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Watasemycin biosynthesis in Streptomyces
venezuelae: thiazoline C-methylation by a type B
radical-SAM methylase homologuet

Yuki Inahashi,$2° Shanshan Zhou,}? Maureen J. Bibb,€ Lijiang Song,® Mahmoud M. Al-
Bassam,§¢ Mervyn J. Bibb* and Gregory L. Challis*?

2-Hydroxyphenylthiazolines are a family of iron-chelating nonribosomal peptide natural products that
function as virulence-conferring siderophores in various Gram-negative bacteria. They have also been
reported as metabolites of Gram-positive Streptomyces species. Transcriptional analyses of Streptomyces
venezuelae ATCC 10712 revealed that its genome contains a putative 2-hydroxyphenylthiazoline
biosynthetic gene cluster. Heterologous expression of the gene cluster in Streptomyces coelicolor M1152
showed that the mono- and dimethylated derivatives, thiazostatin and watasemycin, respectively, of the
2-hydroxyphenylthiazoline enantiopyochelin are two of its metabolic products. In addition, isopyochelin,
a novel isomer of pyochelin containing a C-methylated thiazolidine, was identified as a third metabolic
product of the cluster. Metabolites with molecular formulae corresponding to aerugine and pulicatins A/B
were also detected. The structure and stereochemistry of isopyochelin were confirmed by comparison
with synthetic standards. The role of two genes in the cluster encoding homologues of PchK, which is
proposed to catalyse thiazoline reduction in the biosynthesis of enantiopyochelin in Pseudomonas
protegens, was investigated. One was required for the production of all the metabolic products of the
cluster, whereas the other appears not to be involved in the biosynthesis of any of them. Deletion of

a gene in the cluster encoding a type B radical-SAM methylase homologue abolished the production of
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Accepted 5th January 2017 watasemycin, but not thiazostatin or isopyochelin. Feeding of thiazostatin to the mutant lacking the

functional PchK homologue resulted in complete conversion to watasemycin, demonstrating that
thiazoline C-methylation by the type B radical-SAM methylase homologue is the final step in watasemycin
biosynthesis.
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fish,>® and pyochelin 3 and aerugine 4 produced by Pseudo-
monas species including Pseudomonas aeruginosa, an opportu-

Introduction

2-Hydroxyphenylthiazolines are a family of bacterial natural
products with a variety of biological activities. Some members of
this family function as siderophores, iron chelators produced
for iron uptake that are virulence factors in numerous patho-
gens."?® Examples include yersiniabactin 1 produced by
enteropathogenic Yersinia species,* anguibactin 2 from Vibrio
anguillarum 775, which causes hemorrhagic septicemia in
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nistic human pathogen (Fig. 1).”*

Intriguingly, the non-pathogenic pseudomonad Pseudo-
monas protegens produces enantiopyochelin 5, which has also
been shown to function as a siderophore (Fig. 1).° Other
members of the 2-hydroxyphenylthiazoline family are produced
by non-pathogenic Actinobacteria. These include thiazostatin 6,
watasemycin 7 and the pulicatins 8-12 (Fig. 1), produced by
Streptomyces species, which have been reported to have anti-
oxidant, antibacterial and neuroactive properties, respec-
tively.'*** However, it is not currently known whether these
compounds are also able to function as siderophores.

Pyochelin 3 biosynthesis in P. aeruginosa is well character-
ized.”**® Seven proteins (PchABCDEFG) assemble pyochelin 3
from salicylate and two molecules of 1-cysteine (Fig. 2). Salicy-
late is generated from chorismate by PchA and PchB. It is then
activated by reaction with ATP, catalysed by the standalone
adenylation (A) domain PchD. The resulting salicyl adenylate
reacts with the phosphopantetheine thiol of the N-terminal
peptidyl carrier protein (PCP) domain of the PchE

Chem. Sci,, 2017, 8, 2823-2831 | 2823
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Fig. 1 Bacterial natural products belonging to the 2-hydroxyphenylthiazoline family.

