Photocontrolled DNA nanotubes as stiffness tunable matrices for controlling cellular behavior†
Abstract
Cell behavior is determined by a variety of properties of the extracellular environment like ligand spacing, nanotopography, and matrix stiffness. Matrix stiffness changes occur during many biological processes like wound healing, tumorigenesis, and development. These spatio-temporal dynamic changes in stiffness can cause significant changes in cell morphology, cell signaling, migration, cytoskeleton etc. In this paper, we have created photocontrolled stiffness-tunable DNA nanotubes which can undergo reversible changes in their conformation upon UV and VIS irradiation. When used as a substrate for cell culture, the photocontrolled DNA nanotubes can tune the cell morphology of HeLa cells from a long spindle-shaped morphology with long filopodia protrusions to a round morphology with short filopodia-like extrusions. Such a photocontrolled nanosystem can give us deep insights into the cell–matrix interactions in the native extracellular matrix caused by nanoscopic changes in stiffness.
- This article is part of the themed collection: Emerging concepts in nucleic acids: structures, functions and applications