The β-PdBi2 monolayer for efficient electrocatalytic NO reduction to NH3: a computational study†
Abstract
Electrocatalytic NO reduction to NH3 (NORR) is regarded as an appealing strategy for both sustainable NH3 production and harmful NO abatement, but the development of highly active and selective electrocatalysts to boost such a complex multiple proton-coupled electron-transferred process still remains a challenge. Here, by means of density functional theory (DFT) computations, we proposed the synthesized β-PdBi2 monolayer as a highly efficient NORR catalyst. Our results revealed that the β-PdBi2 monolayer possesses outstanding thermodynamic, dynamic, and electrochemical stabilities, as well as intrinsic metallicity. In particular, this catalyst exhibits excellent catalytic activity towards NORR with a low limiting potential of −0.35 V, which can be further enhanced by applying a suitable tensile strain. In addition, we also explored the effects of pH and applied potential on NORR over the β-PdBi2 monolayer, among which an alkaline environment of pH = 7.92 facilitates the effective NO-to-NH3 conversion. Thus, the β-PdBi2 monolayer can be utilized as a promising catalyst with high efficiency for NORR, which offers cost-effective opportunities for advancing sustainable NH3 production and eliminating nitric oxide pollutants.
- This article is part of the themed collection: Nitrogen-cycle electrocatalysis