nonribosomal peptide synthetase (NRPS) to form the corre-
sponding salicyl thioester. The A domain of PchE similarly
loads 1-cysteine onto the C-terminal PCP domain of PchE and
the heterocyclisation (Cy) domain catalyses the condensation of
the salicyl thioester with the cysteinyl thioester to form a 2-
hydroxyphenylthiazolinyl thioester. Epimerisation of the
cysteine-derived stereocentre in this intermediate is catalysed
by the methyl transferase-like (MT.) domain of PchE. The A
domain of PchF then loads a second molecule of r-cysteine onto
its PCP domain and the Cy domain catalyses condensation of
the resulting cysteinyl thioester with the PchE-bound 2-
hydroxyphenylthiazolinyl thioester to generate a second thia-
zoline, which is reduced to the corresponding thiazolidine by
PchG and N-methylated by the MT domain of PchF. Hydrolytic
release of pyochelin 3 from PchF is catalysed by the C-terminal
thioesterase (TE) domain. PchC is a type II TE that removes
incorrectly loaded molecules from the PCP domain of PchE and
PchF.*®

Enantiopyochelin 5 biosynthesis in P. protegens involves
homologues of PChABCDEF (Fig. 2).° The PchE homologue lacks
the MT, domain responsible for epimerisation of the stereo-
centre in the first thiazoline ring and a homologue of pchG,
which encodes the thiazoline reductase utilized by P. aerugi-
nosa, is not present in the enantiopyochelin biosynthetic gene
cluster. Instead, the product of pchK is proposed to catalyse
reduction of the second thiazoline after the configuration of the
C-4" stereocentre has been inverted by a hitherto unidentified
enzyme. The absence of the MT, domain in the PchE homo-
logue and the substitution of PchG with PchK are together able
to account for the production of enantiopyochelin 5 by P.
protegens.

2824 | Chem. Sci., 2017, 8, 2823-2831

The plant pathogen Streptomyces scabies 87.22 has also been
shown to produce pyochelin 3 in an iron-deficient medium.*
The gene cluster responsible for its biosynthesis encodes
homologues of PchCDEFG (a single enzyme encoded by the
scab1381 gene is proposed to be responsible for salicylate
biosynthesis in S. scabies) (Fig. 2).** Transcription of the gene
cluster is repressed by a TetR-family protein encoded by
scab1401 and activated by an AfsR-family protein encoded by
scab1371.*

Here we report the identification of a putative 2-hydrox-
yphenylthiazoline biosynthetic gene cluster in the genome of
Streptomyces venezuelae ATCC 10712 by comparative transcrip-
tional analyses of the wild type strain and a bldM mutant. The
main metabolic products of this cluster were identified as the
known 2-hydroxyphenyl-thiazolines thiazostatin 6 and watase-
mycin 7, and a novel metabolite isopyochelin 13 via a heterolo-
gous expression approach. Gene deletion experiments defined
an essential role for a PchK homologue in the biosynthesis of all
metabolic products of the cluster, and showed that a type B
radical-SAM methylase homologue is responsible for methyla-
tion of the thiazoline ring in thiazostatin 6 to form watasemycin
7.

Results and discussion
Microarray analysis of S. venezuelae bldM mutant

We recently reported the results of DNA microarray analyses of
S. venezuelae, which showed that the transcription of the chlor-
amphenicol biosynthetic gene cluster is markedly increased in
a bldM mutant relative to the wild type strain.*® The bldM gene
encodes an atypical orphan response regulator required for
morphological differentiation.”* Analysis of the same microarray

©
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Fig. 2 Pathways proposed for the biosynthesis of pyochelin 3 and enantiopyochelin 5 in P. aeruginosa and P. protegens, respectively. The MT,
domain in PchE from P. aeruginosa is an MT-like domain that catalyses epimerisation of the a-carbon in the cysteinyl thioester.

data set revealed another cluster of co-ordinately regulated sven0498-sven0502 and sven0519-sven0527 (sven0518 was not
genes, sven0503-sven0517, that is up-regulated in the bldM represented on the microarray), which showed basal levels of
mutant (Fig. 3). The transcriptional profiles of the flanking genes  expression throughout growth in both the wild type strain and

