Bibliometric and visualization analysis of the application of inorganic nanomaterials to autoimmune diseases
Abstract
Objective: To conduct bibliometric analysis of the application of inorganic nanomaterials to autoimmune diseases to characterize current research trends and to visualize past and emerging trends in this field in the past 15 years. Methods: The evolution and thematic trends of the application of inorganic nanomaterials to autoimmune diseases from January 1, 1985, to March 15, 2024, were analyzed by bibliometric analysis of data retrieved and extracted from the Web of Science Core Collection (WoSCC) database. A total of 734 relevant reports in the literature were evaluated according to specific characteristics such as year of publication, journal, institution, country/region, references, and keywords. VOSviewer was used to build co-authorship analysis, co-occurrence analysis, co-citation analysis, and network visualization. Some important subtopics identified by bibliometric characterization are further discussed and reviewed. Result: From 2009 to 2024, annual publications worldwide increased from 11 to 95, an increase of 764%. ACS Nano published the most papers (14) with the most citations (1372). China (230 papers, 4922 citations) and the Chinese Academy of Sciences (36 papers, 718 citations) are the most productive and influential country and institution, respectively. The first 100 keywords were co-clustered to form four clusters: (1) the application of inorganic nanomaterials in drug delivery, (2) the application of inorganic nano-biosensing to autoimmune diseases, (3) the use of inorganic nanomaterials for imaging applied to autoimmune diseases, and (4) the application of inorganic nanomaterials in the treatment of autoimmune diseases. Combination therapy, microvesicles, photothermal therapy (PTT), targeting, diagnostics, transdermal, microneedling, silver nanoparticles, psoriasis, and inflammatory cytokines are the latest high-frequency keywords, marking the emerging frontier of inorganic nanomaterials in the field of autoimmune diseases. Sub-topics were further discussed to help researchers determine the scope of research topics and plan research directions. Conclusion: Over the past 39 years, the application of inorganic nanotechnology to the field of autoimmune diseases shows extensive cooperation between countries and institutions, showing a continuous increase in the number of reports in the literature, and has clinical translation prospects. Future research should further improve the safety of inorganic nanomaterials, clarify the mechanism of action of nanomaterials, establish a standardized nanomaterial preparation and performance evaluation system, and ultimately achieve the goal of early detection and precise treatment of autoimmune diseases.
- This article is part of the themed collection: Biomaterials Science Recent Review Articles, 2024