Overview of imidazole-based fluorescent materials with hybridized local and charge transfer and hot-exciton pathway characteristics in excited states
Abstract
Herein, we discuss an imidazole-based molecular framework, which can successfully transform triplet excitons present in high triplet levels into singlet states. We explain the working mechanisms of different methods for collecting triplet excitons, including hot excitons or HLCT states. After the development of an hot exciton material by Ma and Yang, many studies have demonstrated that the organic conjugated molecules having imidazole core have possibilities to show high efficiencies via hot exciton pathways. Finally, we provide a detailed investigation of recently published hot exciton luminogens based on imidazole molecular frameworks. This review provides an overview of the molecular structures, frontier molecular orbital information, and glass transition temperature of developed luminogens as well as the efficiency of organic light-emitting diodes (OLED) devices.
- This article is part of the themed collection: Soft Matter Recent Review Articles, 2024