Issue 2, 2023

Catalytic conversion network for lignocellulosic biomass valorization: a panoramic view

Abstract

Efficient utilization of lignocellulosic biomass to substitute for fossil resources is an effective way to promote the sustainable development of current society. Numerous lignocellulose valorization routes for the production of value-added chemicals and fuels have been explored. Herein, we overview the catalytic reaction routes, reaction types and key steps involved in the selective preparation of various important products from lignocellulose. The information can facilitate the development of robust and selective catalytic systems to address the challenges in the major reaction steps. We present four catalytic conversion route maps starting from cellulose (including 5-hydroxylfurfural, HMF), hemicellulose and lignin, respectively. The reaction route for the important platform molecules of HMF and furfural, passing through critical intermediates to value-added chemicals and aviation fuels, is also highlighted. It provides a clear and concise panorama for people interested in this field and facilitates identifying the products or processes of interest with up-to-date research developments. We also put forward the current issues for the large-scale valorization of lignocellulose and the possible resolution strategies, focusing on the rational design of active and robust heterogeneous catalysts.

Keywords: Biomass; Lignocellulose valorization; Catalytic conversion network; Reaction routes; Renewable chemicals.

Graphical abstract: Catalytic conversion network for lignocellulosic biomass valorization: a panoramic view

Article information

Article type
Review Article
Submitted
06 Ker. 2022
Accepted
21 Cʼhwe. 2023
First published
21 Cʼhwe. 2023
This article is Open Access
Creative Commons BY-NC license

Ind. Chem. Mater., 2023,1, 188-206

Catalytic conversion network for lignocellulosic biomass valorization: a panoramic view

S. Wang, A. Cheng, F. Liu, J. Zhang, T. Xia, X. Zeng, W. Fan and Y. Zhang, Ind. Chem. Mater., 2023, 1, 188 DOI: 10.1039/D2IM00054G

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements