysts that are
active under visible light are promising for enhancing the
photoactivity and widening the application potential of TiO,.
Much effort has been made to increase the efficiency of TiO,
photocatalysts under UV and visible light. Surface modifica-
tion*?* and the introduction of dopants into the TiO,
lattice**” are recognized methods for improving TiO,
performance. Anionic or cationic dopants can be introduced
into the crystal lattice to obtain visible-light activity. In the
last decade, several researchers have studied visible-light
anion-doped TiO, (N, S, F, P) materials synthesized using
physical and chemical methods, and assessed their photo-
catalytic performance under UV and visible light.

In addition to anion doping, metal-ion doping, particu-
larly with transition metals such as Fe, Ni, Cu, Mn, Co, V, W,
Nb, Mo, and Cr, has been reported by various groups.?”~** The
doping of transition metal ions into TiO, extends the
absorption edge from the UV region to the visible region,
resulting in an improved photoresponse due to additional
energy levels introduced within the TiO, band gap.?”*7¢
Although transition-metal-doped TiO, shows an improved
photoresponse to visible light and a consequent increase in
pollutant degradation activity, Cr** ion doping has proven to
be most effective method for improving the photocatalytic
activity of TiO,. Cr** ion doping helps to extend the absorp-
tion edge from UV to the visible-light region, making the
photocatalyst active under visible light, which is the most
abundant natural solar radiation that reaches the earth's
surface.”*”~** In most studies, the intension of doping was to
insert chromium into the TiO, lattice. Different synthesis
methods, such as sol-gel,** hydrothermal,** flame pyrolysis,*’
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solid-state,*® physical vapour deposition (PVD),*” and ion
implantation,*® have been reported for the preparation of Cr-
doped TiO, thin films and powders. Each method has its own
merits and disadvantages. Previous studies have shown that
CVD and sputtering are more effective for incorporating Cr
into the TiO, matrix and, as a result, shifting the absorption
threshold towards the visible region.*” A hydrothermal
method reported for the preparation of Cr-doped TiO, also
improved the photocatalytic performance.?” Mesoporous Cr-
doped TiO, synthesized using an evaporation-induced self-
assembly technique also showed improved absorption in
the visible region.*” In some previous studies, Cr-TiO,
synthesized by the sol-gel technique showed only a slight red
shift in the absorption edge toward the visible region.®
However our group has successfully demonstrated that an
aqueous titanium peroxide-based modified sol-gel method is
suitable for synthesizing N- and transition-metal-doped TiO,
thin film and powder photocatalysts.**® A series of doped
TiO, photocatalysts have been synthesized using this tech-
nique and undoped and doped TiO, have been applied to
organic pollutant degradation and H,O splitting into H,
under UV and visible light, especially under naturally avail-
able energy sources such as sunlight. In most reports, Cr-
doped TiO, has been used for organic pollutant degrada-
tion, but the application of Cr-TiO, to the degradation of
spent wash, an industrial waste from sugar-based alcohol
distilleries, has yet to be reported.

Therefore, in this study, we report the synthesis of Cr-doped
mesoporous TiO, using the aqueous titanium-peroxide-based
sol-gel method and its application to the degradation of spent
wash. Parameters including dopant concentration, aging time,
and annealing temperature were optimised. The samples were
characterized by XRD, the BET method, porosity, FE-SEM, TEM,
FT-IR, Raman, TG, XPS, PL, ICP-MS, and UV-Vis absorption
spectroscopy. The photocatalytic activity of sol-gel-derived
chromium-doped mesoporous TiO, has been tested in
a unique application of industrial importance, namely, spent
wash degradation under natural sunlight. The degradation of
spent wash and its degradation products were monitored using
UV-Vis, GPC, and LC-MS techniques. The change in colour was
monitored using UV-Vis spectrophotometry, the molecular
weight of degradation products was determined using GPC, and
the untargeted group of compounds was monitored using QTOF
LC-MS.

