Recent advances on value-added biocarbon preparation by the pyrolysis of renewable and waste biomass, their structure and properties: a move toward an ecofriendly alternative to carbon black
Abstract
The production of renewable biocarbon from waste biomass through pyrolysis as a sustainable and ecofriendly alternative to carbon black poses major scientific challenges for value-added uses in plastic and composite industries. The need to develop new materials from sustainable resources is now globally recognized and increasingly important in view of rising greenhouse gas (GHC) emissions and climate change mitigation. Carbon black is one of the most extensively used reinforcing fillers for elastomers and colorant in the plastic industry and is produced from nonrenewable petroleum derivatives. This review reports the scope of the sustainable carbonaceous filler, biocarbon, as a reinforcing filler for polymer matrices. Herein, we focus on the physicochemical characteristics of the conventional carbon black filler and summarized the strategies to achieve these properties in sustainable biocarbon filler through the proper tuning of synthesis methodologies. Moreover, this review emphasizes on the development, challenges, and opportunities of this emerging renewable filler as a possible replacement for carbon black utilizing the immense amount of waste biomass generated in agricultural and industrial processes.
- This article is part of the themed collection: Environmental Science Advances Recent Review Articles