Issue 10, 2024

Insights into controlling bacterial cellulose nanofiber film properties through balancing thermodynamic interactions and colloidal dynamics

Abstract

In recent years, nanocellulose has emerged as a sustainable and environmentally friendly alternative to traditional petroleum-derived structural polymers. Sourced either from plants, algae, or bacteria, nanocellulose can be processed into colloid, gel, film and fiber forms. However, the required fundamental understanding of process parameters that govern the morphology and structure–property relationships of nanocellulose systems, from colloidal suspensions to bulk materials, has not been developed and generalized for all forms of cellulose. This further hinders the more widespread adoption of this biopolymer in applications. Our study investigates the dispersion of cellulose nanofibers (CNFs) produced by a bacterial–yeast co-culture, in solvents, highlighting the role of thermodynamic interactions in influencing their colloidal behavior. By adjusting Hansen solubility parameters, we controlled the thermodynamic relationship between CNFs and solvents across various concentrations, studying the dilute to semi-dilute regimes. Rheological measurements revealed that the threshold at which a concentration-based regime transition occurs is distinctly solvent-dependent. Complementing rheological analysis with small angle X-ray scattering and zeta potential measurements, our findings reveal that enhancing CNF–solvent interactions increases excluded volume in the dilute regime, emphasizing the importance of the balance between fiber–fiber and fiber–solvent interactions. Moreover, we investigated the transition from colloidal to solid state by creating films from dispersions with varying interaction parameters in semi-dilute regimes. Through mechanical testing and scanning electron microscopy imaging of the fracture surfaces, we highlight the significance of electrokinetic effects in such transitions, as dispersions with higher electrokinetic stabilization gave rise to stronger and tougher films despite having less favorable thermodynamic interaction parameters. Our work provides insights into the thermodynamic and electrokinetic interplay that governs bacterial CNF dispersion, offering a foundation for future application and a deeper understanding of nanocellulose's colloidal and structure-property relationships.

Graphical abstract: Insights into controlling bacterial cellulose nanofiber film properties through balancing thermodynamic interactions and colloidal dynamics

Supplementary files

Article information

Article type
Paper
Submitted
30 Meur. 2024
Accepted
18 Mae 2024
First published
21 Mae 2024

Mol. Syst. Des. Eng., 2024,9, 1036-1050

Insights into controlling bacterial cellulose nanofiber film properties through balancing thermodynamic interactions and colloidal dynamics

A. Mandal, K. Liao, H. Iyer, J. Lin, X. Li, S. Zhang and E. Roumeli, Mol. Syst. Des. Eng., 2024, 9, 1036 DOI: 10.1039/D4ME00058G

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements