A difunctional azido-cobalt(ii) coordination polymer exhibiting slow magnetic relaxation behaviour and high-energy characteristics with good thermostability and insensitivity†
Abstract
A novel one-dimensional azido-cobalt(II) compound, [Co2(1-mbt)2(N3)4]n (1) (1-mbt = 1-((2-propyl-imidazol-1-yl)methyl)-benzo[1,2,3]triazole), was solvothermally synthesized. X-ray crystal structure analysis demonstrates that two crystallographically independent Co(II) atoms in the asymmetrical unit of compound 1 exhibit a rectangular pyramid geometry. The 3D supermolecular network of 1 consists of well-isolated 1D metal chains in which the azido bridging ligands assume an unusual pattern of combination with the Co(II) centre as the sign of [–EE–EO–EO–EO–]n. The various coordination modes of the azido anion are responsible for different magnetic exchanges between the adjacent Co(II) ions. The end-to-end (EE) mode mediates the antiferromagnetic coupling, whereas the end-on (EO) manner contributes to the ferromagnetic interaction. Magneto-structural relationships are discussed with the aid of theoretical calculations which are employed to find the potential single-ion magnetic anisotropy and reproduce the observed magnetic coupling properly. Alternating current magnetic susceptibility measurements reveal that 1 features a typical behaviour of field-induced slow magnetic relaxation. Energetic characterization evidences that the resulting compound possesses satisfactory detonation properties, superior lack of sensitivity and thermostability owing to the high nitrogen content (N% = 40.10%) and a coherent intrachain configuration. The kinetic parameters of the exothermic processes for 1 are investigated by the Kissinger method and the Ozawa method. We note that 1 has potential application prospects as a new generation of environmentally friendly high-energy materials based on this nitrogen-rich and oxygen-free system. In addition, the compound is developed as a practical additive to promote the thermal decomposition of ammonium perchlorate (AP) and hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX). The finding in this work highlights an example of effective development of advanced magneto-energetic materials.
- This article is part of the themed collection: Spotlight Collection: Lanthanide and transition metal complexes as molecular magnets