This journal is © The Royal Society of Chemistry 2017 Chem. Sci,, 2017, 8, 2823-2831 | 2825
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Fig. 3 Microarray expression profiles of the fifteen genes (sven0503-sven0517) with elevated levels of transcription in the S. venezuelae bldM
mutant (left panel) compared to the wild type strain (right panel). The y-axis represents normalized transcript abundance. The genes are listed in
order of their relative levels of expression at 20 hours in the bldM mutant (and for sven0503 and sven0516 in the wild type strain for comparison).
Note that there are two sets of data for sven0517 (sven0517.1 and sven0517.2) reflecting two different probe sets on the array and that their
expression profiles are very similar. The sven0518 gene, which encodes a conserved 51 amino acid hydrophobic peptide, was not represented on

the microarrays and thus its expression profile is not shown.

the bldM mutant (see ESIt), indicated that they are unlikely to be
functionally related to sven0503-sven0517 (note also that a leucyl-
tRNA gene, currently lacking a sven designation, lies between
sven0517 and sven0518, further suggesting that sven0517 lies at
the right hand end of the gene cluster).

Sequence analysis of the sven0503-sven0517 gene cluster

Most of the sven0503-sven0517 genes encode proteins with
>50% similarity to those encoded by genes within the S. scabies
pyochelin biosynthetic gene cluster (Fig. 4 and ESIT). Sven0510,
Sven0512 and Sven0517 are homologues of Scab1411 (PchD),
Scab1481 (PchE) and Scab1471 (PchF), respectively. Sven0511 is
a homologue of the proofreading type II TE Scab1421 (PchC)
and Sven0506 is homologous to the putative salicylate synthase
encoded by scab1381. No homologues of PchG can be found in
the S. venezuelae genome. However, Sven0516 is 47% similar to
PchK from P. protegens CHAO, which has been proposed to
function as a thiazoline reductase in enantiopyochelin
biosynthesis.” Moreover, Sven0508 is 48% similar to Sven0516,

2826 | Chem. Sci., 2017, 8, 2823-2831

suggesting it may also be able to function as a thiazoline
reductase.

Interestingly, a homologue of sven0515, which encodes
a putative type B radical-SAM methylase, cannot be found in any
2-hydroxyphenylthiazoline biosynthetic gene cluster reported to
date. Such enzymes are known to catalyse the methylation of
unactivated carbon centres in the biosynthesis of a variety of
specialised metabolites.?* Taken together, these analyses sug-
gested that the sven0503-sven0517 gene cluster may direct the
biosynthesis of a C-methylated pyochelin derivative.

Sven0507/Sven0509 and Sven0505 are highly similar to the
TetR-like Scab1401 repressor and the AfsR family Scab1371 acti-
vator, respectively, of pyochelin biosynthesis in S. scabies. Similarly,
Sven0513 and Sven0514 are homologues of the putative ABC
transporter ATPase/permease fusions encoded by scab1431 and
scab1441, respectively, which are likely responsible for pyochelin
export. No obvious role can be postulated for the Scab1361
homologue Sven0503, a putative AMP ligase, or Sven0504, a puta-
tive Na'/H" antiporter that is not homologous to any of the proteins
encoded by the S. scabies pyochelin biosynthetic gene cluster.

This journal is © The Royal Society of Chemistry 2017
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Expression of the gene cluster in S. coelicolor M1152

Despite screening various growth media, we failed to detect the
production of any 2-hydroxyphenylthiazoline-containing metab-
olites by S. venezuelae. This is potentially explained by the low
levels of sven0516 expression in the bldM mutant (Fig. 3), which is
surprising given that sven0517 is likely to be in the same operon,
and possibly reflects differential mRNA stability for the two
genes. We therefore elected to express the sven0503-sven0517
gene cluster in the engineered host S. coelicolor M1152. A
clone (SV-2_E03) from an ordered genomic cosmid library of the
S. venezuelae chromosome containing a segment extending from
sven0496 to sven0518 was PCR-targeted in Escherichia coli with
a 5.2 kb SsplI fragment from pIJ10702 that contains oriT, and the
9C31 integrase gene and phage attachment site (attP). The
resulting cosmid, SV-2_E03::Sspl, was introduced into S. coeli-
color M1152 by conjugation, whereupon it integrated into the
chromosomal ¢C31 attB site. Wild type S. coelicolor M1152 and the
SV-2_E03::Sspl derivative were incubated in YD medium for five
days and the culture broths were extracted with ethanol. UHPLC-
ESI-Q-TOF-MS analyses identified metabolites giving rise to ions
with m/z = 339.0840, 353.0983, 325.0675, 210.0588 and 224.0736,
corresponding to [M + H]" for the known 2-hydrophenylthiazolines
thiazostatin 6 (m/z calculated for C;5H;oN,05S,": 339.0832), wata-
semycin 7 (m/z calculated for C;¢H,,N,05S,": 353.0988), pyochelin
3 (mfz calculated for C;4H;,N,05S,": 325.0675) aerugine 4 (m/z
calculated for C;oH;,NO,S": 210.0583) and pulicatins A/B 8/9 (m/z
calculated for C;,H;,NO,S": 224.0740), respectively, in the culture
extract of S. coelicolor M1152/SV-2_E03::Sspl (Fig. 5). These
metabolites were not present in the culture extracts of the
unmodified host. Several other liquid growth media, including
TSB, ISP2 and GSP, were also found to support production of these
compounds.