2. Experimental

2.1. Materials and reagents

Chemicals and raw materials were used as received without
further treatment. Titanium(iv) tetraisopropoxide
(Ti(OCH(CH3),)4) was obtained from Acros Organics. Hydrogen
peroxide (H,0,, 30% w/w) and chromium nitrate nonahydrate
were obtained from Merck India. P25 TiO, (Degussa) was
purchased from a local supplier (M.M. Supplier, Pune, India).
Milli-Q Water was obtained from a Q Pad filter with a conduc-
tivity of 0.05 pus cm ™" at 25 °C.
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2.2. Catalyst preparation

A series of Cr-doped TiO, catalysts with Cr contents of 0.5, 1, 2,
3,4, and 5 wt% were prepared by an aqueous sol-gel technique
using chromium nitrate nonahydrate and titanium isoprop-
oxide as the chromium(u) and titanium precursors, respec-
tively. In a typical synthesis, titanium isopropoxide (4.02 g) was
hydrolysed using Milli-Q water. Aqueous H,0, (30%) was slowly
added to get a transparent orange sol of titanium peroxide.
Chromium nitrate nonahydrate (for example, 76.92 mg for 1.0%
Cr-TiO,) was suspended in Milli-Q water (5 mL) and 30%
aqueous H,0, (5 mL) was added to obtain a clear green perox-
ochromic acid solution. This solution was added to the titanium
peroxide solution with stirring for 30 min. The mixture of both
sols slowly converted into a transparent greenish-yellow viscous
gel. The chromium-titania peroxide gel was dried at ambient
temperature to obtain a dry gel. The dry gel was then heated in
a hot air oven at 105 °C, followed by annealing at 400 °C under
static air flow in a muffle furnace. The heating/cooling rate was
5°C min~', with a 4 h dwell time at the selected temperature.
Similarly, undoped TiO, was prepared using the aqueous sol-
gel method.

2.3. Characterization techniques

X-ray diffraction (XRD) was performed on a Bruker Model-D8-
Advance AXS diffractometer (Cu Ko radiation, A = 1.5406 A)
with an operating voltage of 40 kV and a current of 44 mA. Data
were collected in the 260 range of 20-80° with a step size of 0.028
and counting time of 15 s per step. Diffuse reflectance UV-Vis
DRS spectra were recorded in the range 200-800 nm with
a 0.5 nm spectral bandwidth in air at ambient temperature
using a Shimadzu instrument (UV 3600) spectrophotometer.
The powder samples were mixed with barium sulphate powder
(NIST traceable) and pressed into the sample holder for UV-Vis
measurements. Raman spectra were recorded using a Raman
microscope (Renishaw 2000) at a wavelength of 532 nm and
exposure time of 16 scan per s, with four accumulations. FT-IR
spectra were recorded with a Perkin-Elmer (Spectrum Two, U-
ATR) instrument using 32 scans and a 4 cm ™' spectral resolu-
tion in the range of 4000-450 cm™'. The thermal stability and
behaviour of the samples were analysed using a TG/DTA
instrument (Mettler-Toledo) with a heating rate of 5 °C min™"
under an air atmosphere. The total organic carbon (TOC) in
spent wash samples was measured in grab mode using a GE
TOC-500 RL analyzer. Elemental analysis was conducted by ICP-
MS (Agilent Technologies 7700 spectrometer with ASX 500
series auto sampler) using Mass Hunter workstation software
(version A.01.02). Calcined samples were digested in a digester
(SP-Discover, CEM) by supra-grade concentrated hydrochloric
acid at 180 °C for 10 min. After digestion, the sample is diluted
to respective volume with Milli-Q water. The surface area of
samples was obtained with the Brunauer-Emmett-Teller (BET)
method using a Micromeritics Gemini VII (2390t) analyser. The
pore size distribution was calculated from the desorption
isotherm using the Barrett-Joyner-Halenda (BJH) method. Prior
to measurements, the powder samples were degassed using
UHP grade nitrogen gas at 90 °C for 1 h and 150 °C for 4 h.
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Sample porosity was measured using the mercury intrusion
porosimetry (MIP) technique of a Micromeritics Autopore IV
(9510 model). The surface morphology and microstructure were
analysed using a FESEM and FETEM instruments. For these
measurements, the powder samples were first sonicated in
ethanol using an ultrasonic bath and then dropcast onto carbon
tape. HRTEM measurements were performed with a JEOL
instrument operated at an accelerating voltage of 300 kv.
Samples for HRTEM analysis were prepared by vacuum drying
the TiO, nanoparticles solution dropcast onto carbon-coated
copper grids. Image processing and interplanar distance (d)
evaluation were performed using micrograph Gatan software.
Spent wash samples after degradation were analysed using UV-
Vis, GPC, and LC-MS techniques. Details of the LC-MS method
used for analysis are provided below.

