Cobalt phosphide nanowire array as an effective electrocatalyst for non-enzymatic glucose sensing†
Abstract
It is of significant importance for the design of electrodes to construct enhanced electrochemical sensing platforms, and a nanoarray offers an ideal architecture for the detection of molecules. In this communication, we demonstrate that cobalt phosphide nanowire array grown in situ on titanium mesh (CoP NA/TM) exhibits high catalytic activity towards electrooxidation of glucose. As a non-enzymatic electrochemical glucose sensor, this CoP NA/TM catalytic electrode possesses superior analytical performance with a short response time of less than 5 s, a wide linear range of 0.0005–1.5 mM, a low detection limit of 0.1 μM (S/N = 3), a high sensitivity of 5168.6 μA mM−1 cm−2, and a remarkable selectivity and long-term stability for glucose detection. We further demonstrate the successful use of such glucose biosensors in human blood serum and fruit juice.
- This article is part of the themed collection: JMC B Editor’s choice web collection: ‘‘seeing the unseen updated: advances in biosensing’’