Structure elucidation of metabolic products

Metabolites were isolated from the culture broths using Diaion
HP-20 resin, eluting with methanol. After ethyl acetate extraction
and HPLC separation, the fractions containing the compounds
with molecular formulae corresponding to thiazostatin and
watasemycin were collected and analysed by "H NMR spectros-
copy (see ESIt). The spectroscopic data were identical to those
previously reported for thiazostatins A and B 6, and

This journal is © The Royal Society of Chemistry 2017

watasemycins A and B 7, isolated from Streptomyces tolurosus
and Streptomyces sp. TP-A0597, respectively.

A mixture of pyochelin 3 and neopyochelin (the C-4’ epimer of
pyochelin) was synthesised according to a literature procedure.
Surprisingly, none of these four diastereomeric compounds had
the same retention time as the metabolites with molecular
formulae corresponding to pyochelin 3 (see ESIf). We thus
hypothesised that these metabolites are isomers of pyochelin 3
in which C-4” is methylated instead of the nitrogen atom of the
thiazolidine. To test this hypothesis, an authentic standard of
the C-4'" methylated isomer of pyochelin (hereafter referred to as
isopyochelin) was synthesised as a mixture of four diastereomers
via condensation of the known 2-hydroxyphenylthiazoline alde-
hyde 14 with r-2-methylcysteine (Scheme 1).

LC-MS comparisons showed that two of the synthetic iso-
pyochelin diastereomers had the same retention time as the
metabolites in the culture extract (Fig. 6). The absolute config-
uration of C-4” in the natural products was established as S by
condensing 2-hydroxyphenylthiazoline aldehyde 14 with p-2-
methylcysteine and comparing the retention times of the
metabolites in the extract with synthetic (4”R) and (4”S)-iso-
pyochelins derived from 1- and p-2-methylcysteine, respectively
(see ESIT). Based on the assumption that natural isopyochelin
and thiazostatin 6 have the same relative stereochemistry (see
below), the structure of the former was assigned as 13 (Fig. 1).

Biosynthetic role of sven0508 and sven0516

The observation that the sven0503-sven0517 gene cluster
contains two genes encoding PchK-like putative thiazoline
reductases intrigued us, because only a single thiazoline
reduction appears to be involved in the biosynthesis of thia-
zostatin 6, watasemycin 7 and isopyochelin 13. To investigate
the role played by sven0508 and sven0516 in the biosynthesis of
6, 7 and 13, individual in-frame deletions of these genes were
created in SV-2_E03 by PCR targeting. The mutagenized cos-
mids were subsequently targeted with the 5.2 kb SspI fragment
from pIJ10702 and then introduced into S. coelicolor M1152
from E. coli ET12567/pUZ8002 by conjugation.

Ethanol extracts of culture broths from the sven0508 and
sven0516 mutants were analysed by LC-MS. Aerugine 4, thia-

zostatin 6, watasemycin 7, pulicatins A/B 8/9 and

Chem. Sci,, 2017, 8, 2823-2831 | 2827
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Fig. 5 Extracted ion chromatograms at m/z = 339.0832 (A), 353.0988 (B), 210.0583 (C), 224.0740 (D) and 325.0675 (E), corresponding to [M +
H]* for thiazostatin 6, watasemycin 7, aerugine 4, pulicatins A/B 8/9 and pyochelin 3, respectively, from LC-MS analyses of the ethanol extract of
S. coelicolor M1152/SV-2_E03::Sspl culture broth. Two peaks are observed for thiazostatin, watasemycin and pyochelin because they exist as

a mixture of two diastereomers resulting from epimerisation at C-2"'.

isopyochelin 13 were all still observed in the extract from the
sven0508 mutant (see ESIT). On the other hand, none of these
metabolites could be detected in the extract from the
sven0516 mutant (see ESIt). Thus we conclude that Sven0516
plays an essential role in the biosynthesis of all the metabolic
products of the sven0503-sven0517 gene cluster.