2.3.1. HPLC-CID-QTOF-MS analysis. An Agilent 6540 UHD
QTOF LC-MS instrument was used to perform untargeted
sample analysis. Precursor ions were selected in Q1 with an
isolation width of £2 D and fragmented in the collision cell,
applying a slope of collision energies in the range 5-45 eV.
Nitrogen was used as the collision gas. Product ions were
detected with a collision RF of 150/400 Vpp, transfer time of 70
us, pre-pulse storage of 5 us, pulse frequency of 10 kHz, and
spectra rate of 1.5 Hz for collision-induced dissociation (CID) of
in-source fragment ions, with the in-source CID energy
increased from 0 to 100 V. Before analysis, the instrument was
calibrated and tuned according to the manufacturer recom-
mendations. Accurate mass spectra were acquired in the m/z
range of 50-1000 at an acquisition rate of 2 spectra per s.
Internal calibration was performed continuously during anal-
ysis using signals at m/z 121.0509 (protonated purine) and
922.0098 (protonated hexakis(1H,1H,3H-tetrafluoropropoxy)
phosphazine) in positive mode. Mass Hunter Workstation
software (Qualitative Analysis, Agilent Technologies, CA, USA)
was used to process both raw HPLC-QTOFMS (Agilent 6540
UHD QTOF LC-MS) full single MS and MS/MS data, and for data
mining based on molecular formulae estimations and fragment
patterns. Using the algorithm employed for full single MS data,
ions with identical elution profiles and related m/z values
(representing different adducts or isotopes of the same
compound) were extracted by molecular features extraction
(MFEs). Based on their quality score and height, metabolites
were selected for MS/MS analysis. Metabolites were also char-
acterized by their UV-Vis spectra (220-600 nm), retention times
relative to external standards, mass spectra, and by comparison
with our in-house database (Agilent METLIN Personal
Compound Database) to identify metabolites with accurate
mass information. The mass spectrometer was operated in both
ionization modes over a mass range of 100-3200 Da at 2 GHz in
extended dynamic mode with a scan duration of 2 spectra per s
in centroid and profile modes. The mass spectrometer was
operated in positive mode under the following conditions:
capillary voltage, 3.5 kV (positive ion mode); nebulizer pressure,
30 psi; drying gas, 12 L min~'; gas temperature, 325 °C;
skimmer voltage, 65 V; octapole RF, 750 V; and fragmented
voltage, 150 V. Data were collected using Mass Hunter Work-
station software (Agilent, version B.05.00). To maintain mass
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accuracy during the run time, a reference mass solution with
purine and hexakis(1H,1H,3H-tetrafluoropropoxy)phosphazine
was used, with reference ions m/z 121.0508 and m/z 922.0097 in
positive ionization mode and m/z 112.3985 and m/z 1034.9881
in negative ionization mode, respectively.

3. Photocatalytic study

3.1. Photocatalytic decomposition of spent wash (SW)

The photocatalytic activity of the prepared photocatalysts was
tested in the degradation of spent wash using a 100 mL quartz
reactor with a water flow arrangement to maintain constant
temperature. Spent wash solution (10 000 ppm in water) was
used as a model pollutant. A suspension was prepared by mix-
ing Cr-TiO, photocatalyst (0.025 g) in spent wash solution (100
mL, 10 000 ppm). Before exposure to light, the suspension was
kept in the dark for 1 h to achieve an adsorption-desorption
equilibrium. For photocatalytic degradation of the spent wash,
the Cr-TiO, powder samples were used as photocatalysts. The
suspension was irradiated at ambient conditions under natural
solar light on sunny days (September-December) in Pune,
Maharashtra, India, for specified time periods. At regular
intervals, samples were collected, centrifuged, and allowed to
settle to separate the photocatalyst particles. The supernatant
was analysed for colour using UV-Vis spectrophotometry, MW
using GPC, and organic compounds using QTOF LC-MS.

The UHPLC-QTOF-MS instrument used in this study was an
Agilent Series 1290 infinity rapid resolution LC system inter-
faced with electrospray ionization (ESI) to an Agilent 6540 UHD
Accurate Mass QTOF LC-MS. A ZORBAX RRHD Eclipse Plus
reversed phase C-18 column (100 mm x 2.1 mm X 1.8 um
particle size) was used at a temperature of 40 °C. The sample
volume was 3 pL in both ionization modes and 5 uL for MS-MS
analysis. The mobile phases used were 0.1% formic acid in
water (eluent A) and 0.1% formic acid in methanol (eluent B).
The following gradient elution was used: 3-20% B, 0-4 min; 20-
43% B, 4-7 min; 43-50% B, 7-10 min; 50-65%, 10-15 min; 65—
85% B, 14-18 min; 85-97% B, 18-21 min; 3% B, 21-27 min. The
equilibration step was followed by a stop time 1 min at a flow

rate of 0.4 mL min~ "

4. Results

4.1. Thermal and crystallization behaviour

The thermogravimetric (TG) analysis curve of air-dried 5% Cr-
TiO, gel is shown in Fig. S1 (ESI).T The sample subjected to TG
showed a total weight loss of about 20-25% in two stages in the
temperature range of 30-300 °C. The initial steep weight loss at
around 90-100 °C might be due to the loss of absorbed water in
the Cr-TiO, gel. The weight loss in the temperature range of
100-300 °C might be due to decomposition of the titanium
peroxide complex into titanium dioxide and titanium hydrous
oxide. In this temperature range, most of the titanium peroxo
complex is converted to titanium oxide and a much lower
amount of hydrous oxide is left unconverted. Further weight
loss between 300 to 900 °C, which was not steep but steady, was
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observed and might be attributed to the conversion of some
remaining hydrous oxide into crystalline TiO,.

4.2. Structural analysis using X-ray diffraction (XRD)

The gel was allowed to dry in an open atmosphere at ambient
temperature and used for XRD analysis. The dried gel was
further heated at 105 °C in an oven overnight and finally
calcined at various temperatures in the range of 200-600 °C.
The XRD pattern of Cr-doped TiO, is shown in Fig. 1.
Generally, as the sol-gel-derived TiO, was amorphous,
calcination was required to induce crystallization. As shown in
Fig. 1a, the sample calcined at 200 °C showed very weak peaks
symptomatic of the beginning of crystallization at this
temperature. All diffraction peaks were indexed to anatase-
phase TiO, (JCPDS card no. 21-1272), suggesting the rear-
rangement of atoms in the amorphous gel to the anatase phase.
As the annealing temperature was increased to 300 °C (curve b),
further crystal phase growth occurred, as demonstrated by the
increase in peak intensity observed at this temperature and
peaks appearing more distinct. The peaks positioned at 26
values of 25.36, 37.84, 48.11, 54.38, 55.07, and 62.88 are indexed
as (101), (103), (200), (105), and (213) reflections of crystalline
anatase phase. At 400 °C, the peak intensities corresponding to
the anatase phase were increased to a level that indicated
formation of fully grown anatase phase. This was confirmed by
the sample annealed at 500 °C (curve d) showing some addi-
tional peaks in addition to the anatase phase, which were
indexed to rutile-phase TiO,. For undoped TiO, in the titanium
peroxy complex-based gel system, the critical temperature at
which the anatase-to-rutile phase transformation began was
around 600 °C.*> However, in Cr-doped TiO,, rutile phase crys-
tallization started at a much lower temperature of 500 °C. This
lower crystallization temperature might be attributed to Cr
doping in TiO,, which was consistent with previous reports.>® A
further increase in annealing temperature to 600 °C showed
growth of rutile TiO, as all peaks in curve (e) were indexed to the
rutile phase. The diffraction peaks at 26 values of 27.53, 36.14,