Revised stereochemistry of watasemycin and thiazostatin

The finding that a PchK homologue plays an essential role in
assembling the metabolic products of the sven0503-sven0517
gene cluster is in accord with our assignment of the C-4”
configuration of isopyochelin 13 as S. Assuming isopyochelin 13
and watasemycin 7 have the same C-4" absolute configuration,
the relative stereochemistry previously assigned to watasemycin
on the basis of NOE NMR studies suggests its C-5' and C-4/
stereocentres should both be R-configured.

OH

L-2-methyl
—cyste]ne HCI «COOH
N H 9 CH
N¢' /7 EtoR AD, j‘ s
s MeCOOK

14

Scheme 1 Synthesis of an authentic standard of (4”'R)-isopyochelin as
a mixture of stereoisomers at C-4" and C-2".

2828 | Chem. Sci., 2017, 8, 2823-2831

However, the 5'R stereochemical assignment conflicts with
the absolute stereochemistry proposed, on the basis of NOESY,
Mosher's ester and CD studies, for the corresponding
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Fig. 6 Extracted ion chromatograms for m/z = 325.0675, corre-
sponding to [M + HI* for isopyochelin, from LC-MS analyses of the
ethanol extract of S. coelicolor M1152/SV-2_E03::Sspl culture broth
(top), the mixture of synthetic (4R)-isopyochelin diastereomers
(middle) and the extract to which an approximately equimolar quantity
of the synthetic standard has been added (bottom). Two peaks are
observed in the top chromatogram because natural isopyochelin exists
as a mixture of two diastereomers resulting from epimerisation at C-2".
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Fig.7 Extracted ion chromatograms at m/z = 339.0832 (A), 353.0988 (B), 210.0583 (C), 224.0740 (D) and 325.0675 (E), corresponding to [M +
H]* for thiazostatin, watasemycin, aerugine, pulicatin and isopyochelin, respectively, from LC-MS analyses of the ethanol extract of S. coelicolor
M1152/SV-2_EQ3::Sspl/Asven0515 culture broth. Two peaks are observed for thiazostatin and isopyochelin because they exist as a mixture of
diastereomers resulting from epimerisation at C-2". The peak with a retention time of approximately 21.5 minutes in the m/z = 353.0988
chromatogram (B) appears, on the basis of LC-MS/MS analyses, to be due to the methyl ester of thiazostatin (see ESIT).

stereogenic centre in pulicatins A and B 8 and 9. The C4’
hydrogen substituent and the C5’ methyl group in watasemycin
7 are proposed to be anti to each other on the basis of NOE
studies.” We thus suspect that the relative configuration of
watasemycin 7 has been misassigned and hypothesize that the
correct stereochemical assignment is 4'S, 5'S, 4”S (as shown in
Fig. 1). By analogy, we propose that the stereochemistry of
thiazostatin 6 is 4'S, 4''S. Although further experiments will be

Intens. |
x10

12 14 16 18 20 2‘2 TimeI [min]

Fig. 8 Extracted ion chromatograms at m/z = 339.0832, corre-
sponding to [M + HI* for thiazostatin (top), and 353.0988, corre-
sponding to [M + HI* for watasemycin, (bottom) from LC-MS analyses
of the extract from the Asven0516 mutant fed with the extract from
the Asven0515 mutant.

This journal is © The Royal Society of Chemistry 2017

required to confirm these stereochemical reassignments, it is
noteworthy that the MT. domain of the PchE homologue
Sven0512 appears, on the basis of conserved domain
searches,? to be non-functional. This is consistent with the
4'S configuration, resulting from net incorporation of -
cysteine into the thiazoline ring of thiazostatin 6, watasemy-
cin 7 and isopyochelin 13, as in enantiopyochelin 5 biosyn-
thesis (Fig. 2).°

Sven0515 C-methylates the thiazoline of thiazostatin

Compared with pyochelin 3, watasemycin 7 contains two addi-
tional methyl groups at C-5' and C-4” (Fig. 1). Based on its
similarity to type B radical-SAM methylases,** Sven0515 could
be responsible for introducing one or both of these. We there-
fore deleted sven0515 from SV-2_E03, introduced the 5.2 kb SspI
fragment from pIJ10702 and transferred the resulting construct
into S. coelicolor M1152, as described above. LC-MS analysis of
ethanol extracts from the culture broth of this strain showed
that it is unable to produce watasemycin 7 or pulicatins A/B 8/9
(Fig. 7). Thus, Sven0515 appears to be involved in the methyl-
ation of C-5', but not C-4”. To investigate the timing of C-5'
methylation, we fed the metabolites in the extract of the
sven0515 mutant to the sven0516 mutant. This resulted in
complete conversion of the thiazostatin 6 in the extract to
watasemycin 7 (Fig. 8), indicating that thiazostatin is the
substrate of Sven0515.
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Fig. 9 Proposed pathway for the biosynthesis of thiazostatin 6, watasemycin 7, isopyochelin 13, aerugine 4 and pulicatins A/B 8/9 in S.

venezuelae.

Proposed pathway for watasemycin biosynthesis

Taken together, the above data lead us to propose a pathway for
the biosynthesis of watasemycin 7 in S. venezuelae (Fig. 9). The
early stages of this pathway, up to the formation of the 2-
hydroxyphenyl-bis-thiazolinyl thioester intermediate attached
to the PCP domain of Sven0517, mirror the biosynthesis of
enantiopyochelin 5 (Fig. 2). At this point the MT domain of
Sven0517 appears to catalyse methylation of C-4” (Fig. 9). An
analogous transformation has been shown to occur in the
biosynthesis of yersiniabactin.>® Sven0516 catalyses thiazoline
reduction and the MT domain of Sven0517 then methylates the
nitrogen atom of the resulting thiazolidine, as in pyochelin
biosynthesis.*® Hydrolysis of the thioester by the TE domain
affords thiazostatin 6, which is methylated at C-5" by Sven0515
to give watasemycin 7. Isopyochelin 13 presumably results from
TE-catalysed thioester hydrolysis prior to the N-methylation
reaction, suggesting that this may be a slow step in thiazostatin
6 biosynthesis. The biosynthetic origins of aerugine 4 and
pulicatins A/B 8/9 are unclear, but it seems likely that they arise
from hydrolytic cleavage and subsequent reduction of thiazos-
tatin 6/isopyochelin 13 and watasemycin 7, respectively.

Conclusions

We have identified the known Streptomyces metabolites aer-
ugine 4, thiazostatin 6, watasemycin 7 and pulicatins A/B 8/9,
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and the novel natural product isopyochelin 13 as the
metabolic products of a cryptic 2-hydroxyphenylthiazoline
biosynthetic gene cluster in S. venezuelae ATCC10712 using
a heterologous expression approach. The absolute stereo-
chemistry of isopyochelin 13 was assigned as 4”S by
comparison with synthetic standards. In combination with
the absolute and relative stereochemistry reported for puli-
catins A and B 8 and 9," previous investigations of the relative
stereochemistry of watasemycin 7, and biosynthetic
considerations, this prompted us to assign the stereochem-
istry of watasemycin 7 and thiazostatin 6 as 4'S, 5'S, 4”5 and
4'S, 4”8, respectively. Gene deletion experiments established
an essential role for the PchK homologue Sven0516 in the
biosynthesis of all the metabolic products of the gene cluster
and showed that the type B radical-SAM methylase homo-
logue encoded by sven0515 is responsible for the conversion
of thiazostatin 6 to watasemycin 7. Type B radical-SAM
methylases are known to catalyse methylation of unactivated
carbon centres in the biosynthesis of several different classes
of natural products, including aminoglycosides, B-lactams,
phosphonates, and ribosomally biosynthesised and post-
translationally-modified peptides.?” However, to the best of
our knowledge the Sven0515-catalysed methylation of thia-
zostatin 6 is the first experimentally-validated example of
such a reaction in the biosynthesis of a nonribosomal
peptide.
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