* = Anatase
# = Rutile

=)
=
a3
#

= (101)

Intensity (a.u.)

rTrfrrfrrryfryfryrrfrr{rr v+
20 25 30 35 40 45 50 55 60 65 70 75 80
2 Theta (Degree)

Fig.1 XRD pattern of 5% Cr-TiO, calcined at (a) 200, (b) 300, (c) 400,
(d) 500, and (e) 600 °C.
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39.24, 41.32, and 54.38 were indexed to the (110), (101), (200),
(111), and (211) reflections of the crystalline rutile phase. No
crystalline phase of chromium clusters, chromium oxides, or
Cr-Ti oxide phases were observed, even at the highest Cr
concentration of 5 wt%. This showed that, as a dopant in TiO,,
Cr exhibited no tendency to segregate and/or precipitate in
different phases during the synthetic process.””***”** The Cr
ions can occupy interstitial positions or systematically substi-
tute Ti ions in Cr-TiO, without modifying the host TiO, matrix.
The XRD peak positions of 5% Cr-doped samples annealed at
600 °C were in good agreement with the standard JCPDS data
for TiO, rutile phase.’” ! As the radius of Cr*" ions (0.76 A) is
very close to that of Ti** (0.75 A), the substitution of Ti** by Cr**
would not much alter the rutile lattice. This observation indi-
cated that the probability of Cr occupying interstitial positions
in the TiO, matrix was low in our samples. The effect of Cr
content on the crystallization behaviour of the doped samples
was studied by varying the Cr concentration of in TiO, while
keeping the calcination temperature constant. The calcination
temperature was kept constant at 400 °C because the samples
annealed at this temperature showed the highest activity for
spent wash degradation among Cr-TiO, samples annealed at
other temperatures. The XRD patterns of pure TiO, and Cr-TiO,
samples containing different chromium concentrations are
shown in Fig. S2 (ESI).f The diffraction patterns do not show
much change in the TiO, crystal phase, as most peaks were
indexed to the pure anatase phase structure. However, as dis-
cussed earlier, the crystallization temperature of the rutile
phase was lowered by doping Cr into TiO,.

4.3. Surface morphology using FESEM and HRTEM

The surface morphology/microstructure of undoped and doped
samples analysed by FE-SEM showed that the powders contain
TiO, granules with densely packed particle agglomerates. The
granules on the surface are spheroid-shaped particles (Fig. 2a
and b). The interparticle distance was lower, suggesting that the
sample has less porosity, which could be the reason for the
lower surface area of undoped TiO,. In FESEM images of TiO,,
although the particles had a granular texture, the particle
morphology was not uniform in size and shape. However, Cr-
TiO, (Fig. 2c and d) showed granules with small empty spaces
between particles, resulting in the sample texture appearing
porous. The particle porosity was high in Cr-TiO, samples,
which might explain the higher surface area of these samples
compared with undoped TiO,. The Cr and nitrate groups from
the Cr precursor were present in the gel, which might be the
reason for the porous nature of Cr-TiO, samples. This ulti-
mately resulted in an increase in the surface area of Cr-TiO,.
The FESEM analysis results were in good agreement with the
surface area analysis results. The sample porosity was
confirmed using the mercury intrusion porosimetry (MIP)
method.

The surface morphology was further confirmed using
FETEM, with the results for Cr-doped TiO, shown in Fig. 3. All
results were collected from the 5% Cr-TiO, sample as a repre-
sentative example, and scanning was performed in different
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Fig. 2 FESEM images: (a and b) high and low magnification images of
undoped TiO,, and (c and d) high and low magnification images of 5%
Cr-TiO,.

regions of the sample. The TEM images clearly indicated that
the particles were small and identical shapes. No individual
chromium oxide species were observed during analysis, which
further validated the incorporation of chromium into TiO,. As
shown in Fig. 3b, the aggregated nanoparticles with average
sizes of ~10-15 nm were observed with good uniformity in size
and shape. The lattice image in Fig. 3c suggested that the
measured d-spacing (0.34 nm) corresponded to the (101) plane
of anatase TiO,. This domain exhibited smaller particles with
pores evenly dispersed between particles. The SAED pattern in
Fig. 3d clearly shows a dot-type diffraction pattern indexed to
the (101) plane of anatase TiO,, suggesting that the nano-
particles were single crystals.

Fig. 3 TEM images: (a and b) low and high magnification images, (c)
lattice image, and (d) SAED pattern of 5% Cr-TiO, sample.

This journal is © The Royal Society of Chemistry 2019
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4.4. Nitrogen isotherms of catalysts

The N, sorption overlay isotherms of undoped TiO, and Cr-
TiO, catalysts annealed at 400 °C are shown in Fig. 4. The curves
exhibited type IV isotherms with H,-type hysteresis loops
according to the IUPAC classification.”® The isotherms were
logged at 77 K with a Micromeritics Gemini VII 2390t instru-
ment. The adsorption-desorption curves for undoped and
doped catalysts at 400 °C showed hysteresis curves at relative
pressures of 0.55 to 0.85 with anatase phase formation.

Nitrogen adsorption-desorption isotherms of undoped TiO,,
5% Cr-TiO,, and 5% Cr-TiO, recovered after the third cycle of
the photodegradation reaction are shown in Fig. 4. A slight
decrease in surface area from 148 to 129 m”> g~ was observed
from the first to third catalyst cycles, which might be due to
particle agglomeration after recovery and drying. The adsorp-
tion and desorption curves of 5% Cr-TiO, calcined at a higher
temperature are shown in Fig. S3 (ESI).f The adsorption and
desorption (using ASTM D4222-03(2015) el) curves suggested
that there was not much variation in the curve patterns at
different calcination temperatures.

Micropore formation at 400 °C in the undoped and doped
catalysts was not observed, as confirmed by isotherm ¢-plots
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Fig. 4 (A) Nitrogen physisorption isotherms of (a) undoped TiO, and
(b) 5% Cr-TiO, calcined at 400 °C. Inset: BJH pore size distribution
curves of (a) undoped TiO, and (b) 5% Cr-TiO, at 400 °C. (B) N,
sorption isotherm of 5% Cr—TiO, recovered after the third cycle.
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Table 1 Effect of Cr doping on surface area and porosity

Surface area Porosity by
Sr. no. Catalyst (m*g™) MIP (%)
1 TiO, 72.59 46.70
2 0.5% Cr-TiO, 87.56 58.16
3 1% Cr-TiO, 95.71 60.45
4 2% Cr-TiO, 103.11 59.68
5 3% Cr-TiO, 104.65 60.47
6 4% Cr-TiO, 111.87 84.35
7 5% Cr-TiO, 148.06 84.44

(Fig. S4, ESIt).* The t-plot is considered to be the graph of V,qs
vs. t. The plot of the gas quantity adsorbed versus thickness (nm)
was linear. The isotherm data showed that the catalysts did not
contain any micropores, indicating that the prepared Cr-TiO